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We show existence and uniqueness for a linearized water wave problem in a two dimensional
domain G with corner, formed by two semi-axes Γ1 and Γ2 which intersect under an angle
� ∈ (0, �]. The existence and uniqueness of the solution is proved by considering an auxiliary
mixed problem with Dirichlet and Neumann boundary conditions. The latter guarantees the
existence of the Dirichlet to Neumann map. The water wave boundary value problem is then
shown to be equivalent to an equation like vtt + gΛv = Pt with initial conditions, where t
stands for time, g is the gravitational constant, P means pressure, and Λ is the Dirichlet to
Neumann map. We then prove that Λ is a positive self-adjoint operator.
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1. Introduction

This paper considers the wave motion in water with a free surface and subjected
to gravitational and other forces. Namely, a problem resembling the classical dock
problem will be studied. We first give a brief account on the general theory of
surface waves and then continue with the statement of the dock problem and
previous work in this direction. We now summarize the fundamental mathematical
basis for our later endeavors by formulating a typical problem which arises in the
hydrodynamics of surface waves. One of the first papers in this field belongs to
Lord Rayleigh [1]. For a thorough treatment of the theory of water waves one
could consult the books of Stoker [2] and Lamb [3]. See also the paper [4].
Let us consider the physical situation of an ocean beach. The water is assumed to
be initially at rest occupying the region defined by the equation

−ℎ(x1, x2) ≤ y ≤ 0, xs(x2, t) ≤ x1 < +∞, −∞ < x2 < +∞,

where xs(x2, t) is the horizontal coordinate of the water line on the shore. We
assume that at time t = 0 a disturbance is created on the surface of the water, and
one then wants to determine the subsequent motion of the water, namely the form
of the free surface �(x1, x2; t) and the velocity field components u, v, w as functions
of the space variables x1, x2, y and the time t. We will also assume all flows to be
incompressible and irrotational. The incompressibility of the flow gives the law of
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mass conservation

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂y
= 0, (1)

where U = (u1, u2, u3) denotes the velocity field. Since the flow is assumed to be
irrotational we have that

curlU = 0. (2)

The fact that curlU = 0 implies the existence of a single-valued velocity potential
v(x1, x2, y, t) in any simple connected region, i.e.,

(u1, u2, u3) = ∇v = (vx1
, vx2

, vy). (3)

Equations (1) and (3) give that the velocity potential v satisfies the Laplace
equation

Δv = 0. (4)

From the irrotational character of the water flow (2) we obtain the Bernoulli law

vt +
1

2
(u21 + u22 + u23) + gy = P (x1, x2, y, t), (5)

where g is the gravitational constant, and P (x1, x2, y, t) plays the role of distur-
bances over the free surface. In our paper we will work under the assumption that
the amplitude of the surface waves is small with respect to the wave length. This
will allow us to neglect the nonlinear terms in (5). Therefore we obtain from (5)
the linearized equation

vt + gy = P (x1, x2, y, t). (6)

Boundary conditions

In the problem under consideration it is assumed that the fluid has a boundary
surface S which has the property that any particle which is once on the surface
remains on it.
Assume that S is given by an equation �(x1, x2, y, t) = 0. Differentiation with
respect to t gives that the condition

d�

dt
= u1�x1

+ u2�x2
+ u3�y + �t = 0 (7)

holds on S. Using relations (3), (7) and the fact that the vector (�x1
, �x2

, �y) is
normal to S we obtain that

∂v

∂�
= − �t

√

�2x1
+ �2x2

+ �2y

, (8)
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where ∂
∂�

means differentiation in the direction of the normal to S.
An important special case is when the boundary S is independent of the time t

(the bottom of the sea for eg.), situation which leads to the boundary condition

∂v

∂�
= 0 on S (9)

Another important situation is when the boundary surface S is given by the equa-
tion

y = �(x1, x2, t), (10)

and the surface is not prescribed apriori. In this case we have � = y−�(x1, x2, t) = 0
for any particle, and (7) together with the assumption of small amplitude of the
surface waves lead to

−vy + �t = 0 on y = �(x1, x2, t), (11)

while the Bernoulli’s law gives the condition

g� + vt = P (x1, x2, y, t) on y = �(x1, x2, t). (12)

Previous work

In the case of the dock problem the upper surface of the water is constrained by
the dock for all x2 < 0 and is a free surface described by y = �(x1, x2, t), subject
to atmospheric presure for all x2 > 0. The standing solution of the homogeneous
(P = 0) two-dimensional dock problem has been given by Friedrichs and Lewy [5],
(see also [6]) as a special case of periodic waves on sloping beaches which behave
at infinity like an arbitrary progressing wave. The general three-dimensional case
of periodic waves cresting on a beach sloping at any angle � was first considered
by Peters [7] and Roseau [8]. The case of the three-dimensional dock problem in
water of uniform depth was first solved by Heins [9] by means of the Wiener-Hopf
technique, see also Holford [10]. Varley developed in [11] methods which he applied
to a generalized dock problem. In the papers mentioned above the authors looked
for very special solutions in the form of standing waves, i.e., solutions which are
of the form eiatΦ, where Φ is some unknown function in the space variables, t
denotes the time variable and a is the so-called shallowness parameter. They also
considered progressing waves, which are solutions of the form ei(at−�x1)Φ where �

is the wave length and t, a,Φ are as before. Rahimizadeh [12] proved for the first
time the well-posedness of the full time dependent dock problem. In our work we
prove existence and uniqueness for the full time-dependent problem and where the
underlying space is a planar domain with corner.
For a recent account on the dock-problem see the paper [13].
Outline of the paper

Our paper deals with a problem in a two dimensional sector with a corner point.
We will denote the space variables by (x1, x2). With this notation the equation of
the free surface (10) now becomes

x2 = �(x1, t). (13)

We shall denote by G the corner domain in R2 formed by the semi-axis Γ1 = {x1 >
0, x2 = 0} and Γ2 = {y1 = −x1 cos� − x2 sin� < 0, y2 = x1 sin� − x2 cos� = 0},
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where � represents the interior angle of G and 0 < � ≤ � (See Figure 1).

x2

Γ1

x1

Γ2

�

G

Figure 1.

The case � = � which corresponds to the full time dependent dock problem with
initial conditions was treated using different methods in [12].
Let v(x1, x2, t) denote the velocity potential function. From (4), (9) and since we
work under the assumption that the amplitude of the surface waves is small with
respect to the wave length we obtain using (11) and (12) the following linearized
boundary value problem

⎧





⎨





⎩

Δv(x1, x2, t) = 0, (x1, x2) ∈ G and t ≥ 0
g�(x1, t) + vt(x1, 0, t) = P (x1, 0, t), (x1, 0) ∈ Γ1 and t ≥ 0
�t(x1, t)− vx2

(x1, 0, t) = 0, (x1, 0) ∈ Γ1 and t ≥ 0
∂v
∂�
(x1, x2, t) = 0, (x1, x2) ∈ Γ2 and t ≥ 0

, (14)

subject to the initial conditions

{

�(x1, 0) = �0
v(x1, x2, 0) = v0

(15)

with given �0 and v0 in appropriate Sobolev spaces whose definitions, cf. for exam-
ple [14], [15], we recall now.
As usual Hs(R2) denotes the Sobolev space with the norm

∣∣u∣∣2s =

∫R2

(1 + ∣�∣2)s∣ũ(�)∣2d�,

where ũ is the Fourier transform of u. By H̊s(G) we denote the subspace of Hs(R2)
consisting of functions with support in G. Hs(G) is defined to be the space of all
restrictions of functions in Hs(R2) to the domain G with the norm

∣∣f ∣∣+s = inf
l
∣∣lf ∣∣s, (16)

where f is a distribution in G, lf is an arbitrary extension of f to R2 belonging to
Hs(R2), and the infimum is taken over all extensions of f .
On Γk, k = 1, 2, we define Hs(Γk) to be the space of all restrictions of distributions
in Hs(R1) to Γk with the norm

[ℎ]+s = inf
l
[lℎ]s, (17)
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where lℎ is an arbitrary extension of ℎ to R1 and [lℎ]s is the norm in Hs(R1).

The Sobolev space H̊s(Γk) is defined as the completion of C∞
0 (Γk) with respect to

the norm (17).
We shall also need the following modifications of the Sobolev spaces. Let us denote
with Ḣs(R2) the closure of C∞

0 (R2) with respect to the norm

∫R2

∣�∣2s∣ũ(�)∣2d�, ∣�∣ =
√

�21 + �22 (18)

Then, for the domain G we define Ḣs(G) to be the space of restrictions of distri-
butions from Ḣs(R2).
We now state the main result of the paper.

Theorem 1.1 : For any T > 0 and for any P (x1, x2, t) such that

P (x1, 0, t) ∈ C([0, T ], L2(Γ1)) and Pt(x1, 0, t) ∈ L1([0, T ], L2(Γ1)) there ex-

ist unique v(x1, x2, t) ∈ C([0, T ], Ḣ1(G)) and �(x1, t) ∈ C([0, T ], L2(Γ1))
such that v(x1, 0, t) ∈ C([0, T ],H 1

2

(Γ1)), vt(x1, 0, t) ∈ C([0, T ], L2(Γ1)), �t ∈
C([0, T ],H− 1

2

(Γ1)) which satisfy the boundary value problem (14) with initial con-

ditions (15) for �0 ∈ L2(Γ1) and v0 ∈ Ḣ1(G).

In order to prove Theorem 1.1 we consider in Section 2 an auxiliary boundary
value problem for which we show existence and uniqueness. This will ensure that
the Dirichlet to Neumann operator is well defined. Another fact which is established
is the selfadjointness and the positivity of the Dirichlet to Neumann operator which
is done in section 3. We conclude in Section 4 with the proof of Theorem 1.1.

2. The elliptic problem in a corner

Consider the following auxiliary boundary value problem:

⎧

⎨

⎩

Δv(x1, x2, t) =
∂2v
∂x2

1

(x1, x2, t) +
∂2v
∂x2

2

(x1, x2, t) = 0 for (x1, x2) ∈ G, t ≥ 0,

v∣Γ1
= f

∂v
∂�
∣Γ2

= 0.

(19)

Theorem 2.1 will show that for f in a suitable Sobolev space we obtain a
unique solution v for the boundary value problem (19). This allows us to define by

Λf =
∂v

∂x2

∣

∣

Γ1

the so called Dirichlet to Neumann operator. From the system of boundary condi-
tions on Γ1,

{

g�(x1, t) + vt(x1, 0, t) = P (x1, 0, t)
�t(x1, t)− vx2

(x1, 0, t) = 0
, (20)

with initial conditions

{

�(x1, 0) = �0(x1)
v(x1, 0, 0) = v0(x1, 0)

(21)
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we obtain by elimination of � between the above relations and using Λ the single
equation in v:

vtt(x1, 0, t) + gΛv(x1, 0, t) = Pt(x1, 0, t), (22)

with initial conditions

v(x1, 0, 0) = v0(x1, 0), vt(x1, 0, 0) = P (x1, 0, 0) − g�0(x1). (23)

By denoting � = P
g
− vt

g
we see that �t = Pt

g
− vtt

g
and from (22) we have that

�t − vx2
= 0, and this shows that (20) and (22) are equivalent. Therefore we will

show in Section 3 existence and uniqueness for (22) with initial conditions (23).
We first show existence and uniqueness for the boundary value problem (19). We
will prove the following:

Theorem 2.1 : For any f ∈ H̊ 1

2

(Γ1) there exists a unique v(x1, x2) ∈ Ḣ1(G)

which solves the boundary value problem (19).

This Theorem will be proved by showing that it is equivalent with another bound-
ary value problem whose existence and uniqueness are proved in the paper [15].
We need first to fix some notations.
Notation:

For t ∈ R we denote

(t− i0)
1

2
−s = lim

"→0
e(

1

2
−s) ln(t−i"), " > 0,

where we take the branch of ln(t− i") that is real for t > 0 and " = 0. Now, let

Λ
1

2
−s

− =

(

i
∂

∂x1

cos
�

2
+ i

∂

∂x2
sin

�

2
− i0

)
1

2
−s

be a pseudodifferential operator in R2 with symbol

Λ
1

2
−s

− (�1, �2) =
(

�1 cos
�

2
+ �2 sin

�

2
− i0

)
1

2
−s

,

cf. [15]. For the general theory of pseudodifferential operators see also [16] and [17].

Remark 1 : The operator Λ
1

2
−s

− has the property that if u− is a distribution with

support in CG then the support of Λ
1

2
−s

− u− is also in CG. An operator with such
a property is called a “minus” operator with respect to the domain G. For proofs
and details concerning “minus” operators see Lemma 20.2 in [14] and Lemma 2.2
in [18].

Remark 2 : If A− is a “minus” operator and u is a distribution in G we have
that pGA−lu is independent of the choice of the extension lu of u to R2 where pG
is the restriction operator to G.

Proof of Theorem 2.1:
Step 1
We first reduce to order zero boundary conditions and then apply a result from
[15]. Note that due to Remark 2 it makes sense to consider the following boundary
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value problem:

⎧







⎨







⎩

Δu = 0, (x1, x2) ∈ G

p+1

(

i ∂
∂x1

− i0
)s−m1− 1

2

B1

(

i ∂
∂x1

, i ∂
∂x2

)

Λ
1

2
−s

− lu = ℎ1(x1), x1 > 0

p−2

(

−i ∂
∂x1

cos�− i ∂
∂x2

sin�+ i0
)s−m2− 1

2

B2

(

i ∂
∂x1

, i ∂
∂x2

)

Λ
1

2
−s

− lu = ℎ2(y1), y1 < 0

(24)
where p+1 , p

−
2 are restrictions operators to Γ1,Γ2, respectively, B1(�1, �2), B2(�1, �2)

are homogeneous polynomials of degrees m1,m2 respectively, and the coordinates
(y1, y2) are related to (x1, x2) through the equations

y1 = −x1 cos�− x2 sin�, y2 = x1 sin�− x2 cos�. (25)

We now invoke Theorem 2.1 from [15] which asserts that for any (ℎ1, ℎ2) ∈ L2(Γ1)×
L2(Γ2) the boundary value problem (24) has a unique solution u ∈ Ḣ 1

2

(G) provided

s satisfies the so-called “corner condition” (2.73) from [15]. In our case B1 is the
identity operator, B2 = ∂

∂�
= �1

∂
∂x1

+ �2
∂

∂x2

, and a calculation shows that s = 1
verifies the “corner condition” (2.73) from [15]. We only state what this conditions
means in our case and show that s = 1 verifies it. For details we ask the reader to
consult the proof in [15].
We set �1 = −i, �2 = i. Denote by

�j =
sin�− �j cos�

− cos�− �j sin�
, j = 1, 2,

from which follows that �1 = −i and �2 = i. We will also need the numbers �1, �2
given by

i�k = ln(cos�+ �k sin�) = ln ∣ cos�+ �k sin�∣+ iarg(cos�+ �k sin�), k = 1, 2.
(26)

from which we deduce that �1 = 2� − � and �2 = �.

Denote also by B
(1)
2 (�1, �2) the symbol of B2 in the (y1, y2) coordinates. It follows

from (25) that it has the form

B
(1)
2 (�1, �2) = B2(−�1 cos�+�2 sin�,−�1 sin�−�2 cos�) = i�1(−�1 cos�+�2 sin�)+i�2(−�1 sin�−�2 cos�).

We can now formulate the corner condition, which is the following:

M0

(

z − s+
1

2

)

∕= 0, for any z =
1

2
+ i�, � ∈ R (27)

where

M0(z) = −b
(0)
2 + e2�ize−i�1zei�2z,

b
(0)
2 = (B+

2 )
−1ei�B−

2 ,

B+
2 = B

(1)
2 (1, �1) = B

(1)
2 (1,−i),
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B−
2 = B

(1)
2 (−1,−�2) = B

(1)
2 (−1,−i).

We will show that s = 1 verifies the condition (27), i.e., we will show that M0(i�) ∕=
0 for all � ∈ R. We have the following

B+
2 = �1 sin�− �2 cos�− i(�2 sin�+ �1 cos�),

B−
2 = �1 sin�− �2 cos�+ i(�2 sin�+ �1 cos�),

equalities which show that ∣b(0)2 ∣ = 1. Since �1 = 2�−� and �2 = � we obtain that

M0(i�) = −b
(0)
2 + e−2�� . (28)

Since � > 0, we see from equation (28) that M0(i�) ∕= 0 for all � ∕= 0. Therefore it

only remains to show that b
(0)
2 ∕= 1.

Now

b
(0)
2 = −B2−

B+
2

= −�1 sin�− �2 cos�+ i(�2 sin�+ �1 cos�)

�1 sin�− �2 cos�− i(�2 sin�+ �1 cos�)

=
(�21 − �22) cos(2�) + 2�1�2 sin(2�) +

(

2�1�2 cos(2�) − (�21 − �22) sin(2�)
)

i

�21 + �22

= − cos2(2�) − sin2(2�) = −1,

(29)

since (�1, �2) = (− sin�, cos�). Thus s = 1 verifies the corner condition (27).
Therefore the boundary value problem

⎧







⎨







⎩

Δu = 0, (x1, x2) ∈ G

p+1

(

i ∂
∂x1

− i0
)

1

2

Λ
− 1

2

− lu = ℎ(x1), x1 > 0

p−2

(

−i ∂
∂x1

cos�− i ∂
∂x2

sin�+ i0
)− 1

2 ∂
∂�
Λ
− 1

2

− lu = 0, y1 < 0

(30)

has a unique solution u ∈ Ḣ 1

2

(G) for any ℎ ∈ L2(Γ1).

Step 2 (existence and uniqueness for the problem (19))

Let f ∈ H̊ 1

2

(Γ1). Put now

ℎ = p+1

(

i
∂

∂x1
− i0

)
1

2

f.

This implies that ℎ ∈ L2(Γ1). Let u be the unique solution of boundary value
problem (30). We then set

v = pGΛ
− 1

2

− lu, (31)

where pG and l are as before. Using Lemma 2.2 from [18] we obtain that v ∈ Ḣ1(G).
Due to the fact that “minus operators” commute with the differential operators we
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have that

Δv = 0, for (x1, x2) ∈ G (32)

From (31) and the second equation of (30) we see that

p+1

(

i
∂

∂x1
− i0

)
1

2

v = ℎ = p+1

(

i
∂

∂x1
− i0

)
1

2

f.

It then follows that

p+1

(

i
∂

∂x1
− i0

)
1

2

(v − f) = 0

which means that

(

i
∂

∂x1
− i0

)
1

2

(v − f) = v−,

where v− has its support in R1 ∖ Γ1. But then

v − f =

(

i
∂

∂x1
− i0

)− 1

2

(v−)

and since
(

i ∂
∂x1

− i0
)− 1

2

is a “minus operator” we obtain that the support of v− f

is contained in R1 ∖ Γ1. This just means that

v∣Γ1
= f. (33)

Using the second boundary condition in (30) and the fact that

p−2

(

−i
∂

∂x1

cos�− i
∂

∂x2

sin�+ i0

)
1

2

is a “minus operator”, we obtain that

∂v

∂�
∣Γ2

= 0. (34)

The relations (32), (33), and (34) prove the existence of a solution to the boundary
value problem (19). In order to prove the uniqueness we will show that the boundary
value problem

⎧

⎨

⎩

Δv(x1, x2, t) = 0 for (x1, x2) ∈ G, t ≥ 0,
v∣Γ1

= 0,
∂v
∂�
∣Γ2

= 0.
(35)

has only the trivial solution in Ḣ1(G). Let v ∈ Ḣ1(G) be a solution of the boundary
value problem (35). Denote by lv the extension by zero of v to R2 and put u =
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pGΛ
1

2

−lv. Then u ∈ H̊ 1

2

(G) and u satisfies the following boundary value problem

⎧







⎨







⎩

Δu = 0, (x1, x2) ∈ G

p+1

(

i ∂
∂x1

− i0
)

1

2

Λ
− 1

2

− lu = 0, x1 > 0

p−2

(

−i ∂
∂x1

cos�− i ∂
∂x2

sin�+ i0
)− 1

2 ∂
∂�
Λ
− 1

2

− lu = 0, y1 < 0

(36)

Since by the conclusion in Step 1 the solution to the above boundary value problem

is unique, it follows that u = 0. Using that u = pGΛ
1

2

−lv and that Λ
1

2

− is a “minus
operator” it follows that v = 0.

Remark 3 : Theorem 2.1 gives rise to an operator

Λ : H̊ 1

2

(Γ1) → H− 1

2

(Γ1)

defined by

Λf :=
∂v

∂�

∣

∣

Γ1

, (37)

where v ∈ Ḣ1(G) is the unique solution to the boundary value problem (19). Λ is
called the Dirichlet to Neumann operator.

3. Selfadjointness of the Dirichlet to Neumann operator

We are now ready to show existence and uniqueness for the equation

vtt(x1, 0, t) + gΛv(x1, 0, t) = Pt(x1, 0, t), (38)

with initial conditions

v(x1, 0, 0) = v0(x1, 0), vt(x1, 0, 0) = P (x1, 0, 0) − g�0(x1). (39)

In order to do this we will show that the operator Λ is a positive and self-adjoint
operator.

Theorem 3.1 : We have that (Λf, g) = (f,Λg) for every f, g ∈ H̊ 1

2

(Γ1),

where (⋅, ⋅) denotes the pairing between H̊ 1

2

(Γ1) and H− 1

2

(Γ1).

Proof : Let f, g ∈ C∞
0 (Γ1). Let v ∈ Ḣ1(G) be the unique solution of the boundary

value problem

⎧

⎨

⎩

Δv = 0 in G,

v∣Γ1
= f,

∂v
∂�
∣Γ2

= 0
(40)

cf. Theorem 2.1.
Let also u ∈ Ḣ1(G) be the unique solution of the boundary value problem

⎧

⎨

⎩

Δu = 0 in G,

u∣Γ1
= g,

∂u
∂�

∣Γ2
= 0

(41)
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cf. Theorem 2.1.
Let " > 0, N > 0 be arbitrary positive numbers. We will now apply the first Green
formula for the domain

G"N := {(r, �) : " ≤ r ≤ N, 0 ≤ � ≤ �},

and for the functions u and v. Let us also denote C" := {(", �) : 0 ≤ � ≤ �} and
CN := {(N, �) : 0 ≤ � ≤ �}. We then have

∫ ∫

G"N

vΔu dx1dx2 = −
∫ ∫

G"N

∇u∇v dx1dx2+

∫

C"

v
∂u

∂�
d�+

∫

CN

v
∂u

∂�
d�+

∫ N

"

v
∂u

∂�
dx1

(42)
Since Δu = 0 the last equation becomes

∫ ∫

G"N

∇u∇v dx1dx2 =

∫

C"

v
∂u

∂�
d� +

∫

CN

v
∂u

∂�
d� +

∫ N

"

v
∂u

∂�
dx1 (43)

for every " > 0 and every N > 0. We are going to prove that

lim
N→∞

∫

CN

v
∂u

∂�
d� = 0. (44)

and that

lim
"→0

∫

C"

v
∂u

∂�
d� = 0. (45)

We now pass to polar coordinates (r, �) and perform the standard procedure of
separation of variables. We obtain that the general solutions to the equation Δv = 0
are of the form

v(r, �) = (A cos(
√
��) +B sin(

√
��))(Cr

√
� +Dr−

√
�)

We now exploit the boundary condition on Γ1 and Γ2.
From

∂v

∂x1
= cos �

∂v

∂r
− sin �

r

∂v

∂�
(46)

and

∂v

∂x2
= sin �

∂v

∂r
+

cos �

r

∂v

∂�
(47)

we obtain that

∂v

∂�

∣

∣

Γ2

= − sin�
∂v

∂x1

∣

∣

�=�
+cos�

∂v

∂x2

∣

∣

�=�
=

sin2 �

r

∂v

∂�

∣

∣

�=�
+
cos2 �

r

∂v

∂�

∣

∣

�=�
=

1

r

∂v

∂�

∣

∣

�=�
.

(48)
Since f ∈ C∞

0 (Γ1) there exist "0 > 0 and N0 > 0 such that v
∣

∣

Γ1

= 0 for x1 < "0

and v
∣

∣

Γ1

= 0 for x1 > N0. From the condition ∂v
∂�

∣

∣

Γ2

= 0 we obtain utilizing (48)
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the separated solutions

vn(r, �) = Bn sin

(

n+
1

2

)

�

�
�
(

Cnr
(n+ 1

2
) �

� +Dnr
−(n+ 1

2
) �

�

)

. (49)

Since v ∈ Ḣ1(G) it follows that there exists an integer n0 > 0 such that v has the
representation

v(r, �) =

n0
∑

n=−∞
Anr

(n+ 1

2
) �

� sin

(

n+
1

2

)

�

�
�, for r ≥ N0 (50)

and n0 is to be determined from the condition

∫ ∫

G

∣∇u(x1, x2)∣2 dx1dx2 < ∞.

Using relations (46) and (47) the last condition is written in polar coordinates as

∫ �

0

∫ ∞

N0

(

(

∂v

∂r

)2

+
1

r2

(

∂v

∂�

)2
)

r dr d� < ∞. (51)

From the representation (50) of v we obtain, using (51), the condition

∫ ∞

N0

r2[(n0+
1

2
) �

�
−1]
(

1 +O

(

1

r

))

r dr < ∞,

which is satisfied if and only if 2
(

n0 +
1
2

)

�
�
− 2 + 1 < −1, which is equivalent to

n0 < −1
2 . Since n0 is an integer we have that (51) is satisfied if and only if n0 ≤ −1.

In order to prove that

lim
N→∞

∫

CN

v
∂u

∂�
d� = 0. (52)

we note first that

∫

CN

v
∂u

∂�
d� =

∫ �

0
v(N, �)

∂u

∂r
(N, �)N d�.

Since

v(r, �) =
∑−1

n=−∞Anr
(n+ 1

2
) �

� sin
(

n+ 1
2

)

�
�
�

= r−
�

2�

(

A−1 sin
(−�
2� �

)

+O
(

r
−�

�

)) (53)

and since a formula like (53) is true for u it suffices to show that

lim
N→∞

∫ �

0
N− �

2�N− �

2�
−1N d� = 0.

The last equality is obviously true and therefore the equality (52) is proved.
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Our next task is to prove that

lim
"→0

∫

C"

v
∂u

∂�
d� = 0. (54)

First of all note that

∫

C"

v
∂u

∂�
d� =

∫ �

0
v(", �)

∂u

∂r
(", �)" d� (55)

Using again that v ∈ Ḣ1(G) it follows that there exists an "0 > 0 such that v has
the representation

v(r, �) =

∞
∑

n=n0

Anr
(n+ 1

2
) �

� sin

(

n+
1

2

)

�

�
�, for r ≤ "0 (56)

where n0 is some fixed integer which is to be determined from the condition

∫ ∫

∣∇u(x1, x2)∣2 dx1dx2 < ∞,

which in polar coordinates is written as

∫ �

0

∫ "0

0

(

(

∂v

∂r

)2

+
1

r2

(

∂v

∂�

)2
)

r dr d� < ∞. (57)

From the representation (56) of v and using (57) we obtain the condition

∫ "0

0
r2[(n

0+ 1

2
) �

�
−1] (1 +O (r)) r dr < ∞,

which is satisfied if and only if 2
(

n0 + 1
2

)

�
�
− 2 + 1 > −1, which is equivalent to

n0 > −1
2 . Since n0 is an integer we have that (57) is satisfied if and only if n0 ≥ 0.

Therefore,

v(r, �) =
∑∞

n=0 Anr
(n+ 1

2
) �

� sin
(

n+ 1
2

)

�
�
�

= r
�

2�

(

A0 sin
(

�
2��
)

+O
(

r
�

�

))

,
(58)

and a formula like (58) is also valid for u. In order to prove (54) we use (55), (58)
and therefore it suffices to show that

lim
"→0

∫ �

0
"

�

2� "
�

2�
−1" d� = 0,

which is true.
Passing to the limit with " → 0 and N → ∞ in the formula (43) and using (54)
and (52) we obtain that

∫ ∫

G

∇u∇v dx1dx2 =

∫

Γ1

v
∂u

∂�
dx1. (59)
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Analogously we obtain that

∫ ∫

G

∇v∇u dx1dx2 =

∫

Γ1

u
∂v

∂�
dx1. (60)

From (59) and (60) we then see that (f,Λg) = (g,Λf) for every f, g ∈ C∞
0 (Γ1),

and then we take the closure to obtain the desired result. □

Corollary 3.2: For every non-zero f ∈ H̊ 1

2

(Γ1) we have that (Λf, f) > 0.

Proof : Taking v = u and using u
∣

∣

Γ1

= f , ∂u
∂�

∣

∣

Γ1

= Λf and (60) we obtain that

(Λf, f) =

∫ ∫

G

∣∇u∣2 dx1dx2, (61)

which proves the claim. □

Lemma 3.3: The Dirichlet to Neumann operator is invertible and

Λ−1 : H− 1

2

(Γ1) → H̊ 1

2

(Γ1)

is bounded.

Proof : Let f ∈ H̊ 1

2

(Γ1) and let u ∈ Ḣ1(G) be the unique solution to the boundary

value problem (19). From Proposition 3.1 of [15] we have that

∫ ∫

G

∣∇u∣2 dx1dx2 ≥ C([u(x1, 0)]
+
1

2

)2, (62)

where C > 0 is a constant, and [⋅]+1
2

denotes the norm in H 1

2

(Γ1) cf., (17). From

(62) and (61) we obtain that

(Λf, f) ≥ C([f ]+1
2

)2. (63)

Since (Λf, f) ≤ [Λf ]+− 1

2

[f ]+1
2

we have using (63) that

[Λf ]+− 1

2

≥ C[f ]+1
2

, for all f ∈ H̊ 1

2

(Γ1). (64)

Inequality (64) implies that the range of Λ is closed. Since Λ is self-adjoint and
ker Λ∗ = 0 it follows that Λ is invertible with

Λ−1 : H− 1

2

(Γ1) → H̊ 1

2

(Γ1).

bounded. □

4. The hyperbolic evolution equation on Γ1 and the conclusion of the proof

of the main theorem

Remark 1 : Lemma 3.3 allows us to show existence and uniqueness for our initial
problem:

vtt(x1, 0, t) + gΛv(x1, 0, t) = Pt(x1, 0, t), (65)
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with initial conditions

v(x1, 0, 0) = v0(x1, 0), vt(x1, 0, 0) = P (x1, 0, 0) − g�0(x1). (66)

For simplicity, we denote v1(x1) := P (x1, 0, 0) − g�0(x1) and obtain the following
initial problem:

vtt(x1, t) + gΛv(x1, t) = Pt(x1, t), v(x1, 0) = v0, vt(x1, 0) = v1. (67)

Remark 2 : In order to simplify the notation, we will write for a moment
v(x1, t), vt(x1, t), vtt(x1, t) instead of v(x1, 0, t), vt(x1, 0, t), vtt(x1, 0, t) when we are
on Γ1(x2 = 0).

Lemma 4.1: The solution of the homogeneous problem

vtt(x1, t) + gΛv(x1, t) = 0, v(x1, 0) = v0, vt(x1, 0) = v1, (68)

is given by the formula

v(x1, t) = cos(tΛ
1

2 )v0 + Λ− 1

2 sin(tΛ
1

2 )v1, (69)

where Λ = gΛ.

Proof : See for instance [19], pp. 309. □

For each s ∈ R let now u(x1, t; s) be the solution of

utt + Λu = 0, u(x1, 0; s) = 0, ut(x1, 0; s) = Pt(x1, 0; s).

From (69) it follows that

u(x1, t, s) = Λ− 1

2 sin(tΛ
1

2 )Pt(x1, 0; s). (70)

We then have the following

Lemma 4.2: The function defined by v(x1, t) =
∫ t

0 u(x1, t− s; s) ds satisfies the

boundary value problem

vtt + gΛv = Pt(x1, t) v(x1, 0) = 0, vt(x1, 0) = 0. (71)

Proof : Clearly v(x1, 0) = 0. We also have

vt(x1, t) = u(x1, 0; t) +

∫ t

0
ut(x1, t− s; s) ds =

∫ t

0
ut(x1, t− s; s) ds,

which implies that vt(x1, 0) = 0. Finally, differentiating once more in t we obtain

vtt(x1, t) = ut(x1, 0; t) +

∫ t

0
utt(x1, t− s; s) ds

= Pt(x1, t) +

∫ t

0
−gΛu(x1, t− s; s) ds = Pt(x1, t)− gΛv(x1, t),

(72)

which proves (71). □
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Corollary 4.3: The solution of the problem (67) is given by the following formula

v(x1, t) =

∫ t

0
Λ− 1

2 sin((t− s)Λ
1

2 )Pt(x1, 0; s) ds + cos(tΛ
1

2 )v0 + Λ− 1

2 sin(tΛ
1

2 )v1.

Proof : Adding up the solutions to the problems (68) and (71) and taking into
account formula (70) we obtain the assertion. □

Remark 1 and Lemma 4.2 allow us to conclude the proof of the main Theorem
1.1. We restate it here for convenience.

Theorem 4.4 : For any T > 0 and for any P (x1, x2, t) such that

P (x1, 0, t) ∈ C([0, T ], L2(Γ1)) and Pt(x1, 0, t) ∈ L1([0, T ], L2(Γ1)) there ex-

ist unique v(x1, x2, t) ∈ C([0, T ], Ḣ1(G)) and �(x1, t) ∈ C([0, T ], L2(Γ1))
such that v(x1, 0, t) ∈ C([0, T ],H 1

2

(Γ1)), vt(x1, 0, t) ∈ C([0, T ], L2(Γ1)), �t ∈
C([0, T ],H− 1

2

(Γ1)) which satisfy the boundary value problem

⎧





⎨





⎩

Δv(x1, x2, t) = 0, (x1, x2) ∈ G and t ≥ 0
g�(x1, t) + vt(x1, 0, t) = P (x1, 0, t), (x1, 0) ∈ Γ1 and t ≥ 0
�t(x1, t)− vx2

(x1, 0, t) = 0, (x1, 0) ∈ Γ1 and t ≥ 0
∂v
∂�
(x1, x2, t) = 0, (x1, x2) ∈ Γ2 and t ≥ 0

(73)

with the initial conditions

{

�(x1, 0) = �0(x1)
v(x1, x2, 0) = v0(x1, x2)

, (74)

where �0 ∈ L2(Γ1) and v0 ∈ Ḣ1(G).

Proof : We first prove the assertion about v. From Corollary 4.3 we have that

Λ
1

2 v(x1, 0, t) =

∫ t

0
sin((t− s)Λ

1

2 )Pt(x1, 0; s) ds + cos(tΛ
1

2 )Λ
1

2 v0 + sin(tΛ
1

2 )v1.

Therefore we have that

max
0≤t≤T

[Λ
1

2 v]+0 ≤ C

(
∫ T

0
[Pt]

+
0 dt+ [v0]

+
1

2

+ [v1]
+
0

)

,

where C is a constant. Since [Λ
1

2 v]+0 = [v(x1, 0, t)]
+
1

2

it follows that v ∈
C([0, T ],H 1

2

(Γ1)).

Using again Corollary 4.3 we have that

vt(x1, 0, t) =

∫ t

0

(

cos(t− s)Λ
1

2

)

Pt(x1, 0; s) ds + Λ
1

2 sin(tΛ
1

2 )v0 + cos(tΛ
1

2 )v1,

from which we obtain that

max
0≤t≤T

[vt]
+
0 ≤ C̃

(
∫ T

0
[Pt]

+
0 ds+ [v0]

+
1

2

+ [v1]
+
0

)

,

where C̃ is a constant. This shows that vt(x1, 0, t) ∈ C([0, T ], L2(Γ1)). The asser-
tions about � follow from the conditions on Γ1 in (73). □
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[16] L. Hörmander, Pseudo-differential operators, Comm. Pure Appl. Math., vol. 19, 1965, pp. 507-517.
[17] M.A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer, 1987.
[18] G.I. Eskin, Boundary-Value Problems for Second-Order Elliptic Equations in Domains with Corners,

Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, R.I., (1985), 105-131.
[19] E. Zeidler, Applied Functional Analysis, applications to mathematical physics, Springer, vol. 108,

1995.


