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Abstract. We derive the dispersion relation for periodic traveling water waves propa-
gating at the surface of water possessing a layer of constant non-zero vorticity γ1 adjacent
to the free surface above another rotational layer of vorticity γ2 which is adjacent to the
�at bed. As a by-product we give necessary and su�cient condition for local bifurcation
in the frame-work of piecewise constant vorticity. Moreover, we give estimates on the
wave speed at the free surface of the bifurcating laminar �ows. These estimates involve
only the vorticity γ1, the mean depth of water d and the depth at which the jump in
vorticity occurs.

1. Introduction

We devote this paper to the subject of wave-current interactions ([3, 24, 37]) which de-
spite its recognized importance has seen little advancement-a circumstance generated by
the complexity of the problem. The term �current� describes here a �ow with a �at free
surface. The prevailing feature of currents is the existence of shear in the vertical direc-
tion. The extensive studies by Peregrine [35] and Jonsson [24] document the interaction of
surface gravity waves with vertically sheared currents.
Even the uniform currents (i.e. irrotational �ows), which are the simplest ones, have
awaited a long time until they had a �rm theoretical basis that came through the ex-
tensive studies of the Stokes waves [38] and the �ow beneath them concerning particle
trajectories, behavior of the pressure [1, 2, 5, 10]. The substantial progress in the more
complicated scenario of a non-uniform current came only relatively recently through [9]
where the existence of small and large amplitude steady periodic water waves with a gen-
eral (regular) vorticity distribution was proved. Paper [9] was followed by a bulk of papers
treating a variety of topics like symmetry [6, 7, 30], stability [12], regularity of the free sur-
face and of the stream lines [8, 15, 19, 20, 41] and allowing for more sophisticated features
like strati�cations [16, 23, 40], stagnation points and critical layers [13, 14, 26, 27, 39] or
the presence of a singular (merely bounded or piece-wise constant) vorticity distribution
[11, 29, 31, 32].
As far as our paper is concerned we shall deal here with non-uniform currents whose main
characteristic is the presence of non-zero vorticity in the �ow and, in addition, we assume
that the vorticity has a discontinuous piecewise constant distribution. This situation is of
practical relevance and can be observed in regions where there is a rapid change of the
current strength cf. [24]. The distribution of vorticity in our setting is as follows: we
consider a layer of constant non-vanishing vorticity γ1 adjacent to the free surface above
a rotational �ow of vorticity γ2. On physical grounds, this situation is justi�ed by the
fact that rotational wind generated waves possess a layer of high vorticity adjacent to the
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wave surface [33, 36], while in the near bed region there may exist currents resulting from
sediment transport along the ocean bed [34].
The main topic that we address here is the dispersion relation for small-amplitude waves.
This relation indicates how the relative speed of the bifurcating laminar �ow at the free
surface varies with respect to certain parameters like the wave-length, the mean depth of
the �ow, and-in the case of a piece-wise constant vorticity like the one we consider here-the
position of vorticity jumps. The dispersion relation we obtain recovers the corresponding
formula (23) from [4] for the case of a layer of constant non vanishing vorticity adjacent
to the �at bed within an irrotational �ow as well as the dispersion relation (81) from [11]
in the context of a layer of constant non-zero vorticity adjacent to the free surface above
�uid in irrotational �ow.
To treat the above mentioned vorticity distribution we adopt the framework of weak solu-
tions to the free boundary Euler equations and we refer the interested reader to [11] where
the existence of steady two-dimensional periodic water waves of small and large amplitude
in a �ow with an arbitrary bounded (but discontinuous) vorticity was proven in the con-
text of a �xed mass �ux. For the context of a �xed mean-depth we refer the reader to
[18]. Concerning the main topic of our paper, it was shown in [21, 22] that the dispersion
relations corresponding to the �xed mean depth approach coincide with those in [11] and
[4] corresponding to the �xed mass �ux point of view.
We also like to mention that the dispersion relation for capillary-gravity waves for the
situation of a layer of vorticity adjacent to the surface above irrotational �uid as well as for
the case of an isolated layer of vorticity adjacent to the �at bed was obtained in [28]. For
recent results on dispersion relations for small amplitude gravity waves with continuous
non-constant vorticity we refer the reader to [25].

2. The equations of motion

This paper considers two-dimensional steady periodic water waves which travel over a
rotational, incompressible and inviscid �uid propagating in the positive x-direction over the
�at bed y = −d (for some d > 0) with the free surface y = η(x) being a small perturbation
of the �at free surface y = 0. We assume that the only restoring force acting upon the
�uid is gravity. In a reference frame moving in the same direction as the wave with wave
speed c > 0, the equations of motion are Euler's equations{

(u− c)ux + vuy = −Px

(u− c)vx + vvy = −Py − g,
(2.1)

together with the incompressibility condition

ux + vy = 0, (2.2)

whereby (u, v) denotes the velocity �eld, P is the pressure and g is the gravitational
constant. An assumption that we make throughout the paper is that (u, v), P and the
surface wave pro�le x → η(x) are periodic in the variable x and for simplicity we choose
the period L = 2π. The vorticity (assumed to be piecewise constant) of the �ow is

ω := uy − vx.

Equations (2.1) and (2.2) are supplemented by the kinematic boundary conditions{
v = (u− c)ηx on y = η(x)
v = 0 on y = −d (2.3)
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representing essentially a necessary and su�cient condition for the �ow to move along a
boundary but not across/through the boundary, and the dynamic boundary condition

P = Patm on y = η(x), (2.4)

which decouples the motion of the air above the free surface from that of the water. Here
Patm denotes the constant atmospheric pressure. The details about the validity of (2.1)-
(2.4) are worked out in [3]. To simplify the problem just presented we introduce the stream
function ψ de�ned (up to a constant) by the relations

ψx = −v, ψy = u− c.

One reasonable assumption (true for waves which are not near breaking) is the absence of
stagnation points in the �ow. This assumption can be analiticaly written as

u < c throughout the fluid, (2.5)

Due to (2.5) we have cf. [3, 9] that the vorticity ω is a single-valued function of ψ, i.e.,

ω(x, y) = γ(−ψ(x, y)),

which �nally yields the reformulation of (2.1)-(2.4) as the free boundary value problem
∆ψ = γ(−ψ) in −d < y < η(x),

|∇ψ|2 + 2g(y + d) = Q on y = η(x),
ψ = 0 on y = η(x),
ψ = −p0 on y = −d,

(2.6)

where Q is a constant related to the total head, and p0 < 0 is a constant representing the
relative mass �ux, given by

p0 =

∫ η(x)

−d
(u(x, y)− c) dy.

We aim to further simplify the problem (2.6) by transforming it into a problem in the
�xed domain Ω := [−π, π] × [p0, 0]. The latter task is performed by means of the partial
hodograph transform

q(x, y) = x, p(x, y) = −ψ(y) (2.7)

which, due to assumption (2.5), provides a di�eomorphism from the �uid domain to Ω and
renders the problem (2.6) into the quasilinear elliptic boundary value problem

(1 + h2q)hpp − 2hphqhpq + h2phqq − γh3p = 0 in Ω,

1 + h2q + (2gh−Q)h2p = 0 on p = 0,
h = 0 on p = p0,

(2.8)

where the unknown function h de�ned on Ω by

h(q, p) := y + d

represents the height above the �at bed and is even and of period 2π in the q-variable. The
absence of stagnation points is now equivalent to the elliptic non-degeneracy condition

hp > 0 in Ω.
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The discontinuous vorticity regime requires a week formulation of the above system as
done in [11] where the authors showed that (2.8) is equivalent to the problem

{
1+h2

q

2h2
p

+ Γ(p)
}
p
−
{

hq

hp

}
q

= 0 in Ω,

1+h2
q

2h2
p

+ gh = Q
2 on p = 0,

h = 0 on p = 0,

(2.9)

whereby Γ is de�ned by

Γ(p) =

∫ p

0
γ(s) ds, p ∈ [p0, 0].

By a solution of (2.9) we understand a function h ∈ W 2,r
per ⊂ C1,α

per , with r >
2

1−α , (for a

�xed α ∈ (1/3, 1)) that is a generalized solution cf. [17], Section 8. A family of laminar
solutions, i.e. parallel shear �ows with �at free surfaces, parametrized by λ > 2max[p0,0] Γ
is given by

H(p) := H(p, λ) =

∫ p

0

ds√
λ− 2Γ(s)

+
Q− λ

2g
∈ C1,α([p0, 0]) (2.10)

cf. [11]. The parameter λ is related to wave speed at the �at free surface y = 0 of the
laminar �ow by the formula

√
λ = (c− u)|y=0 =

1

Hp(0)
,

and to Q through the relation ∫ 0

p0

ds√
λ− 2Γ(s)

=
Q− λ

2g
.

The considerations in [11] show that the necessary and su�cient condition for the existence
of waves of small amplitude that are perturbations of the laminar �ow solutions (2.10) is
that the Sturm-Liouville problem (a3Up)p = aU in (p0, 0),

a3Up = gU at p = 0,
U = 0 at p = p0

(2.11)

has a nontrivial solution U ∈ C1,α(p0, 0), U ≡/ 0. Here a(λ, p) =
√
λ− 2Γ(p) ∈ Cα([p0, 0]).

We will study in the next section the problem (2.11) for the case when the water �ow has
a layer of constant non vanishing vorticity adjacent to the free surface above a rotational
layer of a di�erent vorticity adjacent to the �at bed.

3. The dispersion relation

Let p1 ∈ [p0, 0]. We consider a water �ow consisting of an rotational layer of vorticity
γ1 adjacent to the free surface corresponding to p ∈ [p1, 0] and of a second rotational layer
of vorticity γ2 adjacent to the �at bed corresponding to p ∈ [p0, p1]. We have �rst that the
function Γ is of the form

Γ(p) =

{
γ1p, p ∈ [p1, 0],

γ2p+ p1(γ1 − γ2), p ∈ [p0, p1].
(3.1)
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Thus

a(λ, p) =
√
λ− 2Γ(p) =

{ √
λ− 2γ1p, p ∈ [p1, 0],√

λ− 2γ2p− 2p1(γ1 − γ2), p ∈ [p0, p1].
(3.2)

The general theory, cf. [11], aims at �nding a function M ∈ C1,α(p0, 0) subject to (2.11).
Let us set

u :=M |[p0,p1], v :=M |[p1,0].
The functions u and v will have to satisfy

(a3up)p = au, for p ∈ (p0, p1), (3.3)

(a3vp)p = av, for p ∈ (p1, 0), (3.4)

together with the matching conditions

u(p1) = v(p1), up(p1) = vp(p1), (3.5)

and the boundary conditions
u(p0) = 0, (3.6)

(a3vp)(0) = gv(0). (3.7)

We attempt �rst to solve equation (3.3) for u. In doing so we set

u(p) =
2γ2
a(p)

ũ

(
a(p)

γ2

)
, p ∈ [p0, p1],

whereby a(λ, p) =
√
λ− 2γ2p− 2p1(γ1 − γ2). Since ap = − γ2

a(p) we have

a3(p)up = 2γ22 ũ

(
a(p)

γ2

)
− 2a(p)γ2ũ

′
(
a(p)

γ2

)
.

The latter yields

(a3up)p = 2γ2ũ
′′
(
a

γ2

)
,

which transforms the di�erential equation (3.3) into ũ′′ = ũ, whereby s = a
γ2
. We then

have ũ(s) = b1 cosh(s) + b2 sinh(s), (for real constants b1, b2) and consequently the general
solution of (3.3) is

u(p) =
2γ2
a(p)

[
b1 cosh

(
a(p)

γ2

)
+ b2 sinh

(
a(p)

γ2

)]
.

The bottom boundary condition (3.6) gives that b2 = −b1 tanh−1
(
a(p0)
γ2

)
. Hence, we �nd

that the general solution of (3.3) has the shape

u(p) =
2γ2c

a(p)q(λ)
sinh

(
a(p)− a(p0)

γ2

)
, (3.8)

whereby c is some real constant and q(λ) = sinh
(
a(p0)
γ2

)
. Moreover,

up = − 2γ2c

a2(p)q(λ)
cosh

(
a(p)− a(p0)

γ2

)
+

2γ22C

a3(p)q(λ)
sinh

(
a(p)− a(p0)

γ2

)
. (3.9)

Employing a similar approach for equation (3.4) we �nd that

v(p) =
2γ1
a(p)

[
c1 cosh

(
a(p)

γ1

)
+ c2 sinh

(
a(p)

γ1

)]
, (3.10)
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with a(p) =
√
λ− 2γ1p and c1, c2 are some real constants. Furthermore,

vp =
2γ21
a3(p)

[
c1 cosh

(
a(p)

γ1

)
+ c2 sinh

(
a(p)

γ1

)]
− 2γ1
a2(p)

[
c1 sinh

(
a(p)

γ1

)
+ c2 cosh

(
a(p)

γ1

)]
.

(3.11)
To deal with the matching conditions (3.5) we make the notations

a(p1)− a(p0)

γ2
= θ,

a(p1)

γ1
= ρ.

Setting also C := c
q(λ) we obtain the following system arising from (3.5) γ2C sinh(θ) = γ1[c1 cosh(ρ) + c2 sinh(ρ)],

−γ1γ2ρC cosh(θ) + γ22C sinh(θ) = γ21 [c1 cosh(ρ) + c2 sinh(ρ)]
−ργ21 [c1 sinh(ρ) + c2 cosh(ρ)],

(3.12)

which after replacing c1 cosh(ρ) + c2 sinh(ρ) with
γ2
γ1
C sinh(θ) in the second equation be-

comes equivalent to{
c1 cosh(ρ) + c2 sinh(ρ) = γ2

γ1
C sinh(θ)

c1 sinh(ρ) + c2 cosh(ρ) = γ2
γ1
C cosh(θ)− 1

ρ

(
γ2
γ1

)2
C sinh(θ) + 1

ρ
γ2
γ1
C sinh(θ).

(3.13)

Solving (3.13) for c1 and c2 we �nd

c1 =
γ2
γ1
C sinh(θ − ρ) +

1

ρ

(
γ2
γ1

− 1

)
γ2
γ1
C sinh(θ) sinh(ρ), (3.14)

and

c2 =
γ2
γ1
C cosh(θ − ρ) +

1

ρ

(
1− γ2

γ1

)
γ2
γ1
C sinh(θ) cosh(ρ). (3.15)

We will �nd below formulas for θ and ρ in terms of
√
λ, of the average mean depth d and

of the depth at which the jump in the vorticity distributions occurs. Let d0 to be the
average depth corresponding to p1. At the bifurcation point we have a horizontal �uid
velocity u that is only a function of y, with uy = ω and (c − u)(0) =

√
λ. Therefore,

(c− u)(y)− (c− u)(0) =
∫ y
0 (−ω(s)) ds. Thus,

(c− u)(y) =

{ √
λ− γ1y, y ∈ [−d0, 0],√
λ+ γ1d0 − γ2(y + d0), y ∈ [−d,−d0]

(3.16)

We compute now the relative mass �uxes from the formula (3.16) and obtain

−p1 =
∫ 0

−d0

(c− u)(y) =

∫ 0

−d0

(
√
λ− γ1y) dy =

√
λd0 +

γ1
2
d20. (3.17)

Considering (3.17) as an equation of second order in the unknown d0 we have

γ1
2
d20 +

√
λd0 + p1 = 0 (3.18)

with solutions

d0 =
−
√
λ±

√
λ− 2γ1p1
γ1

.
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Since d0 > 0 and because the expression −
√
λ+

√
λ−2γ1p1

γ1
is positive irrespective of the sign

of γ1 we have that

d0 =
−
√
λ+

√
λ− 2γ1p1
γ1

=
a(p1)− a(0)

γ1
, (3.19)

where the last equality is true from the formula (3.2) for the function a(p, λ). Moreover,
we have from (3.19) that

ρ =
a(p1)

γ1
=

√
λ

γ1
+ d0. (3.20)

Similarly, we compute

−p0 = −
∫ −d0

−d
[
√
λ+ γ1d0 − γ2(y + d0)] dy +

∫ 0

−d0

(
√
λ− γ1y) dy

=
√
λd+ γ1d0d−

γ1
2
d20 +

γ2
2
(d− d0)

2. (3.21)

Putting the above in the form of a second order equation in d we obtain

γ2
2
d2 + [

√
λ+ (γ1 − γ2)d0]d+

γ2 − γ1
2

d20 + p0 = 0. (3.22)

The discriminant of the above equation is

∆ = λ+ (γ1 − γ2)d0(2
√
λ+ γ1d0)− 2γ2p0 (3.23)

= λ− 2p1(γ1 − γ2)− 2γ2p0 = a2(p0), (3.24)

whereby for the second equality we have used equation (3.18) and the third equality follows
from the formula for a(p). Hence,

d = −
√
λ

γ2
+

(γ2 − γ1)d0
γ2

±
√
λ− 2p1(γ1 − γ2)− 2γ2p0

γ2
,

which implies that

d− d0 = −
√
λ+ γ1d0
γ2

±
√
λ+ 2γ2(p1 − p0)− 2p1γ1

γ2
. (3.25)

To decide the sign in (3.25) we use (3.18) to conclude that λ − 2p1γ1 = (
√
λ + γ1d0)

2.
Therefore, assuming that γ2 > 0, we have√
λ+ 2γ2(p1 − p0)− 2p1γ1 =

√
(
√
λ+ γ1d0)2 + 2γ2(p1 − p0) > |

√
λ+ γ1d0| =

√
λ+ γ1d0,

where in the last equality we have used relation (3.16). The above inequality shows that√
λ+ 2γ2(p1 − p0)− 2p1γ1 − (

√
λ+ γ1d0)

γ2
> 0 for γ2 > 0.

One can show in a similar manner that√
λ+ 2γ2(p1 − p0)− 2p1γ1 − (

√
λ+ γ1d0)

γ2
> 0 for γ2 < 0.

Since d > d0 we infer from the above considerations that

d− d0 =

√
λ+ 2γ2(p1 − p0)− 2p1γ1 − (

√
λ+ γ1d0)

γ2
= −γ1

γ2
d0 +

a(p0)− a(0)

γ2
. (3.26)
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The last equality in (3.26) implies that γ1d0 + γ2(d − d0) = a(p0) − a(0) which together
with (3.19) gives

θ =
a(p1)− a(p0)

γ2
= d0 − d. (3.27)

We can now return to the surface boundary condition (3.7) which can be expressed in a
transparent way. Due to (3.10) and (3.11) we can write equation (3.7) as

2γ21

[
c1 cosh

(√
λ

γ1

)
+ c2 sinh

(√
λ

γ1

)]
− 2γ1

√
λ

[
c1 sinh

(√
λ

γ1

)
+ c2 cosh

(√
λ

γ1

)]

=
2γ1g√
λ

[
c1 cosh

(√
λ

γ1

)
+ c2 sinh

(√
λ

γ1

)]
.

(3.28)

Using formulas (3.14) and (3.15) we �nd that

c1 cosh

(√
λ

γ1

)
+ c2 sinh

(√
λ

γ1

)

=
γ2
γ1
C sinh

(
θ − ρ+

√
λ

γ1

)
+

1

ρ

(
γ2
γ1

− 1

)
γ2
γ1
C sinh(θ) sinh

(
ρ−

√
λ

γ1

)

= −γ2
γ1
C sinh(d) +

1

ρ

(
γ2
γ1

− 1

)
γ2
γ1
C sinh(d0 − d) sinh(d0), (3.29)

whereby the last equality is a consequence of formulas (3.20) and (3.27). Analogously, we
�nd that

c1 sinh

(√
λ

γ1

)
+ c2 cosh

(√
λ

γ1

)

=
γ2
γ1
C cosh

(
θ − ρ+

√
λ

γ1

)
+

1

ρ

(
1− γ2

γ1

)
γ2
γ1
C sinh(θ) cosh

(
ρ−

√
λ

γ1

)

=
γ2
γ1
C cosh(d) +

1

ρ

(
1− γ2

γ1

)
γ2
γ1
C sinh(d0 − d) cosh(d0), (3.30)

A calculation shows that the surface condition (3.28) can be rewritten after using (3.29)

and (3.30) and replacing ρ =
√
λ

γ1
+ d0 as

cosh(d)λ
3
2 − [(γ1 − γ2) sinh(d− d0) cosh(d0)− γ1d0 cosh(d)− γ1 sinh(d)]λ

− [γ1(γ1 − γ2) sinh(d− d0) sinh(d0) + g sinh(d)− γ21d0 sinh(d)]
√
λ

− g[γ1d0 sinh(d)− (γ1 − γ2) sinh(d− d0) sinh(d0)] = 0. (3.31)

Equation (3.31) is called the dispersion relation. It gives the wave speed at the free surface
of the bifurcating laminar �ow provided it has a unique positive solution. In what follows
we show that under certain conditions the equation (3.31) has indeed a unique positive
solutions.
Before undertaking the above mentioned task we consider two limit scenarios which will
prove that our analysis generalizes the ones in [4] and in Chapter 8 of [11]
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Remark 3.1. We set γ1 = 0 in formula (3.31), i.e. we are in the case of a water �ow with
a rotational layer adjacent to the �at bed below irrotational �uid, situation considered in
[4]. The equation (3.31) becomes

cosh(d)λ
3
2 + γ2 sinh(d− d0) cosh(d0)λ− g sinh(d)

√
λ− gγ2 sinh(d− d0) sinh(d0) = 0,

(3.32)

which coincides with formula (23) in [4].

Remark 3.2. Setting now γ2 = 0 we are placing ourselves in the scenario of [11] where the
situation of a �uid with a rotational layer adjacent to the free surface above irrotational
�ow was considered. Formula (3.31) displays now like

cosh(d)λ
3
2 − γ1[sinh(d− d0) cosh(d0)− sinh(d)− d0 cosh(d)]λ

− [γ21 sinh(d− d0) sinh(d0) + g sinh(d)− γ21d0 sinh(d)]
√
λ

− gγ1[d0 sinh(d)− sinh(d− d0) sinh(d0)] = 0, (3.33)

which can be rewritten as

λ
3
2 + γ1

[
sinh(d0) cosh(d− d0)

cosh(d)
+ d0

]
λ

− tanh(d)

[
g − γ21

(
d0 −

sinh(d− d0) sinh(d0)

sinh(d)

)]√
λ

− γ1g tanh(d)

[
d0 −

sinh(d− d0) sinh(d0)

sinh(d)

]
= 0, (3.34)

recovering formula (81) from [11].

Lemma 3.3. Assume that γ1 > 0 and γ2 > 0. Then local bifurcation always occurs.

Proof. Denote with p(x) the polynomial obtained by setting
√
λ = x in the expression in

the left hand side of (3.31). We claim �rst that p(0) < 0. Indeed,

p(0) = −g[γ1d0 sinh(d)− (γ1 − γ2) sinh(d− d0) sinh(d0)] < 0

since

γ1d0 sinh(d)− (γ1 − γ2) sinh(d− d0) sinh(d0) > γ1(d0 sinh(d)− sinh(d− d0) sinh(d0)) > 0

since the function
d0 → d0 sinh(d)− sinh(d− d0) sinh(d0)

has the value 0 at d0 = 0 and its derivative is

sinh(d)− sinh(d− 2d0) > 0 for all d > d0.

The claim is thus proved and entails the existence of a positive root x0 of p. We prove now
that x0 is the unique positive root of p. Assuming that p has a second positive root then
the third root of p would be real and positive, since by Viète's relations the product of the
three roots of p equals −p(0) > 0. But their sum equals

(γ1 − γ2) sinh(d− d0) cosh(d0)− γ1d0 cosh(d)− γ1 sinh(d)

< γ1 sinh(d− d0) cosh(d0)− γ1d0 cosh(d)− γ1 sinh(d)

= γ1(sinh(d− d0) cosh(d0)− sinh(d))− γ1d0 cosh(d)

= −γ1 sinh(d0) cosh(d− d0)− γ1d0 cosh(d) < 0,



10 C. I. MARTIN

and therefore p can not have more than one positive root. The above considerations show
that x0 is the only positive root of p giving the dispersion relation. �
Lemma 3.4. Assume that γ1 < 0 and γ2 > 0. Then local bifurcation occurs if and only if

g

γ21
> d20

cosh(d0)

sinh(d0)
− d0. (3.35)

Proof. We assume �rst that (3.35) holds and we prove that bifurcation occurs. Since√
λ+ γ1d0 > 0, cf.(3.16), we make the substitution

√
λ = −γ1(x+ d0) in equation (3.31).

A tedious calculation leads then to the equation q(x) = 0 where

q(x) = cosh(d)x3 +

[
2d0 cosh(d)− sinh(d0) cosh(d− d0)−

γ2
γ1

sinh(d− d0) cosh(d0)

]
x2[

d20 cosh(d)− sinh(d− d0) sinh(d0) + d0(sinh(d− d0) cosh(d0)− sinh(d0) cosh(d− d0))

+
γ2
γ1

sinh(d− d0)(sinh(d0)− 2d0 cosh(d0))−
g

γ21
sinh(d)

]
x

+ sinh(d− d0)

((
1− γ2

γ1

)
[d20 cosh(d0)− d0 sinh(d0)]−

g

γ21
sinh(d0) +

gγ2
γ31

sinh(d0)

)
(3.36)

Note now that q(0) < 0 is equivalent to

g

γ21

(
1− γ2

γ1

)
> d20

(
1− γ2

γ1

)
cosh(d0)

sinh(d0)
− d0

(
1− γ2

γ1

)
which, since 1− γ2

γ1
> 0, is in turn equivalent to our assumption (3.35). Therefore, q has a

root x+ > 0. We will prove that x+ is the only positive root of q. To see this notice �rst
that the coe�cient of x2 in q is positive. Indeed,

2d0 cosh(d)− sinh(d0) cosh(d− d0) ≥ d0 cosh(d) > 0, for d > d0 > 0

cf. relation (84) in [11]. Moreover, −γ2
γ1

sinh(d − d0) cosh(d0) > 0 as one can easily see.

Therefore, the sum of the roots of q is negative, while their product equals −q(0) > 0.
These latter facts ensure, just as in the previous lemma that q can not have more than one
positive root.
To prove the necessity, we assume ab absurdum that

g

γ21
≤ d20

cosh(d0)

sinh(d0)
− d0 := f1(d0), (3.37)

and we will prove that q has no positive roots, situation equivalent with the absence of
bifurcation, obtaining thus a contradiction. To proceed, note that (3.37) is equivalent to
q(0) > 0. Moreover, the coe�cient of x from q is positive if and only if

g

γ21
<d20

cosh(d)

sinh(d)
+ d0

sinh(d− d0) cosh(d0)− sinh(d0) cosh(d− d0)

sinh(d)

− sinh(d− d0) sinh(d0)

sinh(d)
+
γ2
γ1

sinh(d− d0)(sinh(d0)− 2d0 cosh(d0))

sinh(d)
:= f2(d0).

(3.38)

We show now that

f1(d0) < f2(d0), for d0 > 0. (3.39)
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The latter and (3.37) would imply that the coe�cient of x is indeed positive. To prove
(3.39), we see that after multiplying it by sinh(d) sinh(d0) it becomes equivalent to

d20 − 2d0 sinh(d0) cosh(d0) + sinh2(d0) <
γ2
γ1

sinh(d0)(sinh(d0)− 2d0 cosh(d0)). (3.40)

The function

d0 → d20 − 2d0 sinh(d0) cosh(d0) + sinh2(d0)

is 0 at d0 = 0 and its derivative is

2d0−2 sinh(d0) cosh(d0)− 2d0 cosh
2(d0)− 2d0 sinh

2(d0) + 2 sinh(d0) cosh(d0)

= −4d0 sinh
2(d0) < 0,

for all d0 < 0. Therefore, the left hand side of (3.40) is strictly negative for d0 > 0.
Moreover, the function d0 → sinh(d0)− 2d0 cosh(d0) is strictly negative for d0 > 0 since it
equals 0 at d0 = 0 and its derivative is

cosh(d0)− 2 cosh(d0)− 2d0 sinh(d0) < 0,

for all d0 > 0. Therefore, the right hand side of (3.40) is proved since γ2
γ1

< 0. Hence,

inequality (3.39) is proved and, consequently, q′(x) > 0 for all x > 0. Thus, q(x) > q(0) > 0
for all x > 0, contradicting the occurrence of local bifurcation. �
Remark 3.5. Is it possible to write a precise formula for the positive solution of (3.31) by
means of the Cardano's formula. Its intricacy makes it of little relevance. We prefer to
give instead an estimate on the positive solution

√
λ of (3.31).

Lemma 3.6. Assume that γ1 < γ2 and d0 < d. Then

λ+(d0) <
√
λ < λ+(d), (3.41)

whereby λ+(d) is the positive solution of the equation

λ+ γ1 tanh(d)
√
λ− g tanh(d) = 0

and λ+(d0) is the positive solution of the equation

λ+ γ1 tanh(d0)
√
λ− g tanh(d0) = 0.

Proof. We show �rst that the function d→ λ+(d) is strictly increasing. Indeed, we have

λ+(d) =
−γ1 tanh(d) +

√
γ21 tanh

2(d) + 4g tanh(d)

2
,

and hence

λ′+(d) =
1

cosh2(d)

−γ1 +
γ21 tanh(d) + 2g√

γ21 tanh
2(d) + 4g tanh(d)


is positive, as one can easily see. We thus have that 0 < λ+(d0) < λ+(d). Note now that
(3.31) can be rewritten as

1

cosh(d0)
[λ+γ1 tanh(d)

√
λ− g tanh(d)](

√
λ+ γ1d0)

= (γ1 − γ2)
sinh(d− d0)

cosh(d)
[λ+ γ1 tanh(d0)

√
λ− g tanh(d0)]. (3.42)
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We are now ready to prove estimate (3.41). We proceed by contradiction. Assuming that√
λ ≥ λ+(d) it follows that λ+γ1 tanh(d)

√
λ− g tanh(d) ≥ 0, which implies via (3.42) and

(3.16) that λ + γ1 tanh(d0)
√
λ − g tanh(d0) ≤ 0. The latter yields that

√
λ ∈ (0, λ+(d0)]

which is a contradiction with the assumption that
√
λ ≥ λ+(d). We have thus proved that

√
λ < λ+(d).

It remains to prove the left hand side of (3.41). The above proven inequality implies that

λ + γ1 tanh(d)
√
λ − g tanh(d) < 0 and employing again (3.42) and (3.16) we obtain that

λ+ γ1 tanh(d0)
√
λ− g tanh(d0) > 0 which is possible if and only if

√
λ > λ+(d0). �

Remark 3.7. Setting γ1 = 0 we have that λ+(d0) =
√
g tanh(d0), λ+(d) =

√
g tanh(d) and

inequality (3.41) recovers inequality (27) from [4].

Lemma 3.8. Assume γ1 > γ2 and that d > d0. Then
√
λ ∈ (0, λ+(d0)) or

√
λ > λ+(d).

Proof. The proof follows from the facts established in the proof of the previous lemma
noticing that the expressions

λ+ γ1 tanh(d)
√
λ− g tanh(d)

and
λ+ γ1 tanh(d0)

√
λ− g tanh(d0)

need to have the same sign. �
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