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Abstract. In this paper we construct small-amplitude periodic capillary-gravity wa-
ter waves with a piecewise constant vorticity distribution. They describe water waves
traveling on superposed linearly sheared currents that have di�erent vorticities. This is
achieved by associating to the height function formulation of the water wave problem a
di�raction problem where we impose suitable transmission conditions on each line where
the vorticity function has a jump. The solutions of the di�raction problem, found by
using local bifurcation theory, are the desired solutions of the hydrodynamical problem.

1. Introduction

We are concerned in this paper with the existence of steady periodic rotational waves
interacting with currents that possess a discontinuous vorticity distribution, a situation ac-
counting for sudden changes in a current and whose numerical simulations have only recently
been undertaken, see [27, 28]. More precisely, we establish the existence of capillary-gravity
waves propagating at constant speed over a �at bed and interacting with several vertically
superposed and linearly sheared currents of di�erent (constant) vorticities. On physical
grounds we can justify this situation by the fact that rotational waves generated by wind
possess a thin layer of high vorticity that is adjacent to the wave surface [41, 43], while in
the near bed region there may exist currents resulting from sediment transport along the
ocean bed [42].

A rotational �uid is not only interesting as an intricate mathematical problem but also
serves a very concrete physical situation since it models wave-current interactions among
other phenomena [5, 25, 45]. The waves we consider here are two-dimensional, have an
apriori unknown free surface, and the vorticity function is piecewise constant. Though the
vorticity distribution considered in the context of pure gravity waves in [9] corresponds to
a merely bounded vorticity function, being more general than ours, we have in addition to
gravity also the surface tension as a restoring force. This has the e�ect of adding a second
order term in the top boundary condition of the height function formulation of the problem,
situation that makes the analysis more intricate. We enhance that surface tension appears
in the dynamics of water waves in many physical situations one of which is that of wind
blowing over a still �uid surface and giving rise to two-dimensional small amplitude wave
trains driven by capillarity [26] which grow larger and turn into capillary-gravity waves.

In the irrotational regime, the local bifurcation picture was described in [22] for waves
traveling over a �uid layer of �nite depth, respectively in [23, 24, 44] for waves of in�nite
depth. A particular feature in the irrotational case and for waves with constant vorticity
[34] is that sometimes a mode interacts with another one of half its size giving rise to waves
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with two crests within a period, so-called Wilton ripples. Capillary-gravity water waves
with a constant vorticity and stagnation points have been shown to exist in [33] by using
techniques related to the ones employed in [10] for pure gravity waves. Allowing for a general
Hölder continuous vorticity distribution, the existence theory is further developed in [47]
for �ows without stagnation points. The methods presented herein were recently further
developed to establish the existence of capillary-gravity �ows with arbitrary bounded [40]
and even unbounded vorticity [35]. It is worth to mention that the many properties of
capillary-gravity water waves, such as the regularity of the streamlines and of the wave
pro�le [3, 17, 18, 37, 40], or the description of particle trajectories within the �uid [16], were
only recently considered (see [4, 7, 11, 36] for the case when surface tension is neglected).

In this paper we consider a di�erent context than in [47], namely that of waves with a step
function like vorticity. In order to prove our result we use the height function formulation
of the water wave problem which is obtained via the Dubreil-Jacotin transformation (see [9]
for details) and which has the advantage that the original free boundary problem is rendered
into a quasilinear elliptic problem in a �xed domain. While in [9] the authors worked with
a weak formulation of this problem, we are not able to do so here. This is due to the fact
that the top boundary condition is nonlinear and contains second order derivatives of the
unknown. We overcome this di�culty by associating to the height function formulation
a di�raction (or transmission) problem where we impose suitable transmission conditions
on each horizontal line where the vorticity has a jump. Then, using existing results for
di�raction problems together with a Fourier multiplier argument, we are able to recast the
mathematical problem as an abstract bifurcation problem in a functional analytic context
which enables us to use local bifurcation theory. One of the di�culties in doing this is due
to the lack or rigorous results concerning the C2+α-regularity of solutions to di�raction
problems close to the interface where transmission conditions are imposed. We emphasize
that di�raction problems are not seldom, they appear when multiphase �ows are considered,
as is the case of the Muskat problem [13]. The solutions that we �nd solve the boundary
conditions of the problem in classical sense and the quasilinear equation in the weak sense
de�ned in [9] and almost everywhere in the transformed �uid domain.

In addition to proving existence of waves with the already mentioned properties we
derive, in the case of two underlying currents, the dispersion relation which is an implicit
equation relating: the mean depth, the average thickness of the currents, the wavelength,
the constant vorticities of the currents, and the relative speed at the surface of the laminar
�ow.

The outline of the paper is as follows: in Section 2 we present the mathematical model
and the main result. Section 3 is devoted to recasting the equation as an abstract bifurcation
problem and to the study of the Fredholm property of an operator associated to a di�raction
problem. In Section 4 we �nd necessary conditions for local bifurcation, and in Section 5
we prove the main result Theorem 2.1 and derive the dispersion relation.

2. The mathematical model and the main result

The mathematical model. We consider herein two-dimensional periodic waves over a
rotational, inviscid, and incompressible �uid, that are driven by the interplay of gravity
and surface tension forces. Moreover, the waves are assumed to move at constant wave
speed c > 0. In a reference frame which moves in the same direction as the wave and with
speed c, the free surface of the wave is considered to be the graph y = η(x).
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Assuming that the �uid is homogeneous (with unit density), in the �uid domain

Ωη := {(x, y) : x ∈ S and −d < y < η(x)},

the equations of motion are the steady-state Euler equations (u− c)ux + vuy = −Px,
(u− c)vx + vvy = −Py − g,

ux + vy = 0.
(2.1a)

We use P to denote the dynamic pressure, (u,v) is the velocity �eld, g stands for the
gravity constant, and d is the average depth of the water. Furthermore, S is the unit circle,
meaning that η, (u,v),P are 2π-periodic in x. The equations (2.1a) are supplemented by
the following boundary conditions P = P0 − ση′′/(1 + η′2)3/2 on y = η(x),

v = (u− c)η′ on y = η(x),
v = 0 on y = −d,

(2.1b)

with P0 denoting the constant atmospheric pressure and σ > 0 being the surface tension
coe�cient. Since the �ow is rotational, the vorticity of the �ow is the scalar function

ω := uy − vx in Ωη. (2.1c)

The problem (2.1) can also be reformulated as a free boundary value problem, by intro-
ducing the stream function ψ : Ωη → R by the relation

ψ(x, y) := −p0 +
∫ y

−d
(u(x, s)− c) ds for (x, y) ∈ Ωη.

We have that ∇ψ = (−v,u− c) and, as shown in [5, 8], the problem (2.1) is equivalent to
the following system

∆ψ = γ(−ψ) in Ωη,

|∇ψ|2 + 2g(y + d)− 2σ
η′′

(1 + η′2)3/2
= Q on y = η(x),

ψ = 0 on y = η(x),
ψ = −p0 on y = −d,

(2.2)

the constant p0 < 0 representing the relative mass �ux, and Q ∈ R being related to the
so-called total head. The function γ, called the vorticity function, is obtained by making
the additional assumption that the horizontal velocity of each �uid particle is less than the
wave speed

u− c < 0 in Ωη, (2.3)

condition valid for waves that are not near breaking [46]. This assumption is needed in
order to show, cf. [8, 38], that

ω(x, y) = γ(−ψ(x, y)) in Ωη.

The assumption (2.3) is also crucial when obtaining the third equivalent formulation of
the problem (2.1), the height function formulation (2.4). Namely, because of (2.3), the
function Φ : Ωη → Ω de�ned by

Φ(x, y) := (q, p)(x, y) := (x,−ψ(x, y)), (x, y) ∈ Ωη,
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where Ω := S× (p0, 0), is a di�eomorphism. Then, de�ning the height function h : Ω → R
by h(q, p) := y + d for (q, p) ∈ Ω, the problem (2.2)-(2.3) is equivalent to the nonlinear
boundary value problem

(1 + h2q)hpp − 2hphqhpq + h2phqq − γ(p)h3p = 0 in Ω,

1 + h2q + (2gh−Q)h2p − 2σ
h2phqq

(1 + h2q)
3/2

= 0 on p = 0,

h = 0 on p = p0,

(2.4)

subjected to the condition
min
Ω
hp > 0. (2.5)

The main result. We construct in this paper solutions of the problem (2.4)-(2.5) in the
case when the vorticity function is a step function. More precisely, we assume that there
exists an integer N ≥ 2, real constants γ1, . . . γN with γi−1 6= γi for 1 ≤ i ≤ N , and real
numbers p0 < p1 < . . . < pN = 0 such that

γ(p) := γi for 1 ≤ i ≤ N and p ∈ (pi−1, pi). (2.6)

At each p = pi, 0 ≤ i ≤ N , the vorticity function may have (has if 1 ≤ i ≤ N − 1) a
discontinuity of the �rst kind. Our solutions satisfy the boundary conditions of (2.4) in
classical sense and the �rst equation almost everywhere in Ω and in the following weak
sense ∫

Ω

(hq
hp
φq −

(
Γ +

1 + h2q
h2p

)
φp

)
d(q, p) = 0 for all φ ∈ C1

0 (Ω). (2.7)

Hereby, the function Γ is the anti-derivative of the vorticity function

Γ(p) :=

∫ p

0
γ(s) ds for p0 ≤ p ≤ 0. (2.8)

Our main result is the following theorem.

Theorem 2.1. Let N ∈ N, N ≥ 2, p0 < p1 < . . . < pN = 0, (γ1, . . . , γN ) ∈ RN be given
such that γi−1 6= γi for 1 ≤ i ≤ N , and let the vorticity function γ be de�ned by (2.6).

Then, given α ∈ (0, 1), there exists a positive integer nmin and for eack n ∈ N with
n ≥ nmin a real-analytic curve Cn in the space C1+α(Ω), consisting only of solutions h of
problem (2.4)-(2.5) with the additional regularity h ∈ C2−(Ω), h(·, 0) ∈ C∞(S), and

h ∈ C2+α(S× [pi−1, pi]) ∩ C∞(S× (pi−1, pi)) for all 1 ≤ i ≤ N. (2.9)

Each curve Cn contains a laminar �ow solution (all the streamlines being parallel to the �at
bed) and all the other points on the curve correspond to solutions that have minimal period
2π/n, only one crest and trough per period, and are symmetric with respect to the crest line.

These solutions solve the last two equations of (2.4) in classical sense and the �rst equa-
tion almost everywhere in Ω (more precisely in Ω \ ({S× {pi} : 1 ≤ i ≤ N − 1})) and in
the weak sense de�ned by (2.7).

Remark 2.2. The integer nmin in Theorem 2.1 may be chosen to be nmin = 1 provided that
the condition (4.27) is satis�ed.

Though our result is true for any arbitrary �nite number N ≥ 2, any �nite sequence
p0 < p1 < . . . < pN = 0, and any tuple (γ1, . . . , γN ) ∈ Rn, we will prove �rst the result
when N = 2 and (γ1, γ2) ∈ R2 satis�es γ1 6= γ2. The corresponding result for γ1 = γ2,
has been already established in [47] in the context of waves which satisfy also condition



CAPILLARY-GRAVITY WATER WAVES WITH PIECEWISE CONSTANT VORTICITY 5

(2.5), respectively in [33] for waves that possess stagnation points. For a characterization
of the global continua corresponding to the local branches obtained in these references we
refer to [39]. The proof of Theorem 2.1, with N ≥ 3, will be discussed after proving the
corresponding statement for N = 2.

Before of that, let us reconsider the problems (2.1) and (2.2) and interpret our solutions
in the light of these formulations. It is well-known that the streamlines of the �ow coincide
with the level curves of the stream function ψ and that they are parametrized by the
mappings x 7→ h(x, p) − d, p0 ≤ p ≤ 0 (the free wave surface corresponding to p = 0), cf.
[8]. Using this property, we have the following result.

Corollary 2.3. Given a solution h of the problem (2.4)-(2.5) as found in Theorem 2.1, we
de�ne ηi(x) := h(x, pi)− d, 0 ≤ i ≤ N, and

Ωi
η := {(x, y) : ηi−1(x) < y < ηi(x)} for 1 ≤ i ≤ N.

Then, we have ηi ∈ C2+α(S) for 1 ≤ i ≤ N − 1. The other streamlines are parametrized by
smooth functions h(·, p)− d, with p ∈ [p0, 0] \ {pi : 1 ≤ i ≤ N − 1}, the wave surface being
the graph y = η(x) := ηN (x). Furthermore, the stream function ψ satis�es

ψ ∈ C2−(Ωη) ∩ C2+α(Ωi
η) ∩ C∞(Ωi

η) for all 1 ≤ i ≤ N, (2.10)

and we have

u,v,P ∈ C1−(Ωη) ∩ C1+α(Ωi
η) ∩ C∞(Ωi

η) for all 1 ≤ i ≤ N. (2.11)

Proof. The stream function ψ and the height function h are coupled by the following rela-
tion: given x ∈ S, the function ψ(x, ·) is the solution of the initial value problem ψy(x, y) = − 1

hp(x,−ψ(x, y))
for y ≤ η(x),

ψ(x, η(x)) = 0,

cf. [5]. This proves (2.10). The property (2.11) follows from (2.10) and from Bernoulli's
law

(c− u)2 + v2

2
+ gy +P+ Γ(−ψ) = const. in Ωη.

�

3. The associated diffraction problem

In the following we choose N = 2, p0 < p1 < 0, (γ1, γ2) ∈ R2 with γ1 6= γ2, and de�ne the
vorticity function γ by (2.6). In order to prove our main result Theorem 2.1, we associate
to (2.4) the following di�raction (or transmission) problem

(1 + u2q)upp − 2upuqupq + u2puqq − γ1u
3
p = 0 in Ω1,

(1 + U2
q )Upp − 2UpUqUpq + U2

pUqq − γ2U
3
p = 0 in Ω2,

1 + U2
q + (2gU −Q)U2

p − 2σ
U2
pUqq

(1 + U2
q )

3/2
= 0 on p = 0,

u = U on p = p1,
up = Up on p = p1,
u = 0 on p = p0,

(3.1)

where we used the notation Ω1 := S× (p0, p1) and Ω2 := S× (p1, 0). The reason for de�ning
(3.1) is twofold. First of all, the nonlinear boundary condition on p = 0 contains second
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order derivatives of the unknown, so that we cannot consider a weak formulation of (2.4)
in a similar manner as in [9]. Secondly, using (2.4) we can still work in a classical Hölder
setting and incorporate arbitrarily many jumps of the vorticity function into the problem.
This is due to the fact that each solution of (3.1) de�nes a solution of (2.4).

Lemma 3.1. Assume that (u,U) ∈ C2+α(Ω1) × C2+α(Ω2) is a solution of (3.1). Then,
the function h : Ω → R de�ned by

h :=

{
u in Ω1,

U in Ω2
(3.2)

belongs to C2−(Ω) and solves the last two equations of (2.4) pointwise and the �rst equation
of (2.4) in Ω1 ∪ Ω2. Moreover, if h satis�es (2.5), then we additionally have h ∈ C∞(Ωi),
i = 1, 2, and h(·, 0) ∈ C∞(S).

Proof. Because of the transmission conditions (equations four and �ve) of (3.1), we easily
see that the �rst order derivatives of h are Lipschitz continuous, that is h ∈ C2−(Ω1).
Clearly, h solves also the last two equations of (2.4) and the �rst one in Ω1 ∪ Ω2. To
�nish the proof, we note that condition (2.5) ensures that the �rst two equations of (3.1)
are uniformly elliptic. Then, by elliptic regularity, cf. [15], we obtain that h ∈ C∞(Ωi),
i = 1, 2. The property that the wave surface is smooth, or equivalently that h(·, 0) ∈ C∞(S),
follows from Theorem 7.3 in [1], by using the uniform ellipticity of the �rst equation of (2.4)
together with the fact that the linearization of the boundary condition of (2.4) on p = 0
satis�es the complementing condition, see e.g. [20]. �

In the remainder of this paper we shall seek solutions of (3.1) that satisfy (2.5). According
to Lemma 3.1, they are the solutions described in Theorem 2.1. To this end, we recast the
problem (3.1) as an abstract bifurcation problem, and use then bifurcation tools to prove
the existence of local bifurcation curves consisting of solutions of (3.1) and (2.5).

Laminar �ow solutions. We introduce now an additional parameter λ into the problem
(3.1) which is used to parametrize the trivial solutions of (3.1). These solutions describe
water waves with a �at surface and parallel streamlines, and we call them laminar �ow
solutions of (3.1). The head Q corresponding to a laminar �ow solution also depends on λ
and therefore we are left with only one free parameter in (3.1).

We shall denote the laminar �ow solutions by (u, U). Assuming that (u, U) depends only
upon the variable p, we see that (u, U) solves (3.1) and (2.5) if and only if it is a solution
of the system



u′′ = γ1u
′3 in p0 < p < p1,

U
′′

= γ2U
′3

in p1 < p < 0,

1 + (2gU(0)−Q)U
′2
(0) = 0,

u(p1) = U(p1),

u′(p1) = U
′
(p1),

u(p0) = 0.

(3.3)
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Whence, there exists λ > 2max[p0,0] Γ ≥ 0 such that we have

u(p) := u(p;λ) :=

∫ p

p0

1√
λ− 2Γ(s)

ds, p ∈ [p0, p1],

U(p) := U(p;λ) :=

∫ p

p0

1√
λ− 2Γ(s)

ds, p ∈ [p1, 0].

(3.4)

We observe that (u, U) ∈ C∞([p0, p1])×C∞([p1, 0]), and that (u, U) verify the system (3.3)
exactly when

Q = Q(λ) := λ+ 2g

∫ 0

p0

1√
λ− 2Γ(p)

dp. (3.5)

Let us also observe that the constant λ is related to the speed at the �at free surface y = 0
of the laminar �ow. Namely, we have that

√
λ =

1

Up(0)
= (c− u)

∣∣
y=0

.

The functional analytic setting. We de�ne now an abstract functional analytic setting
which allows us to recast the problem (3.1) as a bifurcation problem. Therefore, we choose
α ∈ (0, 1) and de�ne the Banach spaces:

X :=
{
(v, V ) ∈ C2+α(Ω1)× C2+α(Ω2) : v = V , vp = Vp on p = p1, and v

∣∣
p=p0

= 0
}
,

Y1 := Cα(Ω1)× Cα(Ω2), Y2 := Cα(S),
whereby we have identi�ed, when de�ning Y2, the unit circle S with p = 0. Moreover, we
introduce the operator (F ,G) : (2max[p0,0] Γ,∞)×X → Y := Y1 ×Y2, with F := (F1,F2),
by the following expressions:

F1(λ, v) :=(1 + v2q )(vpp + u′′)− 2(vp + u′)vqvpq + (vp + u′)2vqq − γ1(vp + u′)3,

F2(λ, V ) :=(1 + V 2
q )(Vpp + U

′′
)− 2(Vp + U

′
)VqVpq + (Vp + U

′
)2Vqq − γ2(Vp + U

′
)3,

G(λ, V ) :=1 + V 2
q + (2g(V + U)−Q(λ))(Vp + U

′
)2 − 2σ

(Vp + U
′
)2Vqq

(1 + V 2
q )

3/2
,

with Q(λ) given by (3.5). Let us observe that the function (F ,G) is well-de�ned and that
it depends real-analytically on its arguments, that is

(F ,G) ∈ Cω((2max
[p0,0]

Γ,∞)× X,Y). (3.6)

With this notation, the problem (3.1) is equivalent to the following abstract operator equa-
tion

(F ,G)(λ, (v, V )) = 0 in Y. (3.7)

Since when (v, V ) = 0 the problem (3.7) is equivalent to the system (3.3), we have that

(F ,G)(λ, (0, 0)) = 0 for all λ ∈ (2max
[p0,0]

Γ,∞). (3.8)

Moreover, if (λ, (v, V )) is a solution of (3.7), then the function (u,U) := (u + v, U + V )
solves the di�raction problem (3.1) when Q = Q(λ) and, according to Lemma 3.1, it de�nes
a solution h of the water wave problem (2.4). We remark that if (v, V ) are su�ciently small,
the associated solution h of (2.4) satis�es also the condition (2.5).
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The Fredholm property for the linearized operator. Our main tool in determining
non-laminar solutions of problem (3.7) is the theorem on bifurcation from simple eigenvalues
due to Crandall and Rabinowitz, cf. [12].

Theorem 3.2. Let X,Y be real Banach spaces, I ⊂ R an open interval, and let the mapping
H ∈ Cω(I × X,Y) satisfy:

(a) H(λ, 0) = 0 for all λ ∈ I;
(b) There exists λ∗ ∈ I such that Fréchet derivative ∂xH(λ∗, 0) is a Fredholm operator

of index zero with a one-dimensional kernel and

Ker ∂xH(λ∗, 0) = {sx0 : s ∈ R, 0 6= x0 ∈ X};
(c) The tranversality condition holds

∂λxH(λ∗, 0)x0 6∈ Im ∂xH(λ∗, 0).

Then, (λ∗, 0) is a bifurcation point in the sense that there exists ε > 0 and a real-analytic
curve (λ, x) : (−ε, ε) → I × X consisting only of solutions of the equation H(λ, x) = 0.
Moreover, as s→ 0, we have that

λ(s) = λ∗ +O(s) and x(s) = sx0 +O(s2).

Furthermore there exists an open set U ⊂ I × X with (λ∗, 0) ∈ U and

{(λ, x) ∈ U : H(λ, x) = 0, x 6= 0} = {(λ(s), x(s)) : 0 < |s| < ε}.

In order to use Theorem 3.2 in the context of the bifurcation problem (3.6)-(3.8), we
choose H := (F ,G). Therefore, we need to determine particular values of λ for which
∂(v,V )(F ,G)(λ, 0) ∈ L(X,Y) is a Fredholm operator of index zero with a one-dimensional
kernel. We prove �rst that ∂(v,V )(F ,G)(λ, 0) is a Fredholm operator of index zero for every
value of λ ∈ (2max[p0,0] Γ,∞). The other hypotheses of Theorem 3.2 are achieved later
on by choosing appropriate values for λ and by restricting the operator (F ,G) to certain
subspaces of X and Y.

It is not di�cult to see that the Fréchet derivative ∂(v,V )(F ,G)(λ, 0) is the linear operator
(L, T ) ∈ L(X,Y), with L := (L1, L2), given by

L1v :=vpp + u′2vqq − 3γ1u
′2vp,

L2V :=Vpp + U
′
Vqq − 3γ2U

′2
Vp,

TV :=2
[
(2gU −Q(λ))U

′
Vp + gU

′2
V − σU

′2
Vqq

] ∣∣
p=0

,

for (v, V ) ∈ X. (3.9)

Showing that (L, T ) is a Fredholm operator does not follow from the existing theory on
di�raction problems, cf. [29]. This is due to the fact that when solving the linear di�raction
problem (L, T )(v, V ) = ((f, F ), ϕ) ∈ Y, there are, as far as we know, no results that
guarantee that (v, V ) belong to X. The problem is generated by the transmission conditions
on p = p1 which can be used to only show that v ∈ C2+α(S × [p0, p1)) ∩ C1+α(Ω1) and
V ∈ C2+α(S× (p1, p0]) ∩ C1+α(Ω2). We will overcome this di�culty by using an approach
based on the elliptic theory for linear boundary value problems with Venttsel boundary
condition [32] together with a Fourier multiplier theorem for operators on Hölder spaces of
periodic functions [14, 30].

Before proceeding, we observe that T can be re-expressed by the formula

TV =
2

λ

[
gV − λ3/2Vp − σVqq

] ∣∣
p=0

. (3.10)
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Theorem 3.3. Assume that (γ1, γ2) ∈ R2 and that γ1 6= γ2. Then, for every constant
λ ∈ (2max[p0,0] Γ,∞), the Fréchet derivative ∂(v,V )(F ,G)(λ, 0) ∈ L(X,Y) is a Fredholm
operator of index zero.

Proof. Let us presuppose that (L, T0) ∈ L(X,Y), where
T0V := [V − Vqq]

∣∣
p=0

is an isomorphism. Then, it is obvious that we also have (L, 2σλ−1T0) ∈ Isom(X,Y).
Observing that

(L, T )(v, V ) = (L, 2σλ−1T0)(v, V ) +

(
0,

2

λ

[
(g − σ)V − λ3/2Vp

] ∣∣
p=0

)
for all (v, V ) ∈ X, and since the operator[

V 7→ 2

λ

[
(g − σ)V − λ3/2Vp

] ∣∣
p=0

]
∈ L(X,Y2)

is compact, we deduce that (L, T ) is a Fredholm operator of index zero.
Whence, we are left to prove that (L, T0) ∈ Isom(X,Y). First, we observe that the kernel

of the operator (L, T0) consists only of the zero vector. Indeed, if (L, T0)(v, V ) = 0 in Y
and V has a positive maximum at (q, p), then p ∈ {p1, 0}, and because T0V = 0 we must
have p = p1. But, then also v has a positive maximum at (q, p). Applying Hopf's lemma in
each domain Ω1 and Ω2, we �nd that Vp(q, p) < 0 and vp(q, p) > 0. This contradicts the
transmission condition vp = Vp on p = p1.

It remains to show that (L, T0) is onto. To this end, let ((f, F ), ϕ) ∈ Y be given.
The results established in [32] for second order elliptic equations with Venttsel boundary
conditions imply that there exists a unique solution W ∈ C2+α(Ω2) of the problem L2W = F in Ω2,

T0W = ϕ on p = 0,
W = 0 on p = p1.

(3.11)

This property can be obtained also by referring to [15]. Indeed, it is not di�cult to see that

the problem T0W̃ = W̃ − W̃ ′′ = ϕ possesses a unique solution W̃ ∈ C2+α(S). Therefore,
the function W solving (3.11) is the solution of the Dirichlet problem

L2W = F in Ω2 W = ϕ̃ on ∂Ω2,

whereby ϕ̃ ∈ C2+α(Ω2) is de�ned by ϕ̃(q, p) = (1 − p/p1)W̃ (q). Moreover, we introduce
the function w ∈ C2+α(Ω1) as being the unique solution of the Dirichlet problem L1w = f in Ω1,

w = 0 on p = p1,
w = 0 on p = p0.

(3.12)

With this notation, it su�ces to show that for every ξ ∈ C1+α(S), the di�raction problem

L1z = 0 in Ω1,
L2Z = 0 in Ω2,
T0Z = 0 on p = 0,
z = Z on p = p1,

zp − Zp = ξ on p = p1,
z = 0 on p = p0,

(3.13)



10 C. I. MARTIN AND B.�V. MATIOC

possesses a (unique) solution (z, Z) ∈ C2+α(Ω1)×C2+α(Ω2). Indeed, if this is true, let (z, Z)
denote the solution corresponding to ξ = (Wp − wp)

∣∣
p=p1

. Then, (v, V ) := (w + z,W + Z)

belongs to X and it solves the equation (L, T0)(v, V ) = ((f, F ), ϕ).
Hence, we are left to study the solvability of the problem (3.13). Using elliptic maximum

principles as we did before, it is easy to see that (3.13) has for each ξ ∈ C1+α(S) at most a
classical solution. From T0Z = 0 on p = 0 we conclude that in fact Z = 0 on p = 0. These
facts and the Theorems 16.1 and 16.2 of [29] ensure the existence of a unique solution (z, Z)
of (3.13) with z ∈ C1+α(Ω1) ∩ C2+α(S × [p0, p1)) and Z ∈ C1+α(Ω2) ∩ C2+α(S × (p1, 0]).
Let us remark that we only need to show that the restriction z|p1 ∈ C2+α(S). This property
together with the �rst and last equation of (3.13) show that z ∈ C2+α(Ω1). Since z = Z
on p = p1, we also have Z ∈ C2+α(Ω2). To �nish the proof, we represent the mapping

C1+α(S) 3 ξ 7→ z|p=p1 ∈ C1+α(S) (3.14)

as a Fourier multiplier. To this end, we introduce the functions a := 1/u′ ∈ C∞([p0, p1])

and A := 1/U
′ ∈ C∞([p1, 0]), where (u, U) denote the solutions of (3.3). Similarly as in

[8], the �rst two equations of (3.13) can be written in the more concise form

a3L1z = (a3zp)p+(azq)q = 0 in Ω1, A3L2Z = (A3Zp)p+(AZq)q = 0 in Ω2. (3.15)

Considering now the Fourier expansions of ξ, z, and Z:

ξ(q) =
∑
k∈Z

ake
ikq, z(q, p) =

∑
k∈Z

zk(p)e
ikq, Z(q, p) =

∑
k∈Z

Zk(p)e
ikq,

we �nd that the functions (zk, Zk), k ∈ Z, solve the following problem:

(a3z′k)
′ − k2azk = 0 p0 < p < p1,

(A3Z ′
k)

′ − k2AZk = 0 p1 < p < 0,
Zk(0) = 0,
zk(p1) = Zk(p1),

z′k(p1)− Z ′
k(p1) = ak,
zk(p0) = 0.

(3.16)

We already know from the solvability of (3.13) that the problem (3.16) possesses for each
k ∈ Z a unique solution (zk, Zk) of regularity zk ∈ C2+α([p0, p1)) ∩ C1+α([p0, p1]) and
Zk ∈ C2+α((p1, 0]) ∩ C1+α([p1, 0]). Moreover, these functions can be computed explicitly.
Indeed, when γ1γ2 6= 0, using a substitution similar to that used in [8, Section 8], we �nd
from the �rst two equations of (3.16) that

zk =
2γ1
a

(
βe−|k|a/γ1 + δe|k|a/γ1

)
and Zk =

2γ2
A

(
θe−|k|A/γ2 + ϑe|k|A/γ2

)
, (3.17)

with real constants β, δ, θ, ϑ that can be determine by solving the last four equations of
(3.16). After some tedious, though elementary, computations we obtain that zk(p1) = λkak,
whereby

λk :=
a2(p1)

γ1 − γ2 + a(p1) [coth (Θ1|k|) + coth (Θ2|k|)] |k|
, k ∈ Z, (3.18)

and Θ1 and Θ2 are the positive expressions

Θ1 :=
a(p0)− a(p1)

γ1
and Θ2 :=

A(p1)−A(0)

γ2
. (3.19)
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When k = 0, the value λ0 should be understood as the limit limk→0 λk. The formula (3.18)
is still true when γ1 = 0 or γ2 = 0 with the mention that if γ1 = 0, then we have to replace
Θ1 by its limit limγ1→0Θ1, which is again a positive number (similarly when γ2 = 0). We
note that the solvability of (3.16) ensures that the denominator of the right-hand side of
(3.18) has to be di�erent from zero. With this observation, it is not di�cult to see that

sup
k∈Z

|k||λk| <∞ and sup
k∈Z

|k|2|λk+1 − λk| <∞. (3.20)

Since the mapping (3.14) can be identi�ed with the Fourier multiplier∑
k∈Z

ake
ikq 7→

∑
k∈Z

λkake
ikq

we infer from (3.20) and [30, Theorem 2.1] that it belongs to L(C1+α(S), C2+α(S)). Conse-
quently, the trace z

∣∣
p=p1

∈ C2+α(S), and this completes our argument. �

4. The kernel of ∂(v,V )(F ,G)(λ, 0)

In this section we merely assume that γ1 ∈ Cα([p0, p1]) and that γ2 ∈ Cα([p0, p1]). In
order to identify the kernel of ∂(v,V )(F ,G)(λ, 0), we introduce a family of Sturm-Liouville
operators and determine in a �rst step the kernel of these operators, cf. Lemmas 4.1 and
4.2. This will reduce our task to �nding the zeros of the Wronskian determinant (4.6), which
will be accomplished in Lemmas 4.3-4.7. In the case of two layers of constant vorticity there
is a shorter argument relying on the dispersion relation (5.11). Nevertheless, this argument
cannot be generalized to the case of three or more layers of constant vorticity. Compared to
[47], where for the study of the kernel of the Sturm-Liouville operators, abstract functional
analytic results for eigenvalue problems in the context of Pontryagin spaces are used, the
approach presented herein is self-contained. It is based on direct estimates for the solution
of Sturm-Liouville problems with non-constant coe�cients, one of the coe�cients growing
linearly in dependence of a parameter. We emphasize that our approach can be generalized
to arbitrary bounded [40] and even unbounded vorticities [35]. From the analysis in Section
3 it follows that, if (v, V ) = (vk(p) cos(kq), Vk(p) cos(kq)) ∈ X belongs to the kernel of
∂(v,V )(F ,G)(λ, 0), then the map

v(p) :=

{
vk(p), p ∈ [p0, p1],
Vk(p), p ∈ [p1, 0],

(4.1)

belongs to the real Hilbert space H := {v ∈ H2((p0, 0)) : v(p0) = 0}, and it is also in the
kernel of the Sturm-Liouville operator Rλ,µ : H → L2 × R, where L2 := L2((p0, 0)) and

Rλ,µv :=

(
(a3v′)′ − µav

(g + σµ)v(0)− λ3/2v′(0)

)
,

provided that µ = k2. Hereby, the function

a(p) := a(p;λ) :=
√
λ− 2Γ(p), p ∈ [p0, 0], (4.2)

belongs to C∞([p0, p1]) ∩ C∞([p1, 0]) for all λ ∈ (2max[p0,0] Γ,∞). We note that the �rst

derivative of a has a jump at p1. Vice versa, if v belongs to the kernel of Rλ,µ and µ = k2,
then letting (vk, Vk) be given by (4.1), the vector (v, V ) = (vk(p) cos(kq), Vk(p) cos(kq)) ∈ X
belongs to the kernel of ∂(v,V )(F ,G)(λ, 0). This correspondence motivates us to study the
kernel of Rλ,µ.
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Lemma 4.1. For every (λ, µ) ∈ (2max[p0,0] Γ,∞)× [0,∞), the operator Rλ,µ is a Fredholm
operator of index zero and its kernel is at most one-dimensional.

Proof. Similarly as in the proof of Theorem 3.3, we de�ne the compact perturbation R of
Rλ,µ by the relation

Rv := Rλ,µv−
(

0
(g + σµ)v(0)

)
, v ∈ H.

The �rst part of our claim follows from the fact that the operator R is a an isomorphism.
Indeed, given (f, z) ∈ L2 ×C, if the vector v ∈ H solves the equation Rv = (f, z), then for
all ϕ ∈ H1

0 := {ϕ ∈ H1((p0, 0)) : ϕ(p0) = 0} we have∫ 0

p0

(
a3v′ϕ′ + µavϕ

)
dp = −zϕ(0)−

∫ 0

p0

fϕ dp. (4.3)

The right-hand side of (4.3) de�nes an element of L(H1
0 ,R), while the left-hand side of (4.3)

de�nes, in view of Poincaré's inequality, a bounded coercive bilinear functional on H1
0 ×H1

0 .
Using the Lax-Milgram theorem, cf. [15, Theorem 5.8], we obtain a unique vector v ∈ H1

0

which solves the variational formulation (4.3). It is immediate to see that in fact v ∈ H.
This proves that indeed R ∈ Isom(H,L2 × R).

To �nish the proof we see that if v1, v2 ∈ H are two vectors in the kernel of Rλ,µ, then

0 = ((a3v′1)
′ − µav1)v2 − ((a3v′2)

′ − µav2)v1 = ((a3(v2v
′
1 − v1v

′
2))

′ in (p0, 0), (4.4)

which implies that a3(v2v
′
1 − v1v

′
2) is constant. Since v1(p0) = v2(p0) = 0 and a > 0, we

obtain that v1 and v2 are linearly dependent. �

In order to determine when the operator Rλ,µ has a nontrivial kernel, we de�ne for each
pair (λ, µ) ∈ (2max[p0,0] Γ,∞)× [0,∞) the functions u, v ∈ H2((p0, 0)) with u := u(·;λ, µ)
and v := v(·;λ, µ) as solutions of the initial value problems{

(a3u′)′ − µau = 0 in (p0, 0),

u(p0) = 0, u′(p0) = 1,

{
(a3v′)′ − µav = 0 in (p0, 0),

v(0) = λ3/2, v′(0) = g + σµ.
(4.5)

These problems can be seen as system of �rst order linear ordinary di�erential equations,
and therefore the existence and uniqueness of u, v follows from the classical theory, cf. [2].

Lemma 4.2. Given (λ, µ) ∈ (2max[p0,0] Γ,∞)× [0,∞), the operator Rλ,µ has a nontrivial
kernel exactly when the functions u and v, given by (4.5), are linearly dependent.

Proof. It is easy to see that if u and v are linearly dependent, then they both belong to
the kernel of Rλ,µ. On the other hand, if Rλ,µz = 0, then it follows from relation (4.4) that
{u, z} and {v, z} are linearly dependent systems. �

Summarizing, the previous lemmas state that KerRλ,µ is non-trivial (and has dimension
one) exactly when (λ, µ) is a zero of the Wronskian Ξ : (2max[p0,0] Γ,∞) × [0,∞) → R
given by

Ξ(λ, µ) := λ3/2u′(0;λ, µ)− (g + σµ)u(0;λ, µ). (4.6)

Invoking (4.2) and (4.5), the classical theory of ordinary di�erential equations ensures that
the function Ξ is real-analytic. Particularly, its zeros are isolated. Of course, we are
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interested only in the zeros for which µ = k2 for some k ∈ N. If µ = 0, then u can be
computed explicitly

u(p;λ, 0) :=

∫ p

p0

a3(p0)

a3(s)
ds, p ∈ [p0, 0].

In this case, Ξ(λ, 0) = 0 if and only if λ solves the equation

1

g
=

∫ 0

p0

1

a3(p)
dp. (4.7)

The right-hand side of (4.7) is a strictly decreasing function of λ,∫ 0

p0

1

a3(p)
dp −→

λ→∞
0 and

∫ 0

p0

1

a3(p)
dp −→

λ→2max[p0,0] Γ
∞.

Consequently, there exists a unique λ0 ∈ (2max[p0,0] Γ,∞) which satis�es (4.7). Since for
µ > 0 we cannot determine in general an explicit expression for u, determining the zeros of
Ξ(·, µ) is more di�cult. Nevertheless, we have the following result.

Lemma 4.3. Let λ0 be the unique solution of Ξ(λ, 0) = 0. Then, we have

(i) Ξ(λ, 0) > 0 for all λ > λ0; (4.8)

(ii) lim
µ→∞

Ξ(λ, µ) = −∞ for all λ ≥ λ0. (4.9)

Proof. It follows readily from (4.5) that u satis�es the following integral relation

u(p) =

∫ p

p0

a3(p0)

a3(s)
ds+ µ

∫ p

p0

1

a3(s)

∫ s

p0

(au)(r) dr ds, p ∈ [p0, 0]. (4.10)

Therefore, we have

Ξ(λ, 0) = ga3(p0)

(
1

g
−
∫ 0

p0

1

a3(p)
dp

)
> 0

for all λ > λ0, which proves (4.8).
In order to show (4.9), we �x λ ≥ λ0 and use (4.10) to decompose Ξ(λ, µ) = T1 + µT2,

whereby

T1 := a3(p0)

(
1− (g + σµ)

∫ 0

p0

1

a3(p)
dp

)
,

T2 :=

∫ 0

p0

(au)(p) dp− (g + σµ)

∫ 0

p0

1

a3(s)

∫ s

p0

(au)(r) dr ds,

depend only on µ. Since a does not depend on µ, we obtain that T1 → −∞ as µ → ∞.
Before studying the behavior of T2, let us infer from (4.5) and (4.10) that u and u′ are
both positive on (p0, 0]. In fact, an argument similar to that used to deduce the relations
(4.13) and (4.16) below shows that for each p ∈ (p0, 0], min[p,0] u and min[p,0] u

′ grow at an
exponential rate as µ → ∞. Thus, proving that T2 → −∞ when µ → ∞, is not obvious.
However, because a does not depend on µ, integration by parts shows that T2 → −∞ when
µ→ ∞ if we have

lim
µ→∞

(∫ 0

p0

u(p) dp− µ6/7
∫ 0

p0

(−p)u(p) dp
)

= −∞.
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Noticing that (∫ −µ−2/3

p0

u(p) dp− µ6/7
∫ −µ−2/3

p0

(−p)u(p) dp

)

≤ (µ2/3 − µ6/7)

∫ −µ−2/3

p0

(−p)u(p) dp →
µ→∞

−∞,

it su�ces to prove that

lim
µ→∞

(∫ 0

−µ−2/3

u(p) dp− µ6/7
∫ 0

−µ−2/3

(−p)u(p) dp
)

= −∞. (4.11)

Because the interval [−µ−2/3, 0] is very small when µ is large, we can approximate u on this
interval by solutions of some linear initial value problems with constant coe�cients. To be
more precise, we let w denote the solution of the linear initial value problem{

w′′ + Cw′ − µDw = 0 in (−µ−2/3, 0),

w(−µ−2/3) = A, w′(−µ−2/3) = B,
(4.12)

where C ∈ R and D > 0 are constants, A := u(−µ−2/3), and B := u′(−µ−2/3). The solution
w of (4.12) is given by the following formula

w(p) =
A

r1 − r2

(
r1e

r2(p+µ−2/3) − r2e
r1(p+µ−2/3)

)
+

B

r1 − r2

(
er1(p+µ−2/3) − er2(p+µ−2/3)

)
(4.13)

for p ∈ [−µ−2/3, 0], whereby

r1 :=
−C +

√
C2 + 4Dµ

2
and r2 :=

−C −
√
C2 + 4Dµ

2
. (4.14)

The idea of considering the problem (4.12) is the following: de�ning the µ-dependent
functions

C := max
[−µ−2/3,0]

3a′

a
, C := min

[−µ−2/3,0]

3a′

a
, D := min

[−µ−2/3,0]

1

a2
, D := max

[−µ−2/3,0]

1

a2
, (4.15)

it is not di�cult to see by subtracting the equations of (4.12) from those satis�ed by u that
we have

w ≤ u ≤ w on [−µ−2/3, 0]. (4.16)

Hereby, w and w are the solutions of (4.12) corresponding to (C,D), and (C,D), respec-
tively. Therefore, the relation (4.11) is ful�lled if we show that

lim
µ→∞

(∫ 0

−µ−2/3

w(p) dp− µ6/7
∫ 0

−µ−2/3

(−p)w(p) dp

)
= −∞. (4.17)

An elementary computation now gives∫ 0

−µ−2/3

w(p) dp− µ6/7
∫ 0

−µ−2/3

(−p)w(p) dp = ATA +BTB,
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whereby

TA :=
1

r1 − r2

(
r1
r2

(er2/µ
2/3 − 1)− r2

r1
(er1/µ

2/3 − 1)

)
− µ6/7−2/3

r1 − r2

(
r2
r1

− r1
r2

)
− µ6/7

r1 − r2

(
r1
r22

(er2/µ
2/3 − 1)− r2

r21
(er1/µ

2/3 − 1)

)
,

TB :=
1

r1 − r2

(
1

r1
(er1/µ

2/3 − 1)− 1

r2
(er2/µ

2/3 − 1)

)
− µ6/7−2/3

r1 − r2

(
1

r2
− 1

r1

)
− µ6/7

r1 − r2

(
1

r21
(er1/µ

2/3 − 1)− 1

r21
(er2/µ

2/3 − 1)

)
,

and with (r1, r2) and (r1, r2) being de�ned by (4.14) with (C,D) being replaced by (C,D),
and (C,D), respectively. The claim (4.17) follows from the following properties

TA →µ→∞ −∞ and µ2/3TB →µ→∞ −∞. (4.18)

We establish �rst the claim for TA. Clearly, it su�ces to show that

r1 − r2
r1 − r2

(
r1
r2

(er2/µ
2/3 − 1)− r2

r1
(er1/µ

2/3 − 1)

)
− µ6/7−2/3

(
r2
r1

− r1
r2

)
− µ6/7

(
r1
r22

(er2/µ
2/3 − 1)− r2

r21
(er1/µ

2/3 − 1)

)
=: E1 − E2 − E3 →µ→∞ −∞.

Let us now observe that (C,D) and (C,D) converge, when µ → ∞, towards the constant

pair (C,D) := (3a′(0)/a(0), 1/a2(0)). Because ri/µ
2/3 → 0 as µ → ∞, we easily see that

E1 → 0. Moreover, there exists a constant K, independent of µ, such that

|E2| = µ6/7−2/3

∣∣∣∣r2r1 − r1
r2

∣∣∣∣ = µ6/7−2/3

∣∣r22 − r21
∣∣

r1r2
≤ Kµ6/7−2/3−1/2

and we are left to consider E3. To this end, we write E3 = E3a + E3b where we set

E3a := µ6/7
(√

Dµ

Dµ
(e−

√
Dµ−1/6 − 1) +

√
Dµ

Dµ
(e

√
Dµ−1/6 − 1)

)
.

We note that E3a is obtained by replacing in the de�nition of E3 the constants (C,D) and
(C,D) by their limit (C,D) and retaining only the highest order terms in µ. Since by the
mean value theorem we have

max{|D −D|, |D −D|} ≤ Kµ−2/3,

where K is again independent of µ, one can show that E3b →µ→∞ 0. Furthermore, using
l'Hopitals rule we get

lim
µ→∞

E3a =
7

15
lim
µ→∞

e
√
Dµ−1/6 − e−

√
Dµ−1/6

µ−1/6
µ1/42 = ∞.

Thus, E3a → ∞, and we conclude that TA →µ→∞ −∞. The second claim of (4.18) follows
similarly. This �nishes the proof. �
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Invoking Lemma 4.3, we �nd for every λ ≥ λ0 a unique constant µ(λ) ∈ [0,∞) such that

Ξ(λ, µ(λ)) = 0;

Ξ(λ, µ) < 0 for all µ > µ(λ).
(4.19)

Since Ξ(λ, 0) > 0 when λ > λ0, any zero of Ξ(λ, ·) is positive when λ > λ0. We next
prove that λ 7→ µ(λ) is a real-analytic and strictly increasing curve.

Lemma 4.4. Assume that (λ, µ) ∈ [λ0,∞)× (0,∞) satis�es Ξ(λ, µ) = 0. Then, we have

Ξλ(λ, µ) > 0 and Ξµ(λ, µ) < 0. (4.20)

Before proving the lemma, let us observe that since Ξ(λ, 0) > 0 for all λ > λ0, the second
relation of (4.20) ensures additionally to (4.19) that

Ξ(λ, µ) > 0 for all µ ∈ [0, µ(λ)). (4.21)

Particularly, if λ > λ0, then Ξ(λ, µ) = 0 if and only if µ = µ(λ).

Proof of Lemma 4.4. Because Ξ(λ, µ) = 0, it follows from the Lemmas 4.1-4.2, and the
discussion following them, that KerRλ,µ is spanned by the function u de�ned by (4.5)

when (λ, µ) = (λ, µ). Thus, u solves the following system of equations
(a3u′)′ − µau = 0 in (p0, 0),

u(p0) = 0, u′(p0) = 1,

(g + σµ)u(0)− λ
3/2

u′(0) = 0.

(4.22)

Di�erentiating the equations of (4.5) with respect to µ shows that the Fréchet derivative
uµ := uµ(·, λ, µ) is the solution of the problem{

(a3u′µ)
′ − µauµ = au in (p0, 0),

uµ(p0) = 0, u′µ(p0) = 0.
(4.23)

First, we establish that

Ξµ(λ, µ) = λ
3/2

u′µ(0)− σu(0)− (g + σµ)uµ(0) < 0. (4.24)

Multiplying the �rst equation of (4.22) by uµ and the �rst equation of (4.23) by u, we
obtain after integrating by parts that

u(0)
(
λ
3/2

u′µ(0)− (g + σµ)uµ(0)
)
=

∫ 0

p0

au2 dp. (4.25)

Moreover, if we multiply the �rst equation of (4.22) by u and integrate it by parts we �nd
that ∫ 0

p0

a3u′2 dp− gu2(0) = µ

(
σu2(0)−

∫ 0

p0

au2 dp

)
.

But, since λ ≥ λ0 and µ > 0,

gu2(0) =g

(∫ 0

p0

(a3/2u′)
1

a3/2
dp

)2

< g

∫ 0

p0

a3u′2 dp

∫ 0

p0

1

a3
dp ≤

∫ 0

p0

a3u′2 dp,

cf. (4.7), which implies that the right-hand side of (4.25) is bounded from above by σu2(0).
This proves (4.24).
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For the �rst claim of (4.24) we note that

Ξλ(λ, µ) = λ
3/2

u′λ(0) +
3

2
λ
1/2

u′(0)− (g + σµ)uλ(0),

whereby uλ is the solution of{
(a3u′λ)

′ − µauλ = −(3a2aλu
′)′ + µaλu in (p0, 0),

uλ(p0) = 0, u′λ(p0) = 0,
(4.26)

and aλ = 1/(2a). Similarly as before, we multiply the �rst equation of (4.22) by uλ and the
�rst equation of (4.26) by u to obtain, after integrating by parts, that

Ξλ(λ, µ) =
1

u(0)

∫ 0

p0

(
3a

2
u′2 +

µ

2a
u2
)
dp > 0.

This completes our argument. �
Remark 4.5. The restriction µ > 0 in Lemma 4.4 was needed just to prove the second claim
of (4.20). But, when µ = 0, we obtain easily from (4.24), (4.25), (4.7), and the explicit
expression for u(·;λ0, 0) that Ξµ(λ0, 0) < 0 if and only if∫ 0

p0

a(p)

(∫ p

p0

1

a3(s)
ds

)2

dp <
σ

g2
. (4.27)

Combining the previous lemmas, we obtain the following result.

Lemma 4.6. The function

[λ0,∞) 3 λ 7→ µ(λ) ∈ [0,∞)

is continuous, real-analytic in (λ0,∞), and strictly increasing.

Proof. Let λ1 > λ0. Because of Ξ(λ1, µ(λ1)) = 0 and Ξµ(λ1, µ(λ1)) < 0 there exists a
real-analytic function µ such that µ(λ1) = µ(λ1) and Ξ(λ, µ(λ)) = 0 for all λ close to λ1.
Recalling (4.20), we see that the function µ is strictly increasing, as we have

Ξλ(λ, µ(λ)) + Ξµ(λ, µ(λ))µ
′(λ) = 0

The conclusion follows now from the relations (4.19)-(4.21). �
The next lemma ensures that the function µ : [λ0,∞) → [µ(λ0),∞) is bijective.

Lemma 4.7. We have that

lim
λ→∞

µ(λ)

λ
= ∞. (4.28)

Proof. Assume by contradiction that there exists a sequence λn → ∞ and a constant K > 0
such that 0 < µ(λn)/λn ≤ K for all n ∈ N. For every n ∈ N, we denote by un the function
that spans the kernel of Rλn,µ(λn) and solves the �rst system of (4.5). Then it follows

readily form (4.10) that there exists a constant K̃, independent of n, such that

0 ≤ un(p) ≤ K̃

(
1 +

∫ p

p0

un(s) ds

)
for all p ∈ [p0, 0] and n ∈ N.

Using Gronwall's inequality, we conclude that the sequence (un)n ⊂ C([p0, 0]) is bounded.
Since by (4.6), (4.10), and our assumption we have

Ξ(λn, µ(λn)) ≥ a3(p0)− (g + σµ(λn))un(0) →n→∞ ∞,

we obtain a contradiction with the properties de�ning the map µ(·), cf. (4.19). �



18 C. I. MARTIN AND B.�V. MATIOC

5. Proof of the main result

The case N = 2. We now come back to the setting presented in Theorem 2.1 and assume
that N = 2. We summarize from the Lemmas 4.3-4.7 that there exists a smallest positive
integer nmin with the property that

n2min > µ(λ0). (5.1)

Particularly, for each n ≥ nmin there exists a constant λn > λ0 such that

µ(λn) := n2. (5.2)

The sequence (λn)n≥nmin is in view of Lemma 4.7 strictly increasing to in�nity. Whence,
we have for n, p ≥ nmin that Ξ(λn, p

2) = 0 if and only if n = p. Moreover, it follows from
the Remark 4.5 and (4.19)-(4.21) that the integer nmin can be chosen to be nmin = 1 if
(4.27) is satis�ed. This is due to the fact that µ(λ0) = 0 if (4.27) holds true.

Since we want to determine nontrivial solutions of the water wave problem (2.4) we
study the existence of bifurcation branches consisting of solutions of (3.7) that arise from

(λn, 0), with n ≥ nmin. In the following we denote by X̂ and Ŷ the subspaces of X and
Y, respectively, that consist only of (2π/n)-periodic and even functions in the variable q.
Then, it follows readily from the de�nition of (F ,G) that we have

(F ,G) ∈ Cω((2max
[p0,0]

Γ,∞)× X̂, Ŷ). (5.3)

Moreover, the arguments used in the proof of Theorem 3.3 show that the Fréchet deriv-

ative ∂(v,V )(F ,G)(λ, 0) ∈ L(X̂, Ŷ) is a Fredholm operator of index zero for every value
λ ∈ (2max[p0,0] Γ,∞). Taking into account that the kernel of ∂(v,V )(F ,G)(λ, 0) is �nite
dimensional, by the choice of the sequence (λn)n≥nmin , we know that ∂(v,V )(F ,G)(λn, 0)
has a one-dimension kernel. More precisely,

Ker ∂(v,V )(F ,G)(λn, 0) = span{(v0, V 0) := (v0n(p) cos(nq), V
0
n (p) cos(nq))}

whereby (v0n, V
0
n ) de�nes, cf. (4.1), a vector v

0 ∈ H2((p0, 0)) that spans the one-dimensional
kernel of the operator Rλn,n2 . This vector v0 is colinear to the solutions of both initial value
problems (4.5).

In order to apply the bifurcation theorem of Crandall and Rabinowitz to the equation

(F ,G)(λ, (v, V )) = 0 in Ŷ, which will give us, via Lemma 3.1, the desired result from
Theorem 2.1, we are left check that

∂λ(v,V )(F ,G)(λn, 0)(v0, V 0) /∈ Im ∂(v,V )(F ,G)(λn, 0) (5.4)

if 0 6= (v0, V 0) ∈ Ker ∂(v,V )(F ,G)(λn, 0). To this end, we need to characterize the range
Im ∂(v,V )(F ,G)(λn, 0).

Lemma 5.1. Let nmin be given by (5.1). Given n ≥ nmin, the vector ((f, F ), ϕ) ∈ Ŷ belongs
to Im ∂(v,V )(F ,G)(λn, 0) if and only if we have∫

Ω1

a3v0f d(q, p) +

∫
Ω2

A3V 0F d(q, p) +

∫
S×{0}

A2V 0ϕ

2
dq = 0 (5.5)

for all (v0, V 0) ∈ Ker ∂(v,V )(F ,G)(λn, 0).
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Proof. We pick 0 6= (v0, V 0) ∈ Ker ∂(v,V )(F ,G)(λn, 0), and presuppose that there exists a

pair (v, V ) ∈ X̂ with the property that ∂(v,V )(F ,G)(λn, 0)(v, V ) = ((f, F ), ϕ), that is

(L1v, L2V ) = (f, F ) in Ŷ1, TV = ϕ in Ŷ2, (5.6)

whereby L1, L2, T are given by (3.9) and (3.10). Invoking (3.15), we use integration and

the fact that (v0, V 0) ∈ X̂ solves (5.6) when ((f, F ), ϕ) = 0, to �nd

∫
Ω1

a3v0f d(q, p) +

∫
Ω2

A3V 0F d(q, p) +

∫
S×{0}

A2V 0ϕ

2
dq

= −
∫
Ω1

(a3vv0p + avqv
0
q ) d(q, p)−

∫
Ω2

(A3V V 0
p +AVqV

0
q ) d(q, p)

+

∫
S×{0}

(g + σn2)V 0V dq = 0,

the last equality being obtain by using once more the fact that (v0, V 0) ∈ X̂ solves (5.6)
when ((f, F ), ϕ) = 0. Taking into account that the relation (5.5) de�nes a closed subspace

of Ŷ which has codimension one and contains the image Im ∂(v,V )(F ,G)(λn, 0), which has
itself codimension one, we obtain the desired claim. �

Lemma 5.2. Let n ≥ nmin be given. The transversality condition (5.4) holds true for all
vectors 0 6= (v0, V 0) ∈ Ker ∂(v,V )(F ,G)(λn, 0).

Proof. Let 0 6= (v0, V 0) ∈ Ker ∂(v,V )(F ,G)(λn, 0) be given. Then, we infer from (3.9),
(3.10), and (3.15), that

∂λ(v,V )F1(λn, 0)(v
0, V 0) = −2aλ

a3
v0qq +

3aa′λ − 3aλa
′

a2
v0p =: f,

∂λ(v,V )F2(λn, 0)(v
0, V 0) = −2Aλ

A3
V 0
qq +

3AA′
λ − 3AλA

′

A2
V 0
p =: F,

∂λ(v,V )G(λn, 0)(v0, V 0) = −
[
3

A
V 0
p

] ∣∣
p=0

=: ϕ.

Our claim is equivalent to showing that ((f, F ), ϕ) does not satisfy (5.5). Observing that
aλ = 1/(2a) and Aλ = 1/(2A), we compute

∫
Ω1

a3v0f d(q, p) +

∫
Ω2

A3V 0F d(q, p) +

∫
S×{0}

A2V 0ϕ

2
dq

= −
∫
Ω1

(
a−1v0qqv

0 + 3a′v0pv
0
)
d(q, p)−

∫
Ω2

(
A−1V 0

qqV
0 + 3A′V 0

p V
0
)
d(q, p)

−
∫
S×{0}

3A

2
V 0
p V

0 dq.
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On the other hand, using the fact that (v0, V 0) ∈ Ker ∂(v,V )(F ,G)(λk, 0) and integration
by parts, we obtain that∫

Ω1

a′v0pv
0 d(q, p) +

∫
Ω2

A′V 0
p V

0 d(q, p)

= −
∫
S×{0}

A

2
V 0
p V

0 dq +

∫
Ω1

(
a

2
(v0p)

2 +
1

2a
(v0q )

2

)
d(q, p)

+

∫
Ω2

(
A

2
(V 0

p )
2 +

1

2A
(V 0

q )
2

)
d(q, p),

which together with the previous relation gives∫
Ω1

a3v0f d(q, p) +

∫
Ω2

A3V 0F d(q, p) +

∫
S×{0}

A2V 0ϕ

2
dq

= −
∫
Ω1

(
3a

2
(v0p)

2 +
1

2a
(v0q )

2

)
d(q, p)−

∫
Ω2

(
3A

2
(V 0

p )
2 +

1

2A
(V 0

q )
2

)
d(q, p) < 0.

This proves the lemma. �

To conclude the proof of Theorem 2.1 when N = 2, it only remains to show that each
solution on Cn, n ≥ nmin, has only one crest and trough per period, the symmetry property
being then a result of the choice of the space X. This follows directly from the asymptotic
expressions for the bifurcation curves from Theorem 3.2, as Cn is parametrized in X by

(un(s), Un(s)) = (u(λn(s)), U(λn(s))) + s(v0n(p) cos(nq), V
0
n (p) cos(nq)) +O(s2)

for small |s|, with the parameter curve λn satisfying λn(s) := λn +O(s) for such s.
The case N ≥ 3. When the vorticity function has several jumps, we proceed as in Section
3 and associate to problem (2.4) a di�raction problem

(1 + u2i,q)ui,pp − 2ui,pui,qui,pq + u2i,pui,qq − γiu
3
i,p = 0 in Ωi, i ∈ {1, N},

1 + u2N,q + (2guN −Q)u2N,p − 2σ
u2N,puN,qq

(1 + u2N,q)
3/2

= 0 on p = 0,

ui = ui+1 on p = pi, i ∈ {1, N − 1},
ui,p = ui+1,p on p = pi, i ∈ {1, N − 1},
u1 = 0 on p = p0,

(5.7)
where Ωi := S× (pi−1, pi) for all 1 ≤ i ≤ N . Then, similarly to Lemma 3.1 we see that each
solution of (3.1) de�nes a solution of problem (2.4). For N ≥ 3, our main result is obtained
by following the lines of the proof when N = 2 with the evident modi�cations. There is only
one point where the analysis is di�erent, namely when showing that the Fréchet derivative
∂(v1,...,vN )(F ,G)(λ, 0) ∈ L(X,Y) 1 is a Fredholm operator for all λ ∈ (2max[p0,0] Γ,∞). As

1For N ≥ 3 it is natural to de�ne:

X :=
{
(v1, . . . , vN ) ∈ ΠN

i=1C
2+α(Ωi) : vi = vi+1, vi,p = vi+1,p on p = pi, i ∈ {1, N − 1}, 0 = v1

∣∣
p=p0

}
,

Y1 := ΠN
i=1C

α(Ωi), Y2 := Cα(S).



CAPILLARY-GRAVITY WATER WAVES WITH PIECEWISE CONSTANT VORTICITY 21

in the proof of Theorem 3.3 one can show that ∂(v1,...,vN )(F ,G)(λ, 0) is a Fredholm operator
of index zero provided that the unique solution (z1, . . . , zN ) of the di�raction problem

(a3i zi,p)p + (aizi,q)q = 0 in Ωi, i ∈ {1, N},
T0zN = 0 on p = 0,

zi = zi+1 on p = pi, i ∈ {1, N − 1},
zi,p = zi+1,p on p = pi, i ∈ {1, N − 1} \ {l},

zl,p − zl+1,p = ϕ on p = pl,
z1 = 0 on p = p0.

(5.8)

belongs to ΠN
i=1C

2+α(Ωi) for all 1 ≤ l ≤ N − 1 and all ϕ ∈ C1+α(S). Hereby, we set

ai :=
√
λ− 2Γ ∈ C∞([pi−1, pi]) for all 1 ≤ i ≤ N. Existence of a solution (z1, . . . , zN ) of

the linear di�raction problem (5.8) in the class(
C2+α(S× [p0, p1))×ΠN−1

i=2 C
2+α(Ωi)× C2+α(S× (pN−1, 0])

)
∩ΠN

i=1C
1+α(Ωi)

is obtained by using elliptic maximum principles and the results of [29]. The problem lies
in ensuring C2+α regularity at the interfaces where we have transmission conditions, an
argument as in Theorem 3.3 being impossible because N is arbitrary. Nevertheless we can
use the result established in Theorem 3.3. Indeed, if 1 ≤ l ≤ N − 1, then (zl, zl+1) solves
the di�raction problem

(a3l zl,p)p + (alzl,q)q = 0 in S× ((pl−1 + pl)/2, pl),
(a3l+1zl+1,p)p + (al+1zl+1,q)q = 0 in S× (pl, (pl + pl+1)/2),

zl = φl on p = (pl−1 + pl)/2,
zl+1 = φl+1 on p = (pl + pl+1)/2,
zl = zl+1 on p = pl,

zl,p − zl+1,p = ϕl on p = pl,

whereby ϕl ∈ C1+α(S) (possibly ϕl = 0) and

φl := zl
∣∣
p=(pl−1+pl)/2

, φl+1 := zl+1

∣∣
p=(pl+pl+1)/2

belong to C2+α(S).

Then, we can write

(zl, zl+1) = (vl, vl+1) + (wl, wl+1),

whereby vl ∈ C2+α(S× [(pl−1 + pl)/2, pl]) solves the Dirichlet problem (a3l vl,p)p + (alvl,q)q = 0 in S× ((pl−1 + pl)/2, pl),
vl = φl on p = (pl−1 + pl)/2,
vl = 0 on p = pl,

the function vl+1 ∈ C2+α(S× [pl, (pl + pl+1)/2]) is the solution of (a3l+1vl+1,p)p + (al+1vl+1,q)q = 0 in S× (pl, (pl + pl+1)/2),
vl+1 = φl+1 on p = (pl + pl+1)/2,
vl+1 = 0 on p = pl,
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and (wl, wl+1) solves the di�raction problem

(a3lwl,p)p + (alwl,q)q = 0 in S× ((pl−1 + pl)/2, pl),
(a3l+1wl+1,p)p + (al+1wl+1,q)q = 0 in S× (pl, (pl + pl+1)/2),

wl = 0 on p = (pl−1 + pl)/2,
wl+1 = 0 on p = (pl + pl+1)/2,
wl = wl+1 on p = pl,

wl,p − wl+1,p = ξ on p = pl,

with

ξ := ϕl − vl,p
∣∣
p=pl

+ vl+1,p

∣∣
p=pl

∈ C1+α(S).

The arguments presented in the proof of Theorem 3.3 show that the mapping [ξ 7→ wl|p=pl ]
is a Fourier multiplier and it belongs to L(C1+α(S), C2+α(S)). But then (wl, wl+1) has the
same regularity as (vl, vl+1). Thus, we have shown that (z1, . . . , zN ) ∈ ΠN

i=1C
2+α(Ωi) and

the desired Fredholm property follows at once. The proof of Theorem 2.1 follows now
similarly as in the case N = 2 because all the arguments that we still need are trivial
extensions of those presented when N = 2 (and therefore we omit them).

The dispersion relation. We end this paper by considering again the case N = 2.We de-
termine an explicit relation, the so-called dispersion relation, between the wave properties:
mean depth d, the average thickness d1 (resp. d2) of the layer of vorticity γ1 (resp. γ2), the
wavelength L = 2π/n, n ∈ N \ {0}, the vorticities γ1 and γ2, and the relative speed at the
surface of the laminar �ow c − u(0) which has to be satis�ed in order to have bifurcation
from the laminar �ow solutions. Computing the dispersion relation for the case N = 3 is
also possible, but the computations are much more involved.

More precisely, we look for conditions on the physical parameters which guarantee that
the problem 

(a3v′n)
′ − n2avn = 0 p0 < p < p1,

(A3V ′
n)

′ − n2AVn = 0 p1 < p < 0,

(g + σn2)Vn(0) = λ3/2V ′
n(0),

vn(p1) = Vn(p1),
v′n(p1) = V ′

n(p1),
vn(p0) = 0

(5.9)

possesses a nontrivial solution (vn, Vn) ∈ C∞([p0, p1]) × C∞([p1, 0]). Assuming �rst that
γ1γ2 6= 0, we know that the general solutions vn, Vn of the �rst two equations of (5.9) are
given by (3.17), with constants β, δ, θ, ϑ which need to be chosen such that the last four
equations of (5.9) are also satis�ed. Thus, we are left with a linear system of four equations
with four unknowns. Using algebraic manipulations, we �nd that the latter system possesses
nontrivial solutions exactly when the following relation is satis�ed

γ2 − γ1
a(p1)

(
g + σn2 − λ1/2γ2 − λn coth(nΘ2)

)
= n(coth(nΘ1) + coth(nΘ2))

(
g + σn2 − λ1/2γ2 − λn coth(n(Θ1 +Θ2))

)
,

where Θ1 and Θ2 are given by (3.19). This formula is also true when γ1γ2 = 0 (if γ1 = 0
(resp. γ2 = 0), then vn (resp. Vn) solves an ordinary di�erential equation with constants
coe�cients and the computations are easier). By virtue of the formula (3.19), we also have

that a(p1) = A(p1) = λ1/2 + γ2Θ2.
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In order to obtain the desired dispersion relation, we need to give an interpretation to
Θ1 and Θ2. Therefore, we recall that the height function h gives the height of a particle
above the �at bed, which implies that

d =
1

2π

∫
S
h(q, 0) dq and d1 =

1

2π

∫
S
h(q, p1) dq,

where d1 denotes the average height of the �uid layer bounded from below by the �at bed
and from above by the interface η1 := h(·, p1) − d separating the two currents of di�erent
vorticities γ1 and γ2. The constant d2 := d − d1 > 0 is the average thickness of the �uid
layer of vorticity γ2. It follows then readily from the formula (3.4) that in fact

Θ1 = d1 and Θ2 = d2.

Consequently, we obtain the following dispersion relation

γ2 − γ1

λ1/2 + γ2d2

(
g + σn2 − λ1/2γ2 − λn coth(nd2)

)
= n(coth(nd1) + coth(nd2))

(
g + σn2 − λ1/2γ2 − λn coth(nd)

)
,

(5.10)

or equivalently

λ3/2 +
1

n

[
γ2

(
d2 +

sinh(nd2) cosh(nd1)

cosh(nd)

)
+ γ1

sinh(nd1) cosh(nd2)

cosh(nd)

]
λ

+ tanh(nd)

[
γ22d2 − (g + σn2)

n
+ γ2(γ1 − γ2)

sinh(nd1) sinh(nd2)

n2 sinh(nd)

]
λ1/2

+
(g + σn2) tanh(nd)

n2

[
(γ2 − γ1) sinh(nd1) sinh(nd2)

sinh(nd)
− γ2d2n

]
= 0,

(5.11)

where λ is related to the relative speed at the surface of the laminar �ow by the equation√
λ = c − u(0). In general, there is local bifurcation if the equation (5.11) has a positive

root for
√
λ.

It is easy to infer from (5.10) that if γ1 = γ2 =: γ, then we obtain the dispersion relation
for capillary-gravity waves on a linearly sheared current, cf. [47], as we have

c− u(0) = −γ
2

tanh(nd)

n
+

√
γ2

4

(
tanh(nd)

n

)2

+ (g + σn2)
tanh(n)

n
.

Moreover, setting σ = 0 in (5.10) we obtain the dispersion relation for gravity water waves
obtained in [9] when γ1 = 0, respectively in [6] for γ2 = 0 (see also [19]). In the case when
γ1 = γ2 = 0, we obtain from (5.10) the dispersion relation for irrotational capillary-gravity
water waves

c− u(0) =

√
(g + σn2)

tanh(n)

n
,

cf. [21, 31].
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