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Abstract. We consider here waves that propagate in equatorial oceanic regions. By
means of Crandall-Rabinowitz bifurcation theory we prove existence of steady periodic
two-dimensional equatorial geophysical water waves with capillary e�ects and stagnation
points. We also show that if the vorticity is big enough these �ows possess stagnation
points. Moreover, we prove that the free surface has a priori regularity. The dispersion
relation, i.e. a formula giving the speed at the free surface of the bifurcating laminar �ow
(in terms of the constant vorticity, mean depth, wave number, Earth's rotation speed),
is also provided.

1. Introduction

The equatorial region throughout the extent of the Paci�c Ocean (about 13, 000 km)
presents several peculiarities. One of them is the presence of the Equatorial Undercurrent
(EUC), cf. [21], characterized by vertical variations near the surface (at great depths the
water being motionless); while, owing to winds that blow westward, the surface water
�ow is directed westward, cf. [14], the �ow reverses at a depth of several tens of meters
according to [30]. Another feature of the waves in the equatorial region is the smallness of
the variation in latitude of the EUC. The latter implies that the variations of the Coriolis
parameter can be neglected and one can use the f -plane approximation (see the discussion
in [4] for speci�c features in the equatorial region and [16] in a general context).
In the last decade there have appeared various papers involving rotational water waves on
topics like existence [10], regularity of the free surface and of the stream lines [9, 15, 17, 18],
symmetry [7, 8, 28], and the important issue of stability [11, 20] . Nevertheless, rigorous
results which incorporate the Earth's rotation in the equations of motion are very recent
[3, 4, 5, 6, 19, 26, 27] and concern gravitational water waves without stagnation points. We
consider in this paper equatorial geophysical water waves where we also include the action
of surface tension as a restoring force and we allow for stagnation points (whose existence
we will in fact prove) in the �ow.
Let us give in the sequel a general presentation of the free boundary value problem we will
be working with.
We choose a rotating framework having the origin at a point on the Earth's surface, with
the X-axis pointing horizontally to the east, the X-axis horizontally to the north and the
Z-axis upward. We are also looking for two-dimensional �ows which are independent of
the Y -coordinate and possessing vanishing horizontal velocity along the Y -axis. The �uid
domain Ω in the XZ-plane is bounded below by the impermeable �at bed

B = {(X, 0);X ∈ R},
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and above by an a priori unknown curve

S(t) = {(a(t, s), b(t, s)); s ∈ R}, t ≥ 0 (1.1)

with

(as(t, s))
2 + (bs(t, s))

2 > 0 for all s ∈ R, t ≥ 0 (1.2)

and

a(t, s+ L) = a(t, s) + L, b(t, s+ L) = b(t, s) for all s ∈ R, (1.3)

representing the free surface of the water (not necessary the graph of a function), which
is L-periodic in the horizontal direction. According to [4] the governing equations in the
f -plane approximation near the Equator are the Euler equations.{

ut + uuX + wuZ + 2ωw = −PX

wt + uwX + wwZ − 2ωu = −PZ − g,
(1.4)

where t is the time, ω = 73 · 10−6 rad/s is the constant rotational speed of the Earth
round the polar axis towards the east, g denotes the gravitational constant, P stands for
the pressure, and (u, 0, w) is the Y -independent two-dimensional velocity �eld. The Euler
equations are supplemented by the equation of mass conservation

uX + wZ = 0, (1.5)

which is a consequence of the assumption of constant density. The �ows in our setting are
assumed to possess a non-vanishing constant vorticity

γ = wX − uZ

which is preserved by the vorticity equation (see [29]). The assumption of non-vanishing
vorticity is required by the presence of the non-uniform current (EUC). The constant
vorticity is not only a mathematical convenience but can also be justi�ed on physical
grounds cf. the discussion in [4]. Moreover, we seek steady traveling waves, i.e., waves
whose velocity �eld, pressure and the free surface present an (X, t) dependence of the form
(X − ct) with c < 0, where |c| is the westward propagation speed of the surface wave. The
boundary conditions associated to (1.4) and (1.5) are of two types: dynamic and kinematic
boundary conditions. The dynamic boundary condition incorporates the stresses that the
atmosphere exerts on the �uid surface and the e�ect of the surface tension-a force per unit
length due to a pressure di�erence across a curved surface, cf. [22]. It therefore takes the
form

P (a(t, s), b(t, s), t) = P0 − σ
as(t, s)bss(t, s)− ass(t, s)bs(t, s)

((as(t, s))2 + (bs(t, s))2)
3/2

on S, (1.6)

where P0 being the constant atmospheric pressure, σ > 0 is the coe�cient of surface

tension and as(t,s)bss(t,s)−ass(t,s)bs(t,s)

((as(t,s))2+(bs(t,s))2)
3/2 represents the mean curvature of S. The kinematic

boundary conditions require that the free surface and the bed always consist of the same
�uid particles (see the discussion in [2] for details). If S(X,Z, t) = 0 is the implicit equation
of the free surface, the kinematic boundary conditions can be expressed as:{

St + SXu+ SZw = 0 on S,
w = 0 on B. (1.7)
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The change of variables x = X−ct, z = Z transforms (1.4)-(1.7) to the stationary problem
(u− c)ux + wuz + 2ωw = −Px

(u− c)wx + wwz − 2ωu = −Pz − g
ux + wz = 0
wx − uz = γ

in Ω (1.8)

together with 
Sx(u− c) + Szw = 0 on S,
P = P0 − σ asbss−assbs

((as)2+(bs)2)
3/2 on S,

w = 0 on B.
(1.9)

In order to reformulate (1.8) and (1.9) we introduce the stream function ψ by means of
the following line integral

ψ(x, z) = −m+

∫ (x,z)

(0,0)
(−w(x, z))dx+ (u(x, z)− c)dz,

for some constant m. The path-independence of the above line integral is ensured by the
equation of mass conservation (1.5) provided the path is in the simply connected domain
Ω, where Ω is the set of all (x, z) ∈ R2 above the line z = 0 bounded above by the curve
{(x, z) ∈ R2 : S(x, z) = 0}. The de�nition of ψ implies immediately that

ψx = −w and ψz = u− c in Ω. (1.10)

Moreover, repeating the arguments we provided in [25] in a context that ignored geophysical
e�ects, one can see that

ψ = 0 on S
and

ψ = −m on B,
where (the constant) m is the relative mass �ux de�ned through

m =

∫ b(t,s0)

0
[u(a(t, s0)− ct, z)− c] dz,

with (a(t, s0) − ct, b(t, s0)) being the wave trough. We are now able to reformulate (1.4)-
(1.7) by means of ψ as the problem ψzψxz − ψxψzz − 2ωψx = −Px

−ψzψxx + ψxψxz − 2ω(ψz + c) = −Pz − g
∆ψ = −γ

in Ω (1.11)

with the boundary conditions
P = P0 − σ as(t,s)bss(t,s)−ass(t,s)bs(t,s)

((as(t,s))2+(bs(t,s))2)
3/2 on S,

ψ = 0 on S,
ψ = −m on B.

(1.12)

Properties of ψ and (1.8) ensure the Bernoulli law, which states that

E :=
ψ2
x + ψ2

z

2
+ (g − 2ωc)z − (2ω − γ)ψ + P
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is constant throughout the �uid domain. On the free surface S we have

E :=
ψ2
x + ψ2

z

2
+ (g − 2ωc)b+ P0 − σ

as(t, s)bss(t, s)− ass(t, s)bs(t, s)

((as(t, s))2 + (bs(t, s))2)
3/2

.

Setting Q := 2(E − P0) we obtain, after choosing a parametrization of the �uid domain
for which a and b are independent of t in the moving frame, the following free boundary
value problem for ψ:

∆ψ = −γ in Ω,
ψ = −m on B,
ψ = 0 on S,

|∇ψ|2 − 2σ asbss−assbs
(a2s+b2s)

3/2 + 2(g − 2ωc)b = Q on S.
(1.13)

Let us now summarize the content of the paper and comment on the mathematical dif-
�culties raised by the study of problem (1.13). First of all an equivalent formulation of
the free boundary problem (1.13) is required so that we end up with a problem over a
�xed domain. Allowing for stagnation points and overhanging pro�les hinders the use of
the Dubreil-Jacotin transformation, a tool very much utilized in previous investigations
concerning water waves. We choose instead a more recent approach [1] employed in the
case of irrotational water waves and extended to the case of any constant vorticity γ in
[12] in the context of gravity waves. This new approach reformulates the problem as a
quasi di�erential equation for a periodic function of one real variable, which gives the ele-
vation of the free surface when the �uid domain is sought to be the conformal image of a
half-plane. We present this new reformulation in Section 2 adapting it to our scenario of
equatorial capillary-gravity water waves with stagnation points and overhanging pro�les.
We then use in Section 3 bifurcation tools in the spirit of Crandall-Rabinowitz to prove
the existence of solutions to (1.13). Section 4 is concerned with establishing the existence
of stagnation points. We show in Section 5 that the surface tension has a smoothing e�ect
on the free surface. Namely, we prove that the free surface is C∞ regular.

2. Reformulation as a quasilinear equation in a fixed domain

We start by a few notations and de�nitions of the function spaces we will be working
with. For p ∈ N and α ∈ (0, 1) we set Cp,α to be the space of functions whose partial
derivatives up to order p are Hölder continuous with exponent α over their domain of
de�nition. By Cp,α

loc we mean the functions of class Cp,α over any compact subset of their
domain of de�nition. By Cp,α

2π we denote the space of functions of one real variable which
are 2π periodic and of class Cp,α

loc in R. Finally Cp,α
2π,o will denote the space of functions that

are in Cp,α
2π and have zero mean over one period.

For d > 0 let Sd = {(x, z) ∈ R2 : −d < z < 0}. For any b ∈ Cp,α
2π let B ∈ Cp,α(Sd) be the

unique solution of

∆B = 0 in Sd,
B(x,−d) = 0, x ∈ R,
B(x, 0) = b(x), x ∈ R.

(2.1)

For p ∈ N, α ∈ (0, 1) we de�ne the periodic Dirichlet-Neumann operator associated to the

strip Sd by

Gd(b)(x) = Bz(x, 0), x ∈ R.
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Remark 2.1. (i) The operator Gd : Cp,α
2π → Cp−1,α

2π is a bounded linear operator for all
p ∈ N, p ≥ 1 and all α ∈ (0, 1).

(ii ) If w is the constant function taking the value s we have that

Gd(s) =
s

d
. (2.2)

Let A be the unique (up to a constant) harmonic function in Sd, such that A + iB is
holomorphic in Sd. If b ∈ Cp,α

2π,o it follows from the discussion in Section 2 of [12] that the

function (x, z) → A(x, z) is 2π-periodic in x throughout Sd. We specify the constant in
the de�nition of A by asking that x → A(x, 0) has zero mean over one period. We de�ne
Cd(b) by

Cd(b)(x) = A(x, 0), x ∈ R.
The map Cd is called the periodic Hilbert transform for a strip and is a bounded linear
operator from Cp,α

2π,o into itself. The following properties for b ∈ Cp,α
2π,o (with p ≥ 1), cf.

[12], will prove to be useful throughout the paper.

Gd(b) = (Cd(b))′ = Cd(b′)

Gd(b) =
[b]
d + Cd(b′),

(2.3)

where [b] denotes the average of b over one period. We present now a couple of properties
of the operator Cd. Mostly, we only formulate the results as given in[12].

Properties of the Dirichlet-Neumann map and of the Hilbert transform. Denote
by L2

2π the space of 2π-periodic locally square integrable functions of one real variable. By
L2
2π,o we denote the subspace of L

2
2π whose elements have zero mean over one period.

Lemma 2.2. If

b =
∞∑
n=1

cn cos(nx) +
∞∑
n=1

dn sin(nx), (2.4)

is the Fourier series expansion of b ∈ L2
2π,o then

Cd(b) =
∞∑
n=1

cn coth(nd) sin(nx)−
∞∑
n=1

dn coth(nd) cos(nx) (2.5)

Setting d = ∞ in (2.5) we obtain for b ∈ L2
2π,o the familiar periodic Hilbert transform

of b de�ned through the relation

C(b) =
∞∑
n=1

cn sin(nx)−
∞∑
n=1

dn cos(nx),

where the coe�cients cn and dn are those from the Fourier expansion (2.4).

Remark 2.3. It is immediate that C(C(b)) = −b for all b ∈ L2
2π,o.

Lemma 2.4. For any d > 0, p ≥ 0 integer and α ∈ (0, 1), Cd = C + Sd : Cp,α
2π,o → Cp,α

2π,o is

a bounded linear operator and moreover, C−1
d = −C + S̃d : Cp,α

2π,o → Cp,α
2π,o is also a bounded

linear operator, whereby Sd and S̃d are smoothing operators, i.e. operators mapping Cp,α
2π

to C∞.
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Proof. The assertion about Cd is proven in [12] where it is also shown that Cd = C + Sd.
We set now

S̃d := (C + Sd)
−1SdC. (2.6)

Since Sd is a smoothing operator, the same is true about S̃d as one can easily see from the
mapping properties of Sd. It remains to prove that −C + S̃d is the inverse of Cd. Denoting
with I the identity operator and making use of the fact that C−1 = −C we compute

(C + Sd)(−C + (C + Sd)
−1SdC) = I − SdC + SdC = I,

(−C + (C + Sd)
−1SdC)(C + Sd) = I − CSd + (C + Sd)

−1(−Sd + SdCSd) (2.7)

= I − CSd + (C + Sd)
−1(C + Sd)CSd = I. (2.8)

The last two equalities show that indeed C−1
d = −C + S̃d with S̃d given by (2.6). �

Lemma 2.5. Let b ∈ Cp,α
2π with p ≥ 1 an integer and α ∈ (0, 1). Let Qd denote the

mapping

b → Qd(b) = bCd(b′)− Cd(bb′),
We then have that Qd(b) ∈ Cp,δ

2π for any δ ∈ (0, α).

Lemma 2.6. Let p ≥ 1 be an integer, α ∈ (0, 1) and d > 0. If f ∈ Cp,α
2π and g ∈ Cp−1,α

2π
then

fCd(g)− Cd(fg) ∈ Cp,δ
2π for all δ ∈ (0, α).

Proof. The proof follows the line of the proofs of Lemma 3.2 and of Lemma B1 from the
paper [12]. �
The reformulation of the original free boundary value problem.

De�nition 2.7. We say that a solution (Ω, ψ) of the water wave equation (1.13) is of class
C2,α if the free surface satis�es (1.1), (1.2) and (1.3) with a, b ∈ C2,α and ψ ∈ C∞(Ω) ∩
C2,α(Ω).

The following de�nition concerns the so-called conformal mean depth which recalls the
notion of the classical conformal modulus for doubly connected domains, see [31].

De�nition 2.8. • We say that Ω ⊂ R2 is an L-periodic strip like domain if it is

contained in the upper half (X,Z)-plane and if its boundary consists of the real

axis B and a parametric curve S de�ned by (1.1) and which satis�es (1.2) and

(1.3).
• For any such domain, the conformal mean depth is de�ned to be unique positive

number h such that there exists an onto conformal mapping Ã+iB̃ : Rh → Ω which

admits an extension between the closures of these domains, with onto mappings

{(x, 0) : x ∈ R} → S,
and

{(x,−h) : x ∈ R} → B,
and such that

Ã(x+ L, z) = Ã(x, z) + L,

B̃(x+ L, z) = B̃(x, z),
(x, z) ∈ Rh (2.9)
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For a proof of the existence and uniqueness of such an h we refer the reader to Appendix
A of the paper [12].

Theorem 2.9. Let ψ be a solution of (1.13) within Ω and let k = 2π
L . Then there are an

h > 0, a positive function b ∈ C2,α
2π with [b] = h such that{

m

kh
+ γ

(
Gkh(

b2

2
)− bGkh(b)

)}2

=

(
Q+ 2σ

Gkh(b)b
′′ − Gkh(b

′)b′

(b′ 2 + Gkh(b)2)
3/2

− 2(g − 2ωc)b

)(
b′ 2 + Gkh(b)

2
)
(2.10)

satisfying

b′(x)2 + Gkh(b)(x)
2 6= 0 for all x ∈ R,

together with the injectivity on R of the map

x→
(x
k
+ Ckh(b− h)(x), b(x)

)
.

Moreover, the free surface S can be represented as

S =
{(
q +

x

k
+ Ckh(b− h)(x), b(x)

)
: x ∈ R

}
, (2.11)

where q ∈ R denotes a constant. Conversely, assuming that S is de�ned by (2.11) with

an arbitrary q ∈ R, Ω be the domain whose boundary consists of S and of the real axis B,
h > 0 and the positive function v ∈ C2,α

2π are such that (2.10) holds. Then there exists a

function ψ in Ω such that (Ω, ψ) is a solution of (1.13) of class C2,α.

Proof. We start with the necessity. Let (Ω, ψ) be a solution of class C2,α of (1.13). Let h

be the conformal mean depth of Ω and let Ã+ iB̃ the conformal mapping associated to Ω.
If we consider the mapping A+ iB : Rkh → Ω given by

A(x, z) = Ã(xk ,
z
k ),

B(x, z) = B̃(xk ,
z
k ),

(x, z) ∈ Rkh, (2.12)

where k = 2π
L then following the proof of Theorem 2.2 in [12] we see that A,B ∈ C2,α(Rh)

and A+ iB is a conformal mapping from Rkh onto Ω which extends homeomorphically to
the closures of these domains, with onto mappings

{(x, 0) : x ∈ R} → S,
and

{(x,−kh) : x ∈ R} → B.
Moreover,

A2
x(x, 0) +B2

x(x, 0) 6= 0 for all x ∈ R. (2.13)

Setting
b(x) = B(x, 0) for all x ∈ R, a(x) = A(x, 0) for all x ∈ R, (2.14)

we have immediately that
a = Ckh(b),

and from (2.3) it follows that

a′ = Gkh(b) and a
′′ = Gkh(b

′) (2.15)
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�
It is a consequence of [12] that v ∈ C2,α

2π and

[b] = h (2.16)

b(x) > 0 for all x ∈ R, (2.17)

the mapping x→
(x
k
+ Ckh(b− h)(x), b(x)

)
is injective on R, (2.18)

S =
{(
q +

x

k
+ Ckh(b− h)(x), b(x)

)
: x ∈ R

}
, (2.19)

for some q ∈ R, whose presence in the formula (2.19) is due to the invariance of problem
(1.13) to horizontal translations. From (2.13) and the Cauchy-Riemann equations it follows
that

b′(x)2 + Gkh(b)(x)
2 6= 0 for all x ∈ R. (2.20)

Now let ξ : Rkh → R be de�ned by

ξ(x, z) = ψ(A(x, z), B(x, z)), (x, z) ∈ Rkh. (2.21)

Note now that the �rst equation in (1.13) implies that the function (x, z) → ψ(x, z) + γ
2z

2

is harmonic in Ω. Due to the invariance of harmonic functions under conformal mappings
we have that

ξ +
γ

2
B2 is harmonic in Rkh. (2.22)

The chain rule and the Cauchy-Riemann equations imply that

ξ2x + ξ2z = (ψ2
x(A,B) + ψ2

z(A,B))(B2
x +B2

z ) in Rkh.

From the last equation in (1.13) and (2.15) it follows that

ξ2x + ξ2z =

(
Q+ 2σ

Gkh(b)b
′′ − Gkh(b

′)b′

(b′2 + Gkh(b)2)
3/2

− 2(g − 2ωc)b

)(
b′2 + Gkh(b)

2
)
. (2.23)

De�ne ζ : Rkh → R through

ζ = ξ +m+
γ

2
B2. (2.24)

Using the boundary conditions from (1.13) we obtain the following system

∆ζ = 0 in Rkh,
ζ(x,−kh) = 0 for all x ∈ R,
ζ(x, 0) = m+ γ

2 b
2(x) for all x ∈ R,

(ζz − γBBz)
2 =

(
Q+ 2σ Gkh(b)b

′′−Gkh(b
′)b′

(b′2+Gkh(b)2)
3/2 − 2(g − 2ωc)b

) (
b′2 + Gkh(b)

2
)
at (x, 0)

for all x ∈ R,
(2.25)

which by means of (2.2) and using the Dirichlet-Neumann operator can be reformulated
as{

m

kh
+ γ

(
Gkh(

b2

2
)− bGkh(b)

)}2

=(
Q+ 2σ

Gkh(b)b
′′ − Gkh(b

′)b′

(b′2 + Gkh(b)2)
3/2

− 2(g − 2ωc)b

)(
b′2 + Gkh(b)

2
)
.

(2.26)
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For the su�ciency suppose that the positive number h and the function b ∈ C2,α
2π satisfy

(2.10). Let B be the harmonic function on Rkh which satis�es

B(x,−kh) = 0

and

B(x, 0) = b(x) for all x ∈ R,
and let A : Rkh → R be such that A + iB is holomorphic. An application of Lemma 2.1
from [12] yields that A+ iB ∈ C2,α(Rkh). From [b] = h we obtain{

A(x+ 2π, z) = A(x, z) + 2π
k ,

B(x+ 2π, z) = B(x, z).
(x, z) ∈ Rkh. (2.27)

Moreover, the curve (2.19) is non-self-intersecting by the injectivity of the mapping x →(
x
k + Ckh(b− h)(x), b(x)

)
and lies in the upper half-plane since b(x) > 0. If Ω denotes

the domain whose boundary consists of S and B, it follows from Theorem 3.4 in [32] that
A + iB is a conformal mapping from Rkh onto Ω, which extends to a homeomorphism
between the closures of these domains, with onto mappings

{(x, 0) : x ∈ R} → S,

and

{(x,−kh) : x ∈ R} → B.
The latter together with (2.27) imply that Ω is a L-periodic strip-like domain, with L =

2π/k. The properties of the mapping Ã+ iB̃ : Rh → Ω, with Ã, B̃ given by (2.12) ensure
that the conformal mean depth of Ω is h. Let now ζ be de�ned as the unique solution of
the system  ∆ζ = 0 in Rkh,

ζ(x,−kh) = 0 for all x ∈ R,
ζ(x, 0) = m+ γ

2 b
2(x) for all x ∈ R.

(2.28)

We then have that ζ ∈ C2,α(Rkh) ∩ C∞(Rkh). De�ning ξ by (2.24) and ψ by (2.21) we
obtain that ψ satis�es the �rst three equations in (1.13). Finally, from the �rst equation
in (2.10) we see that the last equation from (1.13) also holds.

3. The bifurcation equation

This section uses bifurcation theory in the spirit of Crandall-Rabinowitz to prove the
existence of a local bifurcation curve of solutions of (2.10). We will invoke the following
theorem due to Crandall and Rabinowitz.

Theorem 3.1 (Crandall-Rabinowitz). Let X,Y be real Banach spaces, I ⊂ R an open

interval, and let F : I × X → Y be a real analytic map satisfying:

(a) F (λ, 0) = 0 for all λ ∈ I;
(b) There exists λ∗ ∈ I such that Fréchet derivative Fu(λ∗, 0) is a Fredholm operator of

index zero with a one-dimensional kernel and

KerFu(λ∗, 0) = {su0 : s ∈ R, 0 6= u0 ∈ X};

(c) The transversality condition holds

Fλu(λ∗, 0)u0 6∈ Im(Fu(λ∗, 0)).
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Then, (λ∗, 0) is a bifurcation point in the sense that there exists ε > 0 and a real-analytic

curve (λ, u) : (−ε, ε) → I × X consisting only of solutions of the equation F (λ, u) = 0.
Moreover, as s→ 0, we have that

λ(s) = λ∗ +O(s) and u(s) = sχ(s) +O(s2).

Furthermore there exists an open set U ⊂ I × X with (λ∗, 0) ∈ U and

{(λ, u) ∈ U : F (λ, u) = 0, u 6= 0} = {(λ(s), u(s)) : 0 < |s| < ε}.

Using properties of the Dirichlet-Neumann map Gkh and of the Hilbert transform Ckh
we will rewrite the equation (2.10) in a more suitable form. We �rst set b = b + h where
[b] = 0. From (2.3) we obtain that

Gkh(b+ h) = Gkh(b) + Gkh(h) =
[b]
kh + Ckh(b′) + h

kh = 1
k + Ckh(b′)

Gkh(b
′) = Gkh(b

′) = [b′]
kh + Ckh(b′′) = Ckh(b′′),

(3.1)

where in the latter relation we used that b is periodic. By the above relations we can write
the equation (2.10) as{

m

kh
+ γ

(
[b2]

2kh
− b

k
− h

2k
+ Ckh(bb′)− bCkh(b′)

)}2

(3.2)

=

Q+ 2σ
b′′

k + b′′Ckh(b′)− b′Ckh(b′′)(
b′2 +

(
1
k + Ckh(b′)

)2)3/2 − 2(g − 2ωc)(h+ b)


{
b′2 +

(
1

k
+ Ckh(b′)

)2
}

(3.3)

(3.4)

with the properties
[b] = 0
b(x) > −h for all x ∈ R,
the mapping x→

(
x
k + Ckh(b)(x), b(x) + h

)
is injective on R,

b′(x)2 +
(
1
k + Ckh(b′)(x)

)2 6= 0 for all x ∈ R.

(3.5)

Note that a necessary and su�cient condition for b = 0 ∈ C2,α
2π,o to be a solution of (3.2) is

that

Q = 2(g − 2ωc)h+

(
m

h
− γh

2

)2

.

The above relation leads us to set

λ = m
h − γh

2 ,

µ = Q− 2(g − 2ωc)h−
(
m
h − γh

2

)2
,

(3.6)

which together with the remark that the map (m,Q) → (λ, µ) is a bijection from R2 onto
itself transforms the equation (3.2) in{

λ
k + γ

(
[b2]
2kh − b

k + Ckh(bb′)− bCkh(b′)
)}2

=

{
λ2 + µ+ 2σ

b′′
k
+b′′Ckh(b′)−b′Ckh(b′′)(
b′2+( 1

k
+Ckh(b′))

2
)3/2 − 2(g − 2ωc)b

}{
b′2 +

(
1
k + Ckh(b′)

)2}
,

(3.7)
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for b ∈ C2,α
2π,o, µ ∈ R, λ ∈ R. We will further apply the Crandall-Rabinowitz theorem on

bifurcation from simple eigenvalues, [13]. To bring equation (3.7) in a form suitable for
the application of the Crandall-Rabinowitz theorem we write it as F (λ, (µ, b)) = 0 with
F : R× X → Y given by

F (λ, (µ, b)) = γ2
(
Ckh(bb′)− bCkh(b′)−

b

k
+

[b2]

2kh

)2

+
2λγ

k

(
Ckh(bb′)− bCkh(b′)−

b

k
+

[b2]

2kh

)

−

µ+ 2σ
b′′

k + b′′Ckh(b′)− b′Ckh(b′′)(
b′2 +

(
1
k + Ckh(b′)

)2)3/2 − 2(g − 2ωc)b

(b′2 + (1

k
+ Ckh(b′)

)2
)

− λ2
(
b′2 +

2

k
Ckh(b′) +

(
Ckh(b′)

)2)
,

(3.8)

whereby

X = R× Cp+1,α
2π,o,e , Y = Cp,α

2π,e,

the meaning of �e� being the even functions from Cp+1,α
2π,o and Cp,α

2π , respectively. Clearly,

F (λ, (0, 0)) = 0 for all λ ∈ R, condition (a) from Theorem 3.1 being thus checked. We now
proceed with checking condition (b).

The kernel of the linearization. We compute

F(µ,b)(λ, (0, 0))(ν, f) = −2λγ

k2
f+

2(g − 2ωc)f

k2
− ν

k2
− 2σf′′ − 2

λ2

k
Ckh(f′)

= − 2

k2
(
λγf− (g − 2ωc)f+ λ2kCkh(f′) + σk2f′′

)
− ν

k2

(3.9)

From representation (2.5) it follows further that

F(µ,b)(λ, (0, 0))(ν, f) = − 2

k2

∞∑
n=1

(kn coth(nkh)λ2+ γλ− (g− 2ωc)−σk2n2)an cos(nx)−
ν

k2
.

(3.10)
if

f =

∞∑
n=1

an cos(nx).

By means of Lemma 2.4 it follows that the bounded linear operator F(µ,b)(λ, (0, 0)) : X → Y
is invertible if and only if

kn coth(nkh)λ2 + γλ− (g − 2ωc)− σk2n2 6= 0 for any integern ≥ 1. (3.11)

Thus, in order to �nd the bifurcation values λ for (3.7) we have to look at the solutions of
the equation

kn coth(nkh)λ2 + γλ− (g − 2ωc)− σk2n2 = 0, (3.12)
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for some integer n ≥ 1. We denote by

λ∗n± = −γ tanh(nkh)
2kn

±

√
γ2 tanh2(nkh)

4k2n2
+ (nkσ +

g − 2ωc

kn
) tanh(nkh),

denote the two solutions of equation (3.12).

Remark 3.2. Since

λ∗1± (nk) = λ∗n± (k), (3.13)

for all integers n ≥ 1 and all k > 0, it make sense to look at solutions of (3.7) of minimal
period 2π, task that we perform in the next lemmas.

Lemma 3.3. Let λ(k) = λ∗1+ (k).

(i) If σ
(g−2ωc)h2 >

γ2h
6(g−2ωc) +

1
3 − γ

6(g−2ωc)

√
γ2h2 + 4(g − 2ωc)h then the function λ is

strictly increasing.

(ii) If σ
(g−2ωc)h2 < γ2h

6(g−2ωc) + 1
3 − γ

6(g−2ωc)

√
γ2h2 + 4(g − 2ωc)h then the function λ

has a maximum at k = 0 and a unique local extrema, namely a local minimum at

k = k0 > 0. Moreover, there is a strictly decreasing sequence (kn)n≥2 such that

λ(k) = λ(nk)

for k > 0 if and only if k = kn.

Proof. Let us denote H(x) = γ2h2

4
tanh2(hk)

(hk)2
and G(k) = σ

hhk tanh(hk)+ (g−2ωc)h tanh(hk)
hk .

We can then write

λ(k) = −γh
2

tanh(hk)

hk
+
√
H(k) +G(k).

We have that d
dk

tanh(hk)
hk |k=0 = 0 and H ′(0) = G′(0) = 0. This implies λ′(0) = 0 and

λ′′(0) =− γh

2

d2

dk2
tanh(hk)

hk
|{k=0} +

2(H +G)(H ′′ +G′′)− (H ′ +G′)2

4(H +G)
√
H +G

|{k=0}

=
γ

3
h3 +

H ′′ +G′′

2
√
H +G

|{k=0}

=
γ

3
h3 +

−γ2

3 h
4 + 2hσ − 2

3(g − 2ωc)h3√
γ2h2 + 4(g − 2ωc)h

(3.14)

Set now f(k) = k coth(hk). From the formula for λ∗1+ (k) we obtain that

λ = − γ

2f
+

√
γ2

4f2
+
k2σ + (g − 2ωc)

f

which by squaring leads further to

λ2f = k2σ + (g − 2ωc)− λγ. (3.15)

Implicit di�erentiation of (3.15) gives

λ′(γ + 2λf) = 2kσ − λ2f ′ (3.16)

Again by implicit di�erentiation of (3.16) we get

λ′′(γ + 2λf) = 2σ − 2(λ′)2f − 4λλ′f ′ − λ2f ′′. (3.17)
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Let k = k0 be a potential critical point of λ. It follows then from (3.16) that λ2(k0) =
2σk0
f ′(k0)

and therefore

λ′′(k0)(γ + 2λf(k0)) = 2σ − λ2f ′′(k0) = 2σ
f ′(k0)− k0f

′′(k0)

f ′(k0)
(3.18)

where f ′(k)− kf ′′(k) = sinh2(hk) cosh(hk)+hk sinh(hk)−2(hk)2 cosh(hk)

sinh3(hk)
.

Denoting q(x) = sinh2(x) cosh(x) + x sinh(x)− 2x2 cosh(x) a calculation shows that

q(2)(x) = 9 sinh2(x) cosh(x)− 7x sinh(x)− 2x2 cosh(x)

= 2(sinh2(x)− x2) cosh(x) +
7

2
sinh(x)(sinh(2x)− 2x)

Using that sinh(y) > y for all y > 0 we obtain from the latter relation that q(2)(x) > 0
for all x > 0 and since q(0) = q′(0) = 0 we have that q(x) > 0 for all x > 0. The latter
together with γ + 2λf(k0) > 0 and f ′(k0) > 0 imply via (3.18) that λ′′(k0) > 0. Hence
λ has at most one critical point for k > 0, which is then a minimum point. Note now
that the requirement in (i) is equivalent to asking λ′′(0) > 0 which in turn says that λ
has a local minimum at k = 0. The latter together with limk→∞ λ(k) = ∞ and the fact
λ can not have a local maximum at k > 0 implies the conclusion. The condition in (ii) is
equivalent to asking λ′′(0) < 0 which in turn says that λ has a local maximum at k = 0.
Since limk→∞ λ(k) = ∞ and because λ can not have a local maximum at k > 0 we have
that λ has a unique local minimum at some k0 > 0.
It remains to prove the existence of the sequence kn with the asserted property. For

k ∈ (0, k0) let k̃ > k0 be such that λ(k) = λ(k̃). De�ne now ϕ : (0, k0) → (1,∞), ϕ(k) = k̃
k .

It is easy to see that ϕ is strictly decreasing with ϕ(k) → ∞ as k → 0 and ϕ(k) → 1 as
k → k0. Set kn = ϕ−1(n). Since ϕ−1 is decreasing it follows that kn is well-de�ned and
decreases to 0. Moreover, the only point k with λ(k) = λ(nk) is k = kn. �

Lemma 3.4. Let λ̃(k) = λ∗1− (k).

(i) If σ
(g−2ωc)h2 ≥ γ2h

6(g−2ωc) +
1
3 + γ

6(g−2ωc)

√
γ2h2 + 4(g − 2ωc)h then the function λ̃ is

strictly decreasing.

(ii) If σ
(g−2ωc)h2 <

γ2h
6(g−2ωc) +

1
3 +

γ
6(g−2ωc)

√
γ2h2 + 4(g − 2ωc)h then the function λ̃ has

a minimum at k = 0 and a unique local extremum, namely a local maximum at

k = k̃0 > 0. Moreover, there is a strictly decreasing sequence (k̃n)n≥2 such that

λ̃(k) = λ̃(nk)

for k > 0 if and only if k = k̃n.

Proof. We only treat the equality case in (i). The rest is similar to Lemma 3.3. Therefore,

we assume that σ
(g−2ωc)h2 = γ2h

6(g−2ωc)+
1
3+

γ
6(g−2ωc)

√
γ2h2 + 4(g − 2ωc)h. With the notation

from Lemma 3.3 we have that

λ̃′′(0) =
γ

3
h3 − H ′′ +G′′

2
√
H +G

|{k=0}

=
γ

3
h3 −

−γ2

3 h
4 + 2hσ − 2

3(g − 2ωc)h3√
γ2h2 + 4(g − 2ωc)h

(3.19)
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Notice that σ
(g−2ωc)h2 = γ2h

6(g−2ωc)+
1
3+

γ
6(g−2ωc)

√
γ2h2 + 4(g − 2ωc)h is equivalent to λ̃′′(0) =

0. We claim that

λ̃(3)(0) = 0 and λ̃(4)(0) < 0. (3.20)

This implies that λ̃′′ has a local maximum at k = 0 and since we are in the case λ̃′′(0) = 0

it follows further that λ̃′′(k) < 0 for k > 0 and close to 0. Therefore λ̃′ is strictly decreasing

for k > 0. Since λ̃′(0) = 0 we have that λ̃′(k) < 0 for k > 0 close to 0. Hence λ̃ is decreasing

for k > 0 close to 0 and since λ̃ does not have local minima and limk→∞ λ̃(k) = −∞ we

infer that λ̃ is strictly decreasing. We now proceed with the claim (3.20).
We have �rst that

λ̃(3) = −γh
2

d3

dk3
tanh(hk)

hk

− (H +G)2(H(3) +G(3))
√
H +G− [(H +G)(H ′′ +G′′)− (H ′ +G′)2]E

2(H +G)3

(3.21)

where E = 3
2(H

′+G′)
√
H +G. Using that H ′(0) = G′(0) = H(3)(0) = G(3)(0) = 0 we see

that λ̃(3)(0) = 0.
From (3.21) and using that

0 = λ̃′′(0) =
γ

3
h3 − H ′′ +G′′

2
√
H +G

|{k=0}

we have

λ̃(4)(0) = −γh
2

d4

dk4
tanh(hk)

hk
|{k=0}

−
2(H +G)2(H(4) +G(4))

√
H +G− 2(H +G)(H ′′ +G′′)32

√
H +G(H ′′ +G′′)

4(H +G)3
|{k=0}

= −24

15
γh5 −

2(H +G)2(H(4) +G(4))
√
H +G− 3(H +G)

√
H +G4

9(H +G)γ2h6

4(H +G)3
|{k=0}

= −24

15
γh5 −

(H +G)2
√
H +G[2(H(4) +G(4))− 4

3γ
2h6]

4(H +G)3
|{k=0}

= −24

15
γh5 − 1

4
√
H +G

[2(H(4) +G(4))− 4

3
γ2h6]|{k=0}

=
−96γh5

√
H +G− 15[2(H(4) +G(4))− 4

3γ
2h6]

60
√
H +G

|{k=0}

(3.22)

A calculation shows that the numerator equals

− 96γh5
3

2

H ′′(0) +G′′(0)

γh3
− 15

[
2

(
34

15
γ2h6 +

48

15
(g − 2ωc)h5 − 8σh3

)
− 4

3
γ2h6

]
= −48 · 3h2

(
2hσ − 2

3
(g − 2ωc)h3 − 1

3
γ2h4

)
− 68γ2h6 − 96(g − 2ωc)h5 + 240σh3 + 20γ2h6

= −48σh3 < 0
(3.23)

�
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Applying now Lemmas 3.3 and 3.4 and Remark 3.2 we obtain the following necessary
and su�cient conditions for the one-dimensionality of the kernel N (F(µ,b)(λ

∗, 0))

Lemma 3.5. Let λ∗ 1 be a solution of (3.12) with n = 1, i.e.,

λ∗ 1± = −γ tanh(kh)
2k

±

√
γ2 tanh2(kh)

4k2
+ (kσ +

g − 2ωc

k
) tanh(kh).

Then the kernel N (F(µ,b)(λ
∗, 0))) is one-dimensional if and only if

σ

(g − 2ωc)h2
≥ γ2h

6(g − 2ωc)
+

1

3
+

γ

6(g − 2ωc)

√
γ2h2 + 4(g − 2ωc)h (3.24)

or

σ

(g − 2ωc)h2
<

γ2h

6(g − 2ωc)
+

1

3
+

γ

6(g − 2ωc)

√
γ2h2 + 4(g − 2ωc)h (3.25)

and k 6= kn and k 6= k̃n for all n ≥ 2

Moreover, in these situations, N (F(µ,b)(λ
∗, 0)) is generated by (0, b∗) ∈ X, where b∗(x) =

cos(x) for all x ∈ R.

Remark 3.6. Note that setting γ = 0 and ω = 0 we recover the necessary and su�cient
condition for the one-dimensionality of the kernel N (F(µ,b)(λ

∗, 0)) found in [23] in the
context of irrotational waves.

We give in the next Lemma a su�cient condition for the one dimensionality of the kernel
N (F(µ,b)(λ

∗, 0)). This su�cient condition has the advantage of being easy to verify and as
we shall see will prove to be useful later on when we establish the existence of stagnation
points.

Lemma 3.7. Let λ∗ 1 be a solution of (3.12) with n = 1, i.e.,

λ∗ 1± = −γ tanh(kh)
2k

±

√
γ2 tanh2(kh)

4k2
+ (kσ +

(g − 2ωc)

k
) tanh(kh).

Assume that k3 ≥ 2γ2

σ , k2 ≥ 4 (g−2ωc)
σ and kh ≥ 1

2 . Then it follows from (3.10) and Lemma

2.4 that the kernel N (F(µ,b)(λ
∗, 0)) is one-dimensional being generated by (0, b∗) ∈ X, where

b∗(x) = cos(x) for all x ∈ R.

Proof. The proof is very similar to the proof of Lemma 6 in [24]. Therefore, we omit
here. �

The transversality condition. It is routine to check that

R(F(µ,b)(λ
∗, 0)) =

{
f ∈ Y :

∫ π

−π
f(x) cos(x)dx = 0

}
,

and the latter is a closed subspace of Y. Consequently, Y/R(F(µ,b)(λ
∗, 0)) is the one

dimensional subspace of Y generated by b∗(x) = cos(x). For b∗ = cos(x) we use that
Ckh(b∗) = coth(kh) sin(x) and Ckh(b∗′) = (Ckh(b∗))′ = coth(kh) cos(x) = coth(kh)b∗, to
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compute that

Fλ,(µ,b)(λ
∗, (0, 0))(1, (0, b∗)) = − 2

k2
γb∗ − 4

k2
λ∗kCkh(b∗′)

=
2

k2
(−γ − 2λ∗k coth(kh))b∗

/∈ R(F(µ,b)(λ
∗, (0, 0))),

(3.26)

since the equation giving λ∗ gives

−γ − 2λ∗k coth(kh) = −λ∗
(
k coth(kh) +

σk2 + g − 2ωc

(λ∗)2

)
6= 0.

We have thus shown that the transversality condition from Theorem 3.1 takes place in our
case. We are now ready to prove the existence of a curve of solutions to the system (1.13)
bifurcating from the trivial solutions with a �at free surface.

Theorem 3.8. For every h > 0, σ > 0, γ ∈ R, c < 0 satisfying (3.24) or (3.25) and

m, k ∈ R there exists laminar �ows with a �at free surface in water of depth h, of constant
vorticity γ. The laminar �ows of mass �ux

m± =
γh2

2
− γh tanh(kh)

2k
± h

√
γ2 tanh2(kh)

4k2
+
k2σ + g − 2ωc

k
tanh(kh) (3.27)

are exactly those whose horizontal speeds at the �at free surface equal to

λ± = −γ tanh(kh)
2k

±

√
γ2 tanh2(kh)

4k2
+
k2σ + g − 2ωc

k
tanh(kh). (3.28)

The values of m± of the �ux given by (3.27) give rise to equatorial geophysical periodic

steady capillary-gravity waves of small amplitude, with period 2π
k and conformal mean depth

h, which have a smooth pro�le with one crest and one trough per period, monotone between

consecutive crests and troughs and symmetric about any crest line.

Proof. Arguing as in [25] we see that b = 0 gives rise to laminar �ows in the �uid domain
bounded above by the �at surface z = h and below by the bed B. In terms of the stream
function the laminar �ow solutions are given by

ψ(x, z) = −γ
2
z2 +

(
m

h
+
γh

2

)
z −m, x ∈ R, 0 ≤ z ≤ h,

with the velocity �eld

(ψz,−ψx) =

(
−γz + m

h
+
γh

2
, 0

)
, z ∈ R, 0 ≤ z ≤ h. (3.29)

Remembering that λ = m
h − γh

2 we see that the velocity �eld can be rewritten as

(ψz,−ψx) = (λ± + γ(h− z), 0), x ∈ R, 0 ≤ z ≤ h, (3.30)

relation which shows that for laminar �ows the horizontal �uid velocity at the free surface
coincides with λ±. Since λ+ > 0 and λ− < 0 we see that the laminar �ows do not possess
stagnation points (i.e. points (x, z) where ψz(x, z) = u−c = 0) at the free surface. We can
now establish the existence of waves of small amplitude with the properties mentioned in
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the statement of the theorem. By means of the Crandall-Rabinowitz Theorem there exists
a local bifurcation curve

{(λ(s), (0 + o(s), s cos(x) + o(s))) : |s| < ε} ⊂ R×X

consisting of solutions of (3.7) with λ± given by (3.28).
Choosing ε su�ciently small and using Lemma 2.4 we can ensure that

b(x) > −h for all x ∈ R,

and
1

k
+ Ckh(b′)(x) > 0 for all x ∈ R. (3.31)

The inequality (3.31) implies that the corresponding non-�at free surface S given by (2.11)
with b = b + h is the graph of a smooth function, symmetric with respect to the points
obtained for the values x = nπ, n ∈ Z. From

b(x; s) = s cos(x) + o(s) in Cp+1,α
2π ,

we have that

sb′(x; s) < 0 for all x ∈ (0, π), 0 < |s| < ε,

for ε > 0 su�ciently small and p ≥ 1. Using the evenness of x → b(x; s) we conclude the
proof of the assertion about the free surface S, i.e., S has one crest and one trough per
minimal period and is monotone between consecutive crests and troughs. �

Remark 3.9. Note that setting σ = 0 in formula (3.28) for λ− we recover the dispersion
relation for gravity equatorial wind waves obtained in [5]. Setting ω = 0 in (3.28) we
recover the formula for λ− for the context of capillary-gravity waves from [33]

Theorem 3.10. For any h > 0, k > 0, γ ∈ R and m ∈ R satisfying k3 ≥ 2γ2

σ , k2 ≥ 4g−2ωc
σ

and kh ≥ 1
2 there exists laminar �ows with a �at free surface in water of depth h, of constant

vorticity γ and relative mass �ux m. The laminar �ows of �ux m± are exactly those with

horizontal speeds at the �at free surface equal to λ± given by (3.28). The values of m±
of the �ux given by (3.27) trigger the appearance of equatorial geophysical steady periodic

capillary-gravity waves of small amplitude, with period 2π
k and conformal mean depth h,

which have a smooth pro�le with one crest and one trough per period, monotone between

consecutive crests and troughs and symmetric about any crest line.

Proof. The conditions on k, h and γ ensure via Lemma 3.7 that the kernel of F(µ,b)(λ
∗, 0) is

one dimensional and is generated by the element (0, cos(x)). The rest of the proof follows
the one in Theorem 3.8. �

We end this section with a result concerning the physical relevance of the bifurcation
equation (3.12) satis�ed by the bifurcation parameter λ∗1+ =: λ0.

Theorem 3.11. If u0 is the strength of the current at the depth z = 0, then the wave speed

c of the bifurcating laminar �ow equals

c = u0 − γh− 2ω − γ

k
tanh(kh) (3.32)

−
√

(2ω − γ)2

4k2
tanh2(kh) +

tanh(kh)

k
[k2σ + g − 2ω(u0 − γh)]
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Proof. As noted in the proof of Theorem 3.8 the solution λ0 of the equation (3.12) with
n = 1 gives rise to the bifurcating laminar �ow whose horizontal velocity u satis�es

u(z)− c = ψz = λ0 + γ(h− z),

cf. (3.30). Denoting u(0) = u0 we obtain that c = u0−λ0− γh. Inserting the latter in the
formula (3.28) for λ0 we obtain the polynomial equation of degree two in the unknown λ0

λ20 +
γ − 2ω

k
tanh(kh)λ0 −

tanh(kh)

k

[
k2σ + g − 2ω(u0 − γh)

]
= 0

whose only positive root is

λ0 =
2ω − γ

k
tanh(kh)

+

√
(2ω − γ)2

4k2
tanh2(kh) +

tanh(kh)

k
[k2σ + g − 2ω(u0 − γh)].

The formula (3.32) for c is thus proved. �

Remark 3.12. Note that setting σ = 0 we recover formula (3.9) for c obtained in [5] in the
context of equatorial gravity waves.

4. Existence of stagnation points

We �rst prove the existence of stagnation points in the laminar �ows. We see from (3.30)
that stagnation points exists in laminar �ows if and only if the equation

λ± + γ(h− z) = 0 (4.1)

has at least a solution z ∈ [0, h]. The latter condition is equivalent to

λ±(λ± + γh) ≤ 0. (4.2)

It is immediate from (4.2) that for γ > 0 the �ow corresponding to λ+ does not contain
stagnation points, while the �ow corresponding to λ− possesses stagnation points if and
only if λ− + γh ≥ 0, condition which is equivalent to

tanh(kh) ≤ γ2h2k

γ2h+ k2σ + g − 2ωc
. (4.3)

The case γ < 0 mirrors the previous one. Namely, λ−(λ−+γh) > 0 for γ < 0 and therefore
the �ow corresponding to λ− does not contain stagnation points. The �ow corresponding
to λ+ contains stagnation points if and only if λ+ + γh ≤ 0, inequality is also equivalent
to (4.3).

Remark 4.1. Note that (4.3) is false for k → ∞. This just shows that a �ow with the
wavelength L→ 0 does not have stagnation points.

Lemma 4.2. If the vorticity γ is such that

γ2 ≥
4σh+

√
16σ2h2 + 16h4σ(g − 2ωc)

2h4
(4.4)

there are values k1 ≤ k2 with the property that (4.3) holds true whenever k ∈ [k1, k2].
Moreover, in this situation, the stagnation points are neither on the free surface nor on the

�at bed.
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Proof. Note that

γ± = ±

√
4σh+

√
16σ2h2 + 16h4σ(g − 2ωc)

2h4

are the only real solutions of the equation

h4γ4 − 4σhγ2 − 4σ(g − 2ωc) = 0,

which besides γ± has another two complex conjugate solutions. It follows that

h4γ4 − 4σhγ2 − 4σ(g − 2ωc) ≥ 0, (4.5)

for all γ ∈ (−∞, γ−] ∪ [γ+,∞). But (4.5) ensures that the equation

σk2 − γ2h2k + γ2h+ (g − 2ωc) = 0

has two (not necessarily distinct) solutions

k1 :=
γ2h2 −

√
γ4h4 − 4σγ2h− 4σ(g − 2ωc)

2σ

k2 :=
γ2h2 +

√
γ4h4 − 4σγ2h− 4σ(g − 2ωc)

2σ
We then have that

σk2 − γ2h2k + γ2h+ (g − 2ωc) ≤ 0,

for all k ∈ [k1, k2] which implies that

γ2h2k

γ2h+ k2σ + (g − 2ωc)
≥ 1. (4.6)

Therefore (4.3) holds true for all k ∈ [k1, k2]. Concerning the position of the stagnation
points we already proved that they can not appear on the free surface. To show that they
can not be on the �at bed note that (4.6) implies that

tanh(kh) <
γ2h2k

γ2h+ k2σ + g − 2ωc
for all k ∈ [k1, k2]

which is equivalent to λ− + γh > 0(for γ > 0) and λ+ + γh < 0(for γ < 0). The last two
inequalities show that ψz|z=0 6= 0 which proves the claim. �
Lemma 4.3. Let γ and h be such that

γ2 ≥
4σh+

√
16σ2h2 + 64h4σ(g − 2ωc)

2h4
. (4.7)

Let k1 and k2 be the values from Lemma 4.2. If k ∈
[
k1+k2

2 , k2

]
then the su�cient conditions

for the existence of laminar �ows from Theorem 3.10 are satis�ed. In addition, these �ows

posses stagnation points as the proof of Lemma 4.2 shows.

Proof. We have to show that for all such k we have that k3 ≥ γ2

σ , k2 ≥ 4 (g−2ωc)
σ and kh ≥ 1

2 .

We only need to show that the last two inequalities hold true for k = k1+k2
2 = γ2h2

2σ and
then the rest follows. Note �rst that (4.7) implies that

γ2 ≥ 4
σ

h3

and

γ2 ≥
√

64h4σ(g − 2ωc)

2h4
= 4

√
σ(g − 2ωc)

h2
.
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If k = k1+k2
2 = γ2h2

2σ then we have

k3 =

(
γ2h2

2σ

)3

=
γ6h6

8σ3
=
γ2

σ
· γ

4h6

8σ2
≥ γ2

σ
· 16σ

2

8σ2
= 2

γ2

σ
,

k2 =

(
γ2h2

2σ

)2

=
γ4h4

4σ2
≥ 16σ(g − 2ωc)

4σ2
= 4

(g − 2ωc)

σ
,

kh =
γ2h3

2σ
≥ 2.

�

Remark 4.4. Whenever the stagnation points are present in laminar �ows form in fact
horizontal lines. The stagnation line z = z0 satis�es

h− z0 =
tanh(kh)

2k
+

√
tanh2(kh)

4k2
+
kσ

γ2
tanh(kh) +

g − 2ωc

γ2
tanh(kh)

k
.

Remark 4.5. Small amplitude waves bifurcation from laminar �ows that possess an inner
stagnation line (i.e. a line which is neither the free surface nor the �at bed) also have a
critical layer. This can be seen by an elementary analysis similar to that in [34].

5. Regularity

This section contains a regularity result concerning the free surface. The proof relies on
some commutator properties for the Hilbert transform.

Theorem 5.1. Let h > 0 and b ∈ C2,α
2π be a solution of (2.10). Then b ∈ C∞

2π.

Proof. From (2.3) we �nd that

Gkh(b)b
′′ − Gkh(b

′)b′ =

(
1

k
+ Ckh(b′)

)
b′′ − b′Ckh(b′′) (5.1)

From (2.2) and the second equation of (2.10) we have that

Gkh(
b2

2
)− bGkh(b) =

[
b2
]

2kh
+ Ckh(bb′)−

b

k
− bCkh(b′) =

[
b2
]

2kh
− b

k
−Qkh(b), (5.2)

where Qkh(b) = bCkh(b′) − Ckh(bb′). From Lemma 2.6 we have that Qkh(b) ∈ C
2,α/3
2π

since b ∈ C2,α
2π . The latter fact together with the formulas (5.1), (5.2), (2.10) and using

b′ 2 + Gkh(b)
2 ∈ C

1,α/3
2π yield(

1

k
+ Ckh(b′)

)
b′′ − b′Ckh(b′′) ∈ C

1,α/3
2π (5.3)

Now from Lemma 2.6 with f = −b′ ∈ C1,α
2π and g = Ckh(b′′) ∈ C0,α

2π it follows that

−b′Ckh(Ckh(b′′))− Ckh(−b′Ckh(b′′)) ∈ C
1,α/3
2π . (5.4)

Taking into account that Ckh = C+Skh, where C is the familiar Hilbert transform and Skh

is a smoothing operator (see Lemma 2.4) we obtain using also Remark 2.3 that

Ckh(Ckh(b′′)) = −b′′ +Rkh(b
′′),
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where Rkh := CSkh+SkhC+S2
kh is also a smoothing operator. Hence, using (5.4) we have

that
b′b′′ − Ckh(−b′Ckh(b′′)) ∈ C

1,α/3
2π . (5.5)

By applying Ckh to (5.3) and using (5.5) we get

1

k
Ckh(b′′) + Ckh(b

′′Ckh(b
′)) + b′b′′ ∈ C

1,α/3
2π (5.6)

Setting f = Ckh(b′) ∈ C1,α
2π and g = b′′ ∈ C0,α

2π we get by applying Lemma 2.6

Ckh(b′)Ckh(b′′)− Ckh(b′′Ckh(b′)) ∈ C
1,α/3
2π (5.7)

Adding up (5.6) and (5.7) yields(
1

k
+ Ckh(b′)

)
Ckh(b′′) + b′b′′ ∈ C

1,α/3
2π (5.8)

We now multiply (5.3) by 1
k + Ckh(b′) ∈ C1,α

2π and (5.8) by b′ ∈ C1,α
2π and by adding up the

resulting expressions we obtain((
1

k
+ Ckh(b′)

)2

+ b′2

)
b′′ ∈ C

1,α/3
2π (5.9)

Since the expression in the bracket on the left-hand side of (5.9) is strictly positive and

belongs to C1,α
2π we obtain that b′′ ∈ C

1,α/3
2π . Therefore b ∈ C

3,α/3
2π . An iteration of this

method shows that v ∈ C∞
2π. �
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