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Abstract. In this paper we study the water wave problem with capillary e�ects and
constant vorticity when stagnation points are not excluded. When the constant vorticity
is close to certain critical values we show that there exist Wilton ripples solutions of the
water wave problem with two crests and two troughs per minimal period. They form
smooth secondary bifurcation curves which emerge from primary bifurcation branches,
that contain a laminar �ow solution and consist of symmetric waves of half of the period
of the Wilton ripples, at some non-laminar solution. We also prove that any Wilton
ripple contains an internal critical layer provided its minimal period is su�ciently small.

1. Introduction

The situation considered in this paper is that of two-dimensional steady periodic rota-
tional waves traveling over a �at bed when the gravity and the surface tension, or only
the surface tension, are the restoring forces. The latter appears in the dynamics of water
waves in many physical situations like that when the wind blows over a still �uid surface.
What one observes �rst are two-dimensional small amplitude wave trains which are driven
by capillarity [19] and, as they grow larger, turn into capillary-gravity waves. While irro-
tational �ows are suitable for waves travelling into still water or over a uniform current,
see e.g. [1, 5, 10, 31], non-uniform currents give rise to water �ows with vorticity [2].
It is worth pointing out that a constant vorticity, which is a main feature of the setting
considered in this paper, is the hallmark of tidal currents, see the discussion in [2, 30].

In the context of irrotational waves it was Wilton [37] who observed that the presence
of both capillary and gravity forces determines sometimes a mode to interact with another
one having twice its frequency, the resulting waves, called Wilton ripples, possessing two
crests within a minimal period. While Reeder and Shinbrot [28] obtained a rigorous exis-
tence theory for this type of waves, a more detailed investigation of the local bifurcation
picture was performed by Jones and Toland in [17, 18] in the context of irrotational deep
water waves and by Jones in [16] for irrotational waves over a �uid layer of �nite depth.
The existence theory for water-waves with capillary and with an arbitrary vorticity dis-
tribution is recent [32, 33] and is restricted to waves without stagnation points. In this
setting one can use the so called hodograph transformation, see [4], and express the prob-
lem as a quasilinear elliptic problem to which local bifurcation tools may be applied. The
existence of water waves with capillary e�ects traveling on �uids which posses a vertical
density strati�cation has been established only recently [14, 35] (see also [9]). We remark
at this point that the many properties of water waves con�ned to surface tension e�ects,
such as the regularity of the streamlines and of the wave pro�le [12, 13, 15, 20, 21, 25, 36]
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or the description of the particles trajectories within the �uid [11], were only recently
investigated (see [1, 3, 7, 24, 27] for the case when surface tension is neglected).

As mentioned above, we restrict in this paper to considering water waves traveling over
linearly sheared currents, so that the vorticity is constant, and we do not exclude the
presence of stagnation points. In this setting the local bifurcation problem for capillary
and capillary-gravity water waves has been investigated in [23, 22] by using a formulation,
obtained initially for waves con�ned merely to gravity forces [6], which allows one to
consider waves with stagnation points and overhanging pro�les. The global bifurcation
problem was addressed in [26], the author using the invertibility of the curvature operator
to recast the governing equations as an operator equation for a compact perturbation of
the identity.

Secondary bifurcation appears in connection to bifurcation problems for which pri-
mary bifurcation branches are continuous functions of a perturbation parameter. In the
irrotational case [16, 17, 18] the authors �nd primary bifurcation branches, by using the
wavespeed as the bifurcation parameter, and secondary bifurcation branches emerging
from the primary curves for values of the surface tension, set as being the perturbation
parameter, close to some critical values for which the eigenspace of the linearization has
dimension two. The setting of waves with constant vorticity is more suitable, from the
physical point of view, for considering the secondary bifurcation problem because we keep
the surface tension coe�cient �xed and use instead the constant vorticity as the pertur-
bation parameter. More precisely, when the vorticity is close to some critical values for
which the linearization has a two-dimensional kernel consisting of two modes, one of them
twice the frequency of the other, we �nd, by using again the horizontal speed at the wave
surface as parameter, primary bifurcation branches consisting of symmetric waves with
one crest and trough per period. These primary branches depend smoothly on the con-
stant vorticity and we show that a smooth secondary bifurcation branch, consisting of
Wilton ripples with two crests per minimal period, emerges from each of the primary
branches when the vorticity is su�ciently close to the critical values mentioned before.
We also show that some of the secondary bifurcation branches consist only of Wilton rip-
ples that have a critical layer in the interior of the �uid layer. We emphasize that adding
vorticity to the water wave problem makes the analysis more involved and therefore we
did not aim to give a complete description of the local bifurcation picture. Our results
are true for capillary and capillary-gravity waves as well.

The outline of the paper is as follows. In the �rst part of Section 2 we present an
abstract secondary bifurcation result from [29] which is then used to establish the existence
of Wilton ripples for the water wave problem with capillary e�ects, cf. Theorem 2.7. In
the last part of Section 2 we show that the Wilton ripples that we obtained possess a
critical layer provided that their wavelength is su�ciently small.

2. Existence of Wilton ripples for waves with capillary and constant

vorticity

Secondary bifurcations near a double eigenvalue. When considering the bifurcation
problem

F (λ, γ, x) = 0, (2.1)

for a smooth map F : R× R×X → Y, where X and Y are Banach spaces and

F (λ, γ, 0) = 0 for all (λ, γ) ∈ R2, (2.2)
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secondary bifurcation may occur when, for some (λ0, γ0) ∈ R2, the Fréchet derivative
Fx(λ0, γ0, 0) : X → Y is a Fredholm operator of index zero with a two-dimensional
kernel. This is the setting that we consider to hold throughout this paragraph. We
present now a special case when secondary bifurcation occurs for the operator equation
(2.1), and refer to [29] for the detailed analysis.

First of all, a primary branch of solutions has to be found. The next theorem estab-
lishes, under some additional assumptions on F , that for each γ close to γ0, there exists of
a primary branch Pγ of solutions of (2.1) which bifurcates from the set of trivial solutions
x = 0. The result is an adaptation of the theorem on bifurcations from simple eigenvalues
due to Crandall and Rabinowitz [8] to operator equations with two parameters.

Theorem 2.1 ([29, Theorem 2.1]). Assume that there exist closed subspaces X1 of X
and Y1 of Y such that F : R2 ×X1 → Y1 and

• Fx(λ0, γ0, 0) : X1 → Y1 is a Fredholm operator with Fredholm index zero and
one-dimensional kernel span{φ1};

• Fλx(λ0, γ0, 0)[φ1] /∈ ImFx(λ0, γ0, 0).

Then, there exist positive constants ε and δ and smooth functions

(λ, z) : Dδ = {(γ, a) ∈ R2 : |γ − γ0| < δ, |a| < δ} → R× Z1,

with Z1 denoting the complement of span{φ1} in X1 such that:

(i) For each γ ∈ (γ0− δ, γ0+ δ), the curve Pγ := {(λ(γ, a), a(φ1+ z(γ, a))) : |a| < δ}
is a primary branch of solutions of (2.1);

(ii) (λ, z)(γ0, 0) = (λ0, 0);
(iii) If (λ, γ, x) ∈ R2×X1 is a solution of (2.1) and |λ−λ0| < ε, ‖x‖ < ε, |γ−γ0| < δ,

then either x = 0 or (λ, x) ∈ Pγ .

In order to establish the existence of a secondary branch Sγ which bifurcates from
the primary branch Pγ one has to make more structural assumptions on the bifurcation
problem (2.1):

There exist closed spaces X2, Y2 such that X = X1 ⊕X2 and Y = Y1 ⊕ Y2; (2.3)

KerFx(λ0, γ0, 0) ∩Xi = span{φi} for i = 1, 2; (2.4)

There exist 0 6= ψi ∈ Y with span{ψi} ⊕
(
Yi ∩ ImFx(λ0, γ0, 0)

)
= Yi for i = 1, 2; (2.5)

Fx(λ0, γ0, 0)X2 ⊂ Y2. (2.6)

Moreover, a more general transversality condition than that in Theorem 2.1 is required

Fλx(λ0, γ0, 0)[φi] /∈ ImFx(λ0, γ0, 0) for i = 1, 2. (2.7)

Letting span{φ1, φ2} ⊕ Z = X and de�ning P : X → span{φ1, φ2} to be the projection
onto span{φ1, φ2}, the assumption that Fx(λ0, γ0, 0) : X → Y is a Fredholm operator of
index zero with a two-dimensional kernel and the implicit function theorem ensure the
existence of a smooth mapping

ẑ : {(λ, γ, v) : ‖(λ, γ, v)− (λ0, γ0, 0)‖R2×span{φ1,φ2} < ϑ} → Z, (2.8)

where ϑ > 0 is small, which has the property that (I−P )F (λ, γ, v+ ẑ(λ, γ, v)) = 0 for all
(λ, γ, v) in the de�nition domain of ẑ, and moreover ẑ(λ0, γ0, 0) = 0. By the Lyapunov-
Schmidt reduction method the original problem is recast into a �nite dimensional system〈

F (λ, γ, αφ1 + βφ2 + ẑ(λ, γ, αφ1 + βφ2))
∣∣ψ′

i

〉
= 0, i = 1, 2, (2.9)
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whereby α, β are small real parameters and ψ′
i ∈ Y ′, i = 1, 2, are the linear functionals

which satisfy 〈ψi|ψ′
j〉 = δij and ψ

′
i = 0 on ImFx(λ0, γ0, 0). Hereby 〈·

∣∣·〉 denotes the duality
pairing on Y ×Y ′. Observe that any non-constant curve s 7→ (α(s), β(s)) with the property
that the equations (2.9) are satis�ed at each pair (α(s), β(s)) corresponds to a branch of
solutions of (2.1). The next theorem guarantees that if γ 6= γ0 is closed to γ0, then a
secondary bifurcation branch Sγ will emerge from the primary branch Pγ away from the
trivial branch of solutions x = 0.

Theorem 2.2 ([29, Theorem 3.3]). Suppose that F satis�es the assumptions of Theorem
2.1, the structural assumptions (2.3)-(2.6), the transversality condition (2.7), and the
non-degeneracy conditions∣∣∣∣∣

〈
Fλx(λ0, γ0, 0)[φ1]

∣∣ψ′
1

〉 〈
Fγx(λ0, γ0, 0)[φ1]

∣∣ψ′
1

〉〈
Fλx(λ0, γ0, 0)[φ2]

∣∣ψ′
2

〉 〈
Fγx(λ0, γ0, 0)[φ2]

∣∣ψ′
2

〉 ∣∣∣∣∣ 6= 0; (2.10)

and ∣∣∣∣∣
〈
Fλx(λ0, γ0, 0)[φ1]

∣∣ψ′
1

〉 〈
Fxx(λ0, γ0, 0)[φ1, φ1]

∣∣ψ′
1

〉〈
Fλx(λ0, γ0, 0)[φ2]

∣∣ψ′
2

〉 〈
Fxx(λ0, γ0, 0)[φ1, φ2]

∣∣ψ′
2

〉 ∣∣∣∣∣ 6= 0. (2.11)

Then, there exists an interval I containing zero and smooth functions Λ,Ξ : I × I → R
such that Ξ(0, 0) 6= 0, and for each γ = γ0 + θ with 0 6= θ ∈ I, the curve

Sγ := {(λ̃(γ − γ0, s), γ, x̃(γ − γ0, s)) : s ∈ I}

with

λ̃(θ, s) := λ0 + θΛ(θ, s)

x̃(θ, s) := θΞ(θ, s)φ1 + θsφ2 + ẑ(λ0 + θΛ(θ, s), γ0 + θ, θΞ(θ, s)φ1 + θsφ2)

is a secondary branch of solutions intersecting Pγ at (λ̃(γ−γ0, 0), γ, x̃(γ−γ0, 0)), whereby
x̃(γ − γ0, 0) 6= 0.

The bifurcation analysis for the water wave problem. We prove now that the
abstract setting presented above can be used to show that secondary bifurcation is a
particular feature of the water wave problem when capillary e�ects are taken into account
and when the �ow beneath the wave has constant vorticity. To this end we shall use the
new formulation for the water wave problem which has been derived in [6] in the context
of gravity water waves with constant vorticity and adapted later in [23, 22] to a more
general setting which includes also capillary forces.

More precisely, in the regime when surface tension is not negligible, two-dimensional
2π−periodic water waves traveling at constant speed over a �at horizontal bottom are
described, when the vorticity of the �ow is assumed constant, by some of the solutions of
the equation(

λ+ γ

(
[w2]

2h
− w + Ch(ww′)− wCh(w′)

))2

=

λ2 + µ+ 2σ
w′′ + w′′Ch(w′)− w′Ch(w′′)(
w′2 + (1 + Ch(w′))2

)3/2 − 2gw

(w′2 +
(
1 + Ch(w′)

)2)
,

(2.12)
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where h is a positive constant called conformal mean depth, γ is the (constant) vorticity
of the �ow, g is the gravity constant, σ is the surface tension coe�cient. Moreover, µ and
λ are two real parameters, [w] denotes the average of w over one period and Ch is the
Fourier multiplier ∑

n∈Z\{0}

ane
inx 7→

∑
n∈Z\{0}

−i coth(nh)aneinx. (2.13)

It is shown in [23, 22] (see also [6]) that if w ∈ C2+α(R) is a 2π−periodic solution of the
equation (2.12) which satis�es additionally the following conditions

[w] = 0, (2.14)

w > −h, (2.15)

R 3 x 7→ (x+ Ch(w)(x), w(x) + h) is an one-to-one regular curve, (2.16)

then the curve de�ned by (2.16) is the 2π−periodic pro�le of a capillary-gravity (or only
capillary when g = 0) wave traveling above the �at bed located at y = 0. We enhance
that the formulation (2.12) describes also waves with overhanging pro�les, when the free
surface is no longer a graph, but all the solutions we �nd herein do not possess this
property. Let us notice that the constant function w = 0 is a solution of (2.12) if and
only if

µ = 0. (2.17)

Thus, for each choice of the parameters (λ, γ) ∈ R2, the pair (µ,w) = (0, 0) is a solution
of the problem (2.12) which satis�es the conditions (2.14)-(2.16). These are the laminar
�ow solutions of the capillary or capillary-gravity water wave problem, that is waves with
a �at surface and with parallel streamlines. The constant λ can be identi�ed as the speed
at the surface of these waves as the stream function associated with these solutions is
given by

ψ(x, y) = −γ
2
y2 + (λ+ γh)y −

(
λh+

γh2

2

)
0 ≤ y ≤ h, (2.18)

the �uid occupying the strip [0 ≤ y ≤ h] (see [6, 23] for more details).
We shall use here the parameter λ as a bifurcation parameter and γ as a perturbation

parameter to prove that secondary bifurcation occurs on some of the bifurcation branches
found in [23, 22] provided that the constant vorticity is close to some critical values.
To do so we need to introduce a functional analytic setting which allows us to rewrite
the problem as a bifurcation equation and to use the abstract results presented in the
Theorems 2.1-2.2. Because closed subspaces of Banach spaces do not possess in general a
closed complement, in view of the structure restrictions imposed in the Theorems 2.1-2.2
we choose a Hilbert space setting. More precisely, we de�ne

X :=

{
(µ,w) :=

(
µ,

∞∑
n=1

an cos(nx)
)
: µ, an ∈ R and

∞∑
n=1

a2nn
6 <∞

}
,

Y :=

{ ∞∑
n=0

an cos(nx) : an ∈ R and
∞∑
n=1

a2nn
2 <∞

}
,

which are identi�ed as subspaces of H3(S) and H1(S), respectively (S being the unit circle
R/(2πZ)). Therefore, they are endowed with the usual Sobolev norms. We de�ne now
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O := {(µ,w) ∈ X : w′2 + (1 + Ch(w′))2 > 0}, which is a zero neighborhood of X, and
the operator F : R2 ×O ⊂ R2 ×X → Y by the relation

F (λ, γ, (µ,w)) :=

(
λ+ γ

(
[w2]

2h
− w + Ch(ww′)− wCh(w′)

))2

− 2σ
w′′ + w′′Ch(w′)− w′Ch(w′′)(
w′2 + (1 + Ch(w′))2

)1/2
−
(
λ2 + µ− 2gw

) (
w′2 +

(
1 + Ch(w′)

)2)
.

(2.19)

With this notation we have reduced the original problem to solving the equation

F (λ, γ, (µ,w)) = 0. (2.20)

We observe that the operator F is well-de�ned, it is real-analytic in all its variables and,
as noticed before, F (λ, γ, (0, 0)) = 0 for all (λ, γ) ∈ R2. Our choice for X as subspace of
H3(S) is to guarantee that the solutions (µ,w) that we �nd are of class C2+α and solve
thus the original water wave problem.

We are concerned now to verify the assumptions made in the �rst part of the paper.
As a �rst result we therefore state.

Lemma 2.3. Given (λ, γ) ∈ R2, the Fréchet derivative F(µ,w)(λ, γ, 0) : X → Y is a
Fourier multiplier. More precisely, we have

F(µ,w)(λ, γ, 0)
[(
ν,

∞∑
n=1

an cos(nx)
)]

= −ν +
∞∑
n=1

mn(λ, γ)an cos(nx) (2.21)

whereby

mn(λ, γ) = −2

(
n

tanh(nh)
λ2 + γλ− (g + σn2)

)
. (2.22)

Proof. The proof follows by using the partial di�erentiation formula

F(µ,w)(λ, γ, (µ,w))[(ν, v)] = νFµ(λ, γ, (µ,w)) + Fw(λ, γ, (µ,w))[v] (2.23)

together with the expressions for the partial derivatives

Fµ(λ, γ, (µ,w)) =−
(
w′2 +

(
1 + Ch(w′)

)2)
(2.24)

Fw(λ, γ, (µ,w))[v] =2γ

(
λ+ γ

(
[w2]

2h
− w + Ch(ww′)− wCh(w′)

))
×
(
[wv]

h
− v + Ch(vw′) + Ch(wv′)− vCh(w′)− wCh(v′)

)
− 2σ

v′′ + v′′Ch(w′) + w′′Ch(v′)− w′Ch(v′′)− v′Ch(w′′)(
w′2 + (1 + Ch(w′))2

)1/2
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+ 2σ
w′′ + w′′Ch(w′)− w′Ch(w′′)(
w′2 + (1 + Ch(w′))2

)3/2 (
w′v′ + (1 + Ch(w′))Ch(v′)

)
− 2

(
λ2 + µ− 2gw

) (
w′v′ + (1 + Ch(w′))Ch(v′)

)
+ 2gv

(
w′2 +

(
1 + Ch(w′)

)2)
. (2.25)

Setting (µ,w) = 0 in (2.23)-(2.25) and using the de�nition (2.13) we obtain the desired
assertion. �

In order to identify primary branches of bifurcations, we need to �nd the parameters
(λ, γ) for which zero is an eigenvalue of F(µ,w)(λ, γ, 0) : X → Y and whether this operator
is Fredholm of index zero. Of particular interest are in this setting the values of (λ, γ) for
which zero is double eigenvalue of F(µ,w)(λ, γ, 0) : X → Y .

Proposition 2.4. The operator F(µ,w)(λ, γ, 0) : X → Y is a Fredholm operator of index

zero for any choice of the parameters (λ, γ) ∈ R2. More precisely, de�ning the constants

λ±n := −γ
2
Tn ±

√
γ2

4
T 2
n + (g + σn2)Tn for n ∈ N \ {0}, (2.26)

γn,m :=

(
(g + σn2)Tn − (g + σm2)Tm

)2
σTnTm(Tn − Tm)(m2 − n2)

for n 6= m ∈ N \ {0}, (2.27)

whereby Tn := n−1 tanh(nh) for n ∈ N\{0}, we have that γn,m > 0, λ+n > 0, λ−n < 0, and:

(i) If λ 6∈ {λ±n : n ∈ N \ {0}}, then F(µ,w)(λ, γ, 0) is an invertible operator;

(ii) If λ = λ+n or λ = λ−n and γ2 /∈ {γn,m : m 6= n}, then mn(λ, γ) = 0 is an
eigenvalue of F(µ,w)(λ, γ, 0) and the corresponding eigenspace is one-dimensional;

(iii) If γ2 = γn,m for some m 6= n, then, depending on the sign of γ, either λ+n = λ+m
or λ−n = λ−m. Moreover, when λ+n = λ+m (resp. when λ−n = λ−m), the oper-
ator F(µ,w)(λ

+
n , γ, 0) (resp. F(µ,w)(λ

−
n , γ, 0)) has a two-dimensional kernel, while

F(µ,w)(λ
−
k , γ, 0) (resp. F(µ,w)(λ

+
k , γ, 0)), k ∈ {n,m}, has a one-dimensional kernel.

Proof. We note that the sign of the constants de�ned by (2.26) follows directly from their
de�nition, while the positivity of γn,m is implied by the property of the sequence (Tn)n
of being decreasing.

Since F(µ,w)(λ, γ, 0) is a Fourier multiplier with symbol given by (2.22), it follows
readily from the de�nition of the norms on X and Y , that the spectrum of F(µ,w)(λ, γ, 0)
consists only of the eigenvalues {−1} ∪ {mn(λ, γ) : n ∈ N \ {0}}. Moreover, because
mn(λ, γ) →n→∞ ∞ the eigenspace corresponding to each eigenvalue is �nite dimensional.
These facts together with the uniqueness of the Fourier series representation of functions
in Y ensures that

KerF(µ,w)(λ, γ, 0)⊕ ImF(µ,w)(λ, γ, 0) = Y,

which shows that F(µ,w)(λ, γ, 0) is indeed a Fredholm operator of index zero.
In order to prove (i), let us note that zero is an eigenvalue of F(µ,w)(λ, γ, 0) if and only

if mn(λ, γ) = 0 for some n ≥ 1. Solving the latter quadratic equation, we conclude that
mn(λ, γ) = 0 exactly when λ = λ+n or λ = λ−n , whereby λ

±
n are given by (2.26). This

proves (i).
For (ii), let us observe that if λ+n = λ+m or λ−n = λ−m for some n 6= m, we obtain

by using algebraic manipulations that γ2 = γn,m. Thus, if γ
2 /∈ {γn,m : m 6= n}, then
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λ+n 6= λ+m and λ−n 6= λ−m when n 6= m, and since λ+n λ
−
n < 0 we conclude that the kernel of

F(µ,w)(λ, γ, 0) is one-dimensional for any λ ∈ {λ+n , λ−n }.
Finally, the previous manipulations show that if γ2 = γn,m then either λ+n = λ+m or

λ−n = λ−m. More precisely, we have that if λ+n = λ+m when γ = γ ∈ {±√
γn,m}, then

λ−n 6= λ−m, and, when γ = −γ, then λ−n = λ−m and λ+n 6= λ+m. So, we are left to show that
there cannot be a third integer p /∈ {n,m} such that λ+n = λ+m = λ+p or λ−n = λ−m = λ−p .
This and more is shown in the next lemma. �
Lemma 2.5. We de�ne the constants

Θ± :=
gh2

3
+
γ2h3

6
∓ γh2

6

√
γ2h2 + 4gh. (2.28)

and the functions

λ±(x) := −γ
2

tanh(hx)

x
±

√
γ2

4

tanh2(hx)

x2
+ (g + σx2)

tanh(hx)

x
for x ≥ 0.

If σ ≥ Θ+ (resp. σ ≥ Θ−) then the function λ+ (resp. −λ−) is strictly increasing on
(0,∞). On the other hand, if σ < Θ+ (resp. σ < Θ−) , then the function λ+ (resp. −λ−)
has a unique local extremum in (0,∞), namely a minimum.

Proof. For the proof we refer to the Lemmas 3 and 4 in [22]. �

The local bifurcation problem for the equation (2.20) was studied in the papers [23, 22]
in the case when the kernel of the derivative F(µ,w)(λ, γ, 0) is one-dimensional. The
author uses a Hölder space setting and constructs local bifurcation curves consisting only
of solutions of (2.20). We show in this paper that if γ2 is su�ciently close to one of the
constants

γN := γN,2N (2.29)

whereby N ∈ N \ {0}, then at least one secondary bifurcation branch emerges from some
of these primary branches at a point which does not belong to the set of laminar �ow
solutions. The advantage of working in a Hilbert space context is that we can decompose
X and Y as orthogonal sums X = X1 ⊕X2 and Y = Y1 ⊕ Y2, whereby we set

X1 :=

{
(µ,w) ∈ X : w =

∞∑
n=1

an cos(2Nnx)

}
,

X2 :=

(0, w) ∈ X : w =
∑
n
2N

/∈N

an cos(nx)

 ,

Y1 :=

{
v ∈ Y : v =

∞∑
n=0

an cos(2Nnx)

}
, Y2 :=

v ∈ Y : v =
∑
n
2N

/∈N

an cos(nx)

 .

Let us motivate these decompositions: if γ0 is chosen such that γ20 = γN for some
N ∈ N, then we know from Proposition 2.4 that either λ+N = λ+2N or λ−N = λ−2N , and the
operator F(µ,w)(λ0, γ0, 0) has a two-dimensional kernel if we de�ne

λ0 :=

{
λ+2N , if λ+N = λ+2N when γ = γ0;

λ−2N , if λ−N = λ−2N when γ = γ0.
(2.30)
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Note that λ0 depends on the parameter γ and KerF(µ,w)(λ0, γ0, 0) = span{φ1, φ2},
whereby φ1 := cos(2Nx) = (0, cos(2Nx)) ∈ X1 and φ2 = cos(Nx) = (0, cos(Nx)) ∈ X2.

In order to apply the Theorem 2.1 to our setting we de�ne Õ := O∩X1 and observe that

since all the functions w ∈ Õ have the same period π/N, the function F (λ, γ, (µ,w)) has

also period π/N, cf. (2.13) and (2.19). Particularly, the restriction F : R2 × Õ → Y1 is a
well-de�ned smooth mapping, and, because φ2 ∈ X2, the operator F(µ,w) : X1 → Y1 is a
Fredholm operator of index zero. Moreover, in virtue of (2.21) and (2.22) we have

Fλ(µ,w)(λ0, γ0, 0)[φ1] =− 2

(
2

T2N
λ0 + γ0

)
cos(2Nx)

=− 2 sign(λ0)

√
γ20 +

4(g + 4σN2)

T2N
cos(2Nx), (2.31)

and we infer from (2.21) that Fλ(µ,w)(λ0, γ0, 0)[φ1] 6∈ ImF(µ,w)(λ0, γ0, 0). Since all the
assumptions needed to apply Theorem 2.1 to our equation (2.20) are satis�ed, we obtain
the following result establishing the existence of local bifurcation branches consisting only
of solutions of the (2.20) describing capillary-gravity (or only capillary when g = 0) water
waves.

Theorem 2.6 (Existence of primary bifurcation branches). There exists a smooth func-
tion

(λ, (µ,w)) : {(γ, a) : |γ − γ0| < δ, |a| < δ} → R×X1,

with δ > 0, which intersects the set of laminar solutions at (λ, (µ,w))(γ, 0) := (λ0, 0) and
has the property that for each |γ − γ0| < δ the curve Pγ := {(λ, (µ,w))(γ, a) : |a| < δ}
is a primary branch of solutions of (2.20) with w(γ, a) having minimal period π/N when
a 6= 0.

Since for every positive integer n we have γn,m →m→∞ ∞, we infer from Proposition
2.4 that m2N (λ0, γ) = 0 is a simple eigenvalue of F(µ,w)(λ0, γ, 0) : X → Y when γ 6= γ0 is
su�ciently closed to γ0. Thus, the primary bifurcation branches Pγ coincide with those
found in the papers [23, 22] by using the bifurcation theorem for simple eigenvalues of
Crandall and Rabinowitz, cf. [8]. Particularly, we know that Pγ consists of symmetric
solutions of (2.20) that have exactly one crest and trough per period. The main result
of this paper is the following theorem, showing next that if γ 6= γ0 is close to γ0, then a
secondary bifurcation curve Sγ emerges from Pγ \ {(λ0, γ, 0)}. The curve Sγ consists of
capillary-gravity (or only capillary when g = 0) water waves.

Theorem 2.7 (Existence of secondary bifurcation branches). Let δ > 0 be the constant
found in Theorem 2.6. Then, there exists ε ∈ (0, δ) and for each γ with 0 < |γ − γ0| < ε
a smooth local curve Sγ that intersects Pγ and consists only of solutions (λ, (µ,w)) of
problem (2.20) with the property that w is a function of minimal period 2π/N.

Moreover, the Wilton ripple corresponding to an arbitrary point on Sγ has exactly two
crest and troughs per period.

Proof. We �rst show that the assumptions of Theorem 2.2 are all satis�ed. In order
to check the structural assumptions (2.3)-(2.6), we observe that in our setting we have
ψ1 = φ1 = cos(2Nx) and ψ2 = φ2 = cos(Nx). Since φi ∈ Xi and ψi ∈ Yi for i = 1, 2,
the representation (2.21) together with the Proposition 2.4 ensures that (2.3)-(2.6) are
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veri�ed. Invoking (2.31) and using the following relation

Fλ(µ,w)(λ0, γ0, 0)[φ2] =− 2

(
2

TN
λ0 + γ0

)
cos(Nx)

=− 2 sign(λ0)

√
γ20 +

4(g + σN2)

TN
ψ2 6∈ ImF(µ,w)(λ0, γ0, 0) (2.32)

we see that the transversality condition (2.7) is also satis�ed.
We are left to check the non-degeneracy conditions (2.10) and (2.11). To this end, we

obtain from (2.21) that

Fγ(µ,w)(λ0, γ0, 0)
[(
ν, v
)]

=− 2λ0

∞∑
n=1

an cos(nx) ∀ (ν, v) = (ν,

∞∑
n=1

an cos(nx)) ∈ X,

and, together with the �rst equalities in (2.31) and (2.32), we see that (2.10) is equivalent
to showing that TN 6= T2N . This relation is guaranteed by the property of (TN )N of being
a decreasing sequence.

To deal with (2.11), we di�erentiate (2.24) and (2.25) once more and �nd that

F(µ,w)2(λ0, γ0, 0)[φi, φj ] =2γ20φiφj + 2σ(φ′iCh(φ′′j ) + φ′jCh(φ′′i ))
+ 2(2g − γ0λ0)

(
φiCh(φ′j) + φjCh(φ′j))

)
− 2λ20

(
φ′iφ

′
j + Ch(φ′i)Ch(φ′j)

)
+ 2γ0λ0

(
[φiφj ]

h
+ Ch((φiφj)′)

)
(2.33)

for 1 ≤ i, j ≤ 2. Since, by (2.13), for all positive integers n we have that

Ch(cos(nx)) = coth(nh) sin(nx),

Ch(sin(nx)) = − coth(nh) cos(nx)

we compute〈
F(µ,w)2(λ0, γ0, 0)[φ1, φ1]

∣∣ψ′
1

〉
= 0,

〈
F(µ,w)2(λ0, γ0, 0)[φ1, φ2]

∣∣ψ′
2

〉
= A,

whereby

A := γ20 + 2(g + σN2)

(
1

TN
+

1

T2N

)
− λ0γ0
T2N

− λ20

(
2N2 +

1

TNT2N

)
. (2.34)

Recalling (2.31), the condition (2.11) is equivalent to showing that the constant A de�ned
by (2.34) is not zero. To see this, we infer from mN (λ0, γ0) = 0 that

A =γ20 + 2(g + σN2)

(
1

TN
+

1

T2N

)
− λ0γ0
T2N

− λ20

(
2N2 +

1

TNT2N

)
=γ20 + (g + σN2)

(
2

TN
+

1

T2N

)
− 2N2λ20 −

1

T2N
mN (λ0, γ0)

=γ20 + (g + σN2)

(
2

TN
+

1

T2N

)
− 2N2λ20,
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and expressing λ20 from mN (λ0, γ0) = 0 and using (2.26) we further obtain

A =γ20 + (g + σN2)

(
2

TN
+

1

T2N
− 2N2TN

)
− 2N2TNγ0

(
−γ0

2
TN + sign(λ0)

√
γ20
4
T 2
N + (g + σN2)TN

)
.

Since 1 > N2T 2
N , it su�ces to prove that(

(1 +N2T 2
N )γ20 + (g + σN2)

1

T2N

)2

> N4T 2
Nγ

2
0

(
γ20T

2
N + 4(g + σN2)TN

)
.

However, the latter inequality is straightforward, so that we end by inferring that A > 0.
The assumptions of Theorem 2.2 being veri�ed, we conclude that there exists a constant

ε > 0 and, for each 0 < |γ − γ0| < ε, a smooth secondary branch Sγ of solutions of
(2.20) bifurcating from Pγ \ {(λ0, γ, 0)}. More precisely, there exists smooth functions
Λ,Ξ : (−ε, ε)2 → R with Ξ(0, 0) 6= 0 and such that for each γ = γ0 + θ with 0 6= |θ| < ε,
we have

Sγ := {(λ̃(γ − γ0, s), γ, (µ̃, w̃)(γ − γ0, s)) : |s| < ε}

whereby

λ̃(θ, s) := λ0 + θΛ(θ, s)

(µ̃, w̃)(θ, s) := θΞ(θ, s)φ1 + θsφ2 + ẑ(λ0 + θΛ(θ, s), γ0 + θ, θΞ(θ, s)φ1 + θsφ2).
(2.35)

Note that ẑ is the function from the Lyapunov-Schmidt reduction, cf. (2.8), and since ẑ
maps into the complement Z of span{φ1, φ2} in X, the functions w̃(θ, s) have a priori the
period 2π. However, de�ning the subspaces

X̃ :=

{
(µ,w) ∈ X : w =

∞∑
n=1

an cos(Nnx)

}
, Ỹ :=

{
v ∈ Y : v =

∞∑
n=0

an cos(Nnx)

}
,

our previous analysis ensures that the restriction F : R2 × (O ∩ X̃) → Ỹ satis�es all the
assumptions of Theorems 2.1 and Theorem 2.2. In particular, we obtain that the function

z̃ maps into the complement Z̃ of span{φ1, φ2} in X̃, and we conclude that indeed w̃(θ, s)
has minimal period 2π/N for all s 6= 0.

Finally, in order to prove that w̃(θ, s) has exactly two troughs and crests per period,
we infer from (2.35) that

(µ̃, w̃)(θ, s) := (µ̃, w̃)(θ, 0) + ((µ̃, w̃)(θ, s)− (µ̃, w̃)(θ, 0))

whereby (µ̃, w̃)(θ, 0) ∈ X1 is the point on the primary branch where the secondary bifurca-
tion occurs and has the property that the corresponding water wave solution is symmetric
and has exactly one crest and trough in each interval of length π/N , cf. [6, 34]. The sec-

ond term belongs to X̃ and is very small when s is close to zero. Restricting, if necessary,
the range for s, perturbation arguments, similar to those in [34], show that the solution
corresponding to (µ̃, w̃)(θ, s) has exactly two crests and troughs per minimal period. �
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Wilton ripples with internal critical layers. Recalling (2.18), we see that the lami-
nar �ows corresponding to the solutions (λ, γ, 0) contain stagnation points, that is �uid
particles traveling horizontally with the same speed as the wave, provided that

λ(λ+ γh) < 0. (2.36)

In fact, if (2.36) is satis�ed, then the laminar �ow solution contains a streamline consisting
only of stagnation points. Moreover, if (λ, γ, 0) belongs to a local bifurcation branch and
the linearization at this solution has a one-dimensional kernel, then the non-laminar
solutions on this branch possess a critical layer inside in the form of a Kelvin cat's eye
vortex with a stagnation point in the middle of the vortex, see e.g. [6, 26, 34]. Particularly,
if (λ0, γ0) are chosen such that (2.36) is satis�ed, then all the primary bifurcation branches
Pγ and the secondary branches Sγ consist only of solutions with exactly one critical layer
with stagnation points, provided that γ is close to γ0.

Particularly, it is clear that γ0 and λ0 need to have opposite signs for (2.36) to be
satis�ed. Since, when N → ∞, we have

γN
N3

→ 4σ

3
,

1√
N

(√
γN

2
TN +

√
γN
4
T 2
N + (g + σN2)TN

)
→

√
3σ,

1√
N

(√
γN

2
T2N +

√
γN
4
T 2
2N + (g + 4σN2)T2N

)
→

√
3σ,

we conclude that if N is large, then γ0 and λ0 have opposite signs. Thus, the scenario
(2.36) is not excluded for large N . So, assume that γ0 = −√

γN (the case γ0 =
√
γN ) is

analogous. Then, letting N → ∞, we get

λ0 =

√
γN

2
TN +

√
γN
4
T 2
N + (g + σN2)TN > 0,

and

λ0 + γ0h√
N

=
λ0 −

√
γNh√

N
→ −∞,

which proves that the condition (2.36) is satis�ed when N is su�ciently large.

Conclusion. In this paper we rigorously establish the existence of Wilton ripples that
describe �nite amplitude capillary-gravity (resp. capillary when gravity is neglected) wa-
ter waves of permanent form that possess two crests per minimal period. The setting
that we considered is that of �ows with constant vorticity. More precisely, we show that
if for a linearly sheared laminar �ow the horizontal velocity at the wave surface and the
constant vorticity match certain critical values, cf. (2.26) and (2.27), the linearized prob-
lem has the property that a mode interacts with another one having twice its frequency.
For the full nonlinear hydrodynamical problem, the higher frequency mode corresponds
to a primary curve of non-laminar water wave solutions with one crest and one trough
per period bifurcating from the curve of laminar �ows. Moreover, as a result of the reso-
nant interactions of the two modes, we establish, when the constant vorticity is closed to
the critical value mentioned before, the existence of a secondary bifurcation curve that
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emerges from the primary branch at a non-laminar solution. This local curve consists of
the Wilton ripples solutions, their wavelength being twice that of the solutions on the
primary branch.

Our analysis extends the result of Jones [16] to the case of waves with constant vorticity.
We emphasize that by adding vorticity to the water wave problem the analysis is much
more involved than in the irrotational case [16], but it confers us the advantage to keep
the surface tension coe�cient �xed throughout the analysis, a perspective which seems
daunting in case of paper [16]. A particular feature of the Wilton ripples that we have
found is that they possess, when their wavelength is small, an internal critical layer
with a stagnation point inside. This property is a hallmark of the rotational setting, as
irrotational waves cannot contain stagnation points beneath the wave surface.
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