1. R. I. Ivanov and C.-I. Martin. Hamiltonian approach to modelling interfacial internal waves over variable bottom , Physica D: Nonlinear Phenomena, 433 (2022), 133190.

  2. C.-I. Martin. Some explicit solutions of the three-dimensional Euler equations with a free surface , Mathematische Annalen 2021.

  3. C.-I. Martin and R. Quirchmayr. Exact solutions and internal waves for the Antarctic Circumpolar Current in spherical coordinates, Stud. Appl. Math. 148 (2022), no. 3, 1021 - 1039.

  4. C.-I. Martin. On flow simplification occurring in viscous three-dimensional water flows with constant non-vanishing vorticity, Appl. Math. Letters 124 (2022), 107690.

  5. C.-I. Martin. On three-dimensional free-surface water flows with constant vorticity , Comm. Pure Appl. Anal. 21 (2022), no. 7, 2415-2431.

  6. C.-I. Martin. On azimuthally propagating equatorial atmospheric waves , Monatsh. Math. (2022), in press.

  7. C.-I. Martin and A. Petrusel Free surface equatorial flows in spherical coordinates with discontinuous stratification depending on depth and latitude, Ann. Mat.Pura Appl. 201 (2022), no. 6, 2677-2690.

  8. C.-I. Martin and B. Basu An alternative approach to study irrotational periodic gravity water waves, Z. Angew. Math. Phys. 72 (2021), no. 4, 155.

  9. B. Basu, L. Chen and C.-I. Martin. On rotational flows with discontinuous vorticity beneath steady water waves near stagnation, J. Fluid Mechanics 912 (2021), A44.

  10. C.-I. Martin. Some explicit solutions to the three-dimensional nonlinear water wave problem , J. Math. Fluid Mech. 23 (2021), Paper no. 33.

  11. C.-I. Martin. Azimuthal equatorial flows in spherical coordinates with discontinuous stratification, Phys. Fluids. 33 (2021), 026602.

  12. C.-I. Martin and B. Basu. Resonances for water waves over flows with piecewise constant vorticity , Nonlinear Analysis: Real World Applications 57 (2021), 103176.

  13. C.-I. Martin. Geophysical water flows with constant vorticity and centripetal terms , Ann. Mat. Pura Appl. 200 (2021), 101-116.

  14. B. Basu and C.-I. Martin. Capillary-gravity water waves: Modified flow force formulation , J. Differential Equations 269 (2020), 11231-11251.

  15. D. Henry and C.-I. Martin. Stratified equatorial flows in cylindrical coordinates , Nonlinearity 33 (2020) 3889-3904.

  16. C.-I. Martin and R. Quirchmayr. A model for the Antarctic Circumpolar Current with eddy viscosity and variable density , Monatshefte Math. 192 (2020), 401-407.

  17. C.-I. Martin and A. Petrusel. A fixed-point approach for azimuthal equatorial ocean flows , to appear in Applicable Analysis.

  18. R. I. Ivanov and C.-I. Martin. On the time-evolution of resonant triads in rotational capillary-gravity water waves , Physics of Fluids 31 (2019) no. 11, 117103.

  19. C.-I. Martin and R. Quirchmayr. Explicit and exact solutions concerning the Antarctic Circumpolar Current with variable density in spherical coordinates , J. Math. Phys. 60 (2019) no. 10, 101505.

  20. C.-I. Martin. Constant vorticity water flows with full Coriolis term , Nonlinearity 32 (2019) no. 7, 2327-2336.

  21. C.-I. Martin and A. Rodriguez-Sanjurjo. Dispersion relations for steady periodic water waves of fixed mean-depth with two rotational layers , Discrete Contin. Dyn. Syst. A 39 (2019) no. 9, 5149-5169.

  22. D. Henry and C.-I. Martin. Exact, free-surface equatorial flows with general stratification in spherical coordinates, Arch. Ration. Mech. Anal. 233 (2019) no. 1, 497-512.

  23. C.-I. Martin. On constant vorticity water flows in the β-plane approximation, J. Fluid Mechanics 865 (2019), 762-774.

  24. M. Kluczek and C.-I. Martin. Dispersion relations for fixed mean-depth flows with two discontinuities in vorticity, Nonlinear Analysis: Theory, Methods and Applications 181 (2019), 62-86.

  25. D. Henry and C.-I. Martin. Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification, J. Differential Equations 266 (2019), no. 10, 6788-6808.

  26. A. Compelli, R. I. Ivanov, C.-I. Martin and M. Todorov. Surface waves over currents and uneven bottom Deep-Sea Research, Part II 160 (2019), 25-31.

  27. C.-I. Martin. On the vorticity of mesoscale ocean currents, Oceanography 31 (2018) no. 3, 28-35.

  28. C.-I. Martin. Non-existence of time-dependent three-dimensional gravity water flows with constant non-zero vorticity, Physics of Fluids 30 (2018) no. 10, 107102 .

  29. B. Basu and C.-I. Martin. Resonant interactions of rotational water waves in the equatorial f-plane approximation, J. Math. Phys. 59 (2018) no. 10, 103101 .

  30. D. Henry and C.-I. Martin. Exact, purely azimuthal stratified equatorial flows in cylindrical coordinates, Dynamics of Partial Differential Equations 15 (2018), no. 4, 337-349.

  31. C.-I. Martin. On the time evolution of the velocity in equatorial ocean waves approaching breaking, J. Evolution Equations 18 (2018), no. 2, 615-626.

  32. C.-I. Martin. On periodic geophysical water flows with discontinuous vorticity in the equatorial f-plane approximation, Phil. Trans. R. Soc. A. 376 (2018), 20170096

  33. D. Ionescu-Kruse and C. I. Martin. Local stability for an exact steady purely azimuthal equatorial flow, J. Math. Fluid Mech. 20 (2018), no. 1, 27-34.

  34. C.-I. Martin. Two dimensionality of gravity water flows governed by the equatorial f-plane approximation, Annali di Matematica Pura ed Applicata 196 (2017) no. 6, 2253-2260

  35. H.-C. Hsu and C.-I. Martin. On the existence of solutions and the pressure function related to the Antarctic Circumpolar Current, Nonlinear Analysis: Theory, Methods and Applications 155 (2017), 285-293.

  36. H.-C. Hsu and C.-I. Martin. Azimuthal equatorial capillary-gravity flows in spherical coordinates, Nonlinear Analysis Series B: Real World Applications 36 (2017), 278-286.

  37. D. Ionescu-Kruse and C. I. Martin. Periodic Equatorial water flows from a Hamiltonian perspective, J. Differential Equations 262 (2017) no. 8, 4451-4474.

  38. C.-I. Martin. Resonant interactions of capillary-gravity water waves, J. Math. Fluid Mech. 19 (2017), no. 4, 807-817.

  39. C.-I. Martin. Surface tension effects in the equatorial ocean dynamics, Monatshefte für Mathematik 182 (2017) no. 3, 675-682

  40. C.-I. Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows, DCDS-A 37 (2017), no. 1, 387-404.

  41. C.-I. Martin. On the existence of free-surface azimuthal equatorial flows, Applicable Analysis 96 (2017) no. 7, 1207-1214.

  42. H.-C. Hsu and C.-I. Martin. Free-surface capillary-gravity azimuthal equatorial flows , Nonlinear Analysis: Theory, Methods & Applications, 144 (2016), 1-9.

  43. C.-I. Martin. Hamiltonian structure for rotational capillary waves in stratified flows, J. Differential Equations, 261 (2016), no. 1, 373-395.

  44. A. Constantin, R. Ivanov and C.-I. Martin. Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal. 221 (2016), 1417-1447.

  45. C.-I. Martin. On the maximal horizontal surface velocity for a rotational water wave near breaking, Annali di Matematica Pura ed Applicata 195 (2016), no. 5, 1659-1664.

  46. C.-I. Martin and B.-V. Matioc. Gravity water flows with discontinuous vorticity and stagnation points, Comm. Math. Sciences, (14), No. 2, 415-441, (2016).

  47. C.-I. Martin. Dynamics of the thermocline in the equatorial region of the Pacific Ocean, J. Nonl. Math. Phys., 22 (2015), no. 4, 516-522.

  48. C.-I. Martin. Analyticity of the streamlines and of the free surface for periodic equatorial gravity water flows with vorticity,, Nonlinear Analysis: Real World Applications, (21), 27-33, (2015).

  49. C.-I. Martin. Dispersion relations for gravity water flows with two rotational layers, European J. Mechanics B/Fluids, (50), 9-18, (2015).

  50. C.-I. Martin. Dispersion relations for flows having two jumps in the vorticity distribution J. Math. Analysis and Applications, (418), No.2, 595-611, (2014).

  51. C.-I. Martin and B.-V. Matioc. Steady periodic water waves with unbounded vorticity: Equivalent formulations and existence results, J. Nonlinear Science, (24), No. 4, 633-659, (2014).

  52. C.-I. Martin and B.-V. Matioc. Existence of capillary-gravity water waves with piecewise constant vorticity, J. Diff. Equations, (256), 3086-3114, (2014).

  53. C.-I. Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity, Discrete Cont. Dyn. Sys. Ser. A. (34), No. 8, 3109-3123, (2014).

  54. C.-I. Martin. Equatorial wind waves with capillary effects and stagnation points, Nonlinear Analysis: Theory, Methods and Applications, (96), 1-18, (2014).

  55. C.-I. Martin. On the Crapper's wave, Applicable Analysis, (93), No. 5, 1106-1113, (2014).

  56. C.-I. Martin and B.-V. Matioc. Existence of Wilton ripples for water waves with constant vorticity and capillary effects, SIAM J. Appl. Math, (73), No.4, 1582-1595, (2013).

  57. C.-I. Martin. A regularity result for Calderón commutators, Monatshefte für Mathematik, (172), No.1, 85-96, (2013).

  58. C.-I. Martin. Local bifurcation and regularity for steady periodic capillary-gravity water waves with constant vorticity, Nonlinear Anal. Real World Appl. (14), No.1, 131-149, (2013).

  59. C.-I. Martin. Local bifurcation for steady periodic capillary water waves with constant vorticity, J. Math. Fluid Mech., (15), No.1, 155-170, (2013).

  60. C.-I. Martin. Regularity of steady periodic capillary water waves with constant vorticity, J. Nonlinear Math. Phys., (19), Suppl.1, 1240006, 7pp, (2012).

  61. C.-I. Martin. The generalized dock problem, Applicable Analysis, (90), No.5, 843-859, (2011).

  62. C.-I. Martin and B.-W. Schulze. Parameter dependent Edge Operators. Annals of Global Analysis and Geometry, (38), 2, 171-190, (2010).

  63. C.-I. Martin. Corner operators and applications to elliptic complexes. Fields Institute Communications, Vol. 52, 85-130, (2007).

  64. C.-I. Martin and B.-W. Schulze. The quantisation of edge symbols. Operator Theory: Advances and Applications, Vol. 172, 1-31, Birkhaeuser Verlag, Basel, (2006).

  65. D. Calvo, C.-I. Martin, and B.-W. Schulze. Symbolic structures on corner manifolds. In: RIMS Kokyuroku, 1397, 22-35, (2004).