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Abstract. We show that the parametric representation of the �ow beneath the Crapper
wave is dynamically possible, in the sense that it is a global di�eomorphism from the
parameter domain {(α, β) : α ∈ R, β > 0} to the in�nite depth �uid domain below the
surface wave y = η(x, t).

1. Introduction

Despite the everyday and overall occurence of water waves, rigorous mathematical foun-
dations of hydrodynamics were set up only in the 18th century through the works of
Bernoulli, Euler, Lagrange and d'Alembert. Although their seminal works followed by
the major achievements of Navier and Stokes in the 19th century have resulted in a tremen-
dous development of mathematical sciences there are still many unturned stones in the
�eld of �uid dynamics even in the idealised situation treating a perfect �uid. One of the
shortcomings of the water wave theory is the existence of very few explicit solutions for the
governing equations of a perfect �uid with a non-�at free surface. The �rst such explicit
solution in the case of gravity waves was described by Gerstner [12] back in 1802. However,
the �rst rigorous analysis of Gerstner's wave was performed by Constantin [2] who showed
that the evolution of the �uid domain under the passage of Gerstner's wave is consistent
with the governing equations. Adapting the methods from [2], the same author gave in [1]
an explicit solution of the governing equations for the propagation of edge-waves along
sloping beaches. In spite of the recent advance concerning the determination of particle
trajectories [3, 5, 16], existence theorems for waves with continuous or discontinuous vor-
ticity [7, 8], regularity of the free surface [6], symmetry [4], the treatment of water waves
allowing stagnation points [9,14], explicit solutions have not been found until the middle of
the 20th century in the context of pure capillary waves, i.e., when the only restorative force
acting on the �uid is surface tension. We are refering here to the works of Crapper [10] for
in�nite depth and of Kinnersley [15] in the case of �nite depth, see also [11]. After brie�y
summarizing in Section 2 the equations of motions we prove in Section 3 that Crapper's
solutions provide a global di�eomorphism from {(α, β) : α ∈ R, β > 0} to the in�nite depth
�uid domain below the surface wave y = η(x, t).

2. Equations of motion
eqmotion

We consider two-dimensional irrotational travelling waves on the surface of an ideal �uid
of in�nite depth. We neglect gravity and assume that the only restorative force applied
to the �uid is surface tension. We assume the waves to be two dimensional, which means
that the motion is identical in any direction parallel to the crest line. We therefore need to
consider a cross section of the �ow in a direction perpendicular to the crest line. Following
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Crapper [10] we choose the Cartesian axes so that x is measured horizontally to the left and
y points vertically downwards. The �uid is steady and moving in the positive x direction
with the wave speed c. We summarize now the water wave equations.
The irrotationality of the �ow implies the existence of the velocity potential of the �ow φ
which satis�es the equation of motion

∂2φ

∂x2
+
∂2φ

∂y2
= 0 (2.1) harm

Moreover, we also work with the stream function ψ satisfying also equation (2.1). At the
free surface the �ow satis�es Bernoulli's condition

P

ρ
+

1

2
|∇φ|2 = 1

2
c2, (2.2) Bernoulli

where P represents the di�erence of pressure from its hydrostatic value, while ρ denotes
the constant density. At in�nite depth there are further conditions, namely{

φx = ψy → c
φy = −ψx → 0,

as y → ∞. (2.3) infdeptcond

Since the surface tension creates a di�erence of pressure along the free surface we have that

P − P0 =
σ

R
,

whereby P is the pressure in the �uid at the surface, P0 is the atmospheric pressure, σ
denotes the coe�cient of surface tension, and R is the radius of curvature of the surface,
counted positive when the center of curvature lies inside the �uid. For positive R we have

1

R
=

y′′(x)

(1 + y′(x)2)
3
2

.

Hence, the Bernoulli's condition becomes

σ

ρ

y′′(x)

(1 + y′(x)2)
3
2

+
1

2
|∇φ|2 = 1

2
c2, (2.4) newBern

at the free surface. The problem simpli�es if we set (φ, ψ) as new independent variables
and (τ, θ) new dependent variables, where τ = log q, q = |∇φ| and (q cos θ, sin θ) are the
velocity components. In the new notation the equation (2.4) can be written as

σ

ρ
q
∂θ

∂φ
+

1

2
q2 =

1

2
c2, on ψ = 0.

Taking σ/ρc2 as unit of length and c as unit of velocity we obtain the surface boundary
condition in the variables (φ, ψ) as

∂θ

∂φ
= − sinh τ, on ψ = 0. (2.5)

From the holomorphy property of τ and θ the water wave problem is �nally recasted as the
problem 

∂2τ
∂φ2

+ ∂2τ
∂ψ2 = 0,

∂τ
∂ψ = − sinh(τ), on ψ = 0,

τ → 0, θ → 0 as ψ → ∞.

(2.6) rec
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Denoting z = x+ iy and w = φ+ iψ and returning to the original length and velocity units
it is proved in [10] that the solutions to the capillary wave problem are given by

z =
w

c
− 4i

k

1

1 +Ae
ikw
c

+
4i

k
, (2.7) zw

where A and k ≥ 0 are constants such that A2 =
k− ρc2

σ

k+ ρc2

σ

, the latter relation accounting for

Bernoulli's condition. From (2.7) we see that an increse of w by 2πc
k results in an increase

of z by 2π
k , therefore for the wavelength λ we have

λ =
2π

k
= 2π

(
1−A2

1 +A2

)
σ

ρc2
. (2.8) wavel

The solutions in (2.7) can equivalently be written as

x
λ = α− 2

π
Ae−2πβ sin(2πα)

1+2Ae−2πβ cos(2πα)+A2e−4πβ

y
λ = β − 2

π
1+Ae−2πβ cos(2πα)

1+2Ae−2πβ cos(2πα)+A2e−4πβ + 2
π

(2.9) Crappermap

where α = φ
cλ , β = ψ

cλ . It was shown in [17] that under certain positivity assumptions they
are the only solutions to the capillary water wave problem.

Remark 2.1. If a denotes the amplitude of the wave, de�ned as the vertical height between
trough and crest, it is a consequence of the formula (2.9) that

a

λ
=

4|A|
π(1−A2)

. (2.10) waveampl

3. Crapper's wave as a global diffeomorphism
diffeo

Crathm Theorem 3.1. The map (2.9) de�nes for all A ∈ [−3 + 2
√
2, 3 − 2

√
2] a di�eomorphism

from the domain {(α, β) : α ∈ R, β > 0} in the (x, y) plane to the domain below the surface

y = η(x).

Proof. We begin by showing that (2.9) provides a local di�eormorphism from the domain
{(α, β) : α ∈ R, β > 0} onto its image. The di�erential of (2.9) at a �xed point (α, β) with
β > 0 equals(
1 0
0 1

)
−4Ae−2πβ

b2

(
cos(2πα)(1 +A2e−4πβ) + 2Ae−2πβ sin(2πα)(A2e−4πβ − 1)

− sin(2πα)(A2e−4πβ − 1) cos(2πα)(1 +A2e−4πβ) + 2Ae−2πβ

)
,

(3.1) diff

with b = 1 + 2Ae−2πβ cos(2πα) +A2e−4πβ .

b Remark 3.2. It is not di�cult to see that b > 0. Indeed, denoting x = Ae−2πβ it follows
that b = x2+2x cos(2πα)+1. The discriminant of the latter second order expression equals
4 cos2(2πα)−4 < 0 for α ∈ (0, 1)\{1

2}. If α = 0 or α = 1
2 we see that b = 0 is equivalent to

x = 1 or x = −1. However, since β ≥ 0, we have that |x| = |A|e−2πβ ≤ |A| ≤ 1. From the
formula for A we see that |A| = 1 if and only if A = ±i. But then x = ±1 ⇔ ±ie−2πβ = ±1,
which is impossible. This shows that b > 0 for all α ∈ [0, 1) and for all β > 0.
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Hence the determinant of the matrix in (3.1) is

d =

(
1− 4Ae−2πβ

b2

(
cos(2πα)(1 +A2e−4πβ) + 2Ae−2πβ

))2

+

(
4Ae−2πβ

b2

)2 (
sin(2πα)(A2e−4πβ − 1)

)2
(3.2)

By the same argument as in Remark 3.2 we have that A2e−4πβ − 1 6= 0. Therefore we see
at once that d > 0 for all A 6= 0, α ∈ (0, 1) \ 1

2 and all β ≥ 0. If α = 1
2 we have with

x = Ae−2πβ that

d =
1

b4
(
(1− x)4 − 4x(−1− x2 + 2x)

)2
=

1

b4
(
(1− x)4 + 4x(1− x)2

)2
=

1

b4
(
(1− x)2(1 + x)2

)2
> 0,

(3.3)

since |x| ≤ |A| ≤ 3− 2
√
2 < 1 for all β ≥ 0. The case α = 0 can be treated similarly. Due

to periodicity we then see that d > 0 for all α ∈ R, β ≥ 0 and all A ∈ (−3+2
√
2, 3− 2

√
2).

From the inverse function theorem we infer that (2.9) is a local di�eomorphism from {(α, β) :
α ∈ R, β > 0} onto its image. We now want to prove that (2.9) is a global di�eomorphism.
To prove the injectivity we set ξ = (α, β) and we write the right-hand side of (2.9) as
F (ξ) = ξ + f(ξ), where where

f(α, β) =

(
f1(α, β)
f2(α, β)

)
=

 − 2
π

Ae−2πβ sin(2πα)
1+2Ae−2πβ cos(2πα)+A2e−4πβ

− 2
π

1+Ae−2πβ cos(2πα)
1+2Ae−2πβ cos(2πα)+A2e−4πβ + 2

π

 .

Borrowing a technique from [2] we have that

|F (ξ2)− F (ξ1)| ≥ |ξ2 − ξ1| − |f(ξ2)− f(ξ1)|

≥ |ξ2 − ξ1| −
(
max
s∈[0,1]

||Dfsξ1+(1−s)ξ2 ||
)
|ξ2 − ξ1|

(3.4) essest

where ||Df(α,β)|| = maxθ∈[0,2π] |Df(α,β)(cos θ, sin θ)| and

Df(α,β) = −4Ae−2πβ

b2

(
cos(2πα)(1 +A2e−4πβ) + 2Ae−2πβ sin(2πα)(A2e−4πβ − 1)

− sin(2πα)(A2e−4πβ − 1) cos(2πα)(1 +A2e−4πβ) + 2Ae−2πβ

)
.

(3.5)
We then have

|Df(α,β)(cos θ, sin θ)| =
4|A|e−2πβ

b2
|aαβ(θ), bαβ(θ)|,

with

aαβ(θ) = cos(2πα+ θ) +A2e−4πβ cos(2πα− θ) + 2Ae−2πβ cos θ,

bαβ(θ) = sin(2πα+ θ) +A2e−4πβ sin(θ − 2πα) + 2Ae−2πβ sin θ.
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Hence

a2αβ(θ) + b2αβ(θ) = 1 + (A2e−4πβ)2 + 4A2e−4πβ

+ 2A2e−4πβ(cos(θ + 2πα) cos(θ − 2πα) + sin(θ + 2πα) sin(θ − 2πα))

+ 4A3e−6πβ(cos(θ − 2πα) cos θ + sin(θ − 2πα) sin θ)

+ 4Ae−2πβ(cos(θ + 2πα) cos θ + sin(θ + 2πα) sin θ)

= 1 + (A2e−4πβ)2 + 4A2e−4πβ + 2A2e−4πβ(2 cos2(2πα)− 1)

+ 4A3e−6πβ cos(2πα) + 4Ae−2πβ cos(2πα)

= 1 + (A2e−4πβ)2 + 4A2e−4πβ cos2(2πα) + 2A2e−4πβ

+ 4A3e−6πβ cos(2πα) + 4Ae−2πβ cos(2πα)

= b2.
(3.6)

Henceforth,

|Df(α,β)(cos θ, sin θ)| =
4|A|e−2πβ

b2
· b = 4|A|e−2πβ

b
,

for all α ∈ [0, 1), β ≥ 0 and for all θ ∈ [0, 2π]. Denoting ξ1 = (α1, β1) and ξ2 = (α2, β2) we
get that

max
s∈[0,1]

||Dfsξ1+(1−s)ξ2 || =
4|A|e−2πβ0

b(α0, β0)
, (3.7) maxnorm

where α0 ∈ [min(α1, α2),max(α1, α2)], β0 ∈ [min(β1, β2),max(β1, β2)] and b(α0, β0) is ob-
tained by replacing α with α0 and β with β0 in the formula for b. Looking at (3.4) and
(3.7) we see that

|F (ξ2)− F (ξ1)| ≥
(
1− 4|A|e−2πβ0

b(α0, β0)

)
|ξ2 − ξ1|, (3.8)

for all ξ1 = (α1, β1) and ξ2 = (α2, β2) with α1, α2 ∈ [0, 1) and β1, β2 ≥ 0. Therefore, in
order to prove injectivity, we only need to show that b > 4|A|e−2πβ for all α ∈ [0, 1) and
all β > 0. We distinguish two cases.
Case A ∈ [0, 3− 2

√
2]:

We note that b > 4|A|e−2πβ is equivalent to

A2e−4πβ + (2 cos(2πα)− 4)Ae−2πβ + 1 > 0, (3.9) secordineq

which, after setting x = Ae−2πβ , is equivalent to showing

x2 + (2 cos(2πα)− 4)x+ 1 > 0, (3.10)

for all α ∈ [0, 1) and all β > 0. Note that

x1(α) := 2− cos(2πα)−
√

(1− cos(2πα))(3− cos(2πα))

is the smallest of the two positive roots of the equation x2 + (2 cos(2πα) − 4)x + 1 = 0.
Since the function

[−1, 1] → R, t→ 2− t−
√

(1− t)(3− t)

is strictly increasing, we have that

min
α∈[0,1)

x1(α) = 3− 2
√
2 ∈ (0, 1).
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Because A ∈ [0, 3− 2
√
2] we see, since β > 0, that x = Ae−2πβ ∈ [0, 3− 2

√
2) and therefore

(3.9) is veri�ed for all α ∈ [0, 1) and all β > 0.
Case A ∈ [−3 + 2

√
2, 0):

The inequality b > 4|A|e−2πβ is equivalent to

A2e−4πβ + (2 cos(2πα) + 4)Ae−2πβ + 1 > 0. (3.11) secsecordineq

As before, with the notation y = Ae−2πβ we see that (3.11) reduces to showing that

y2 + (2 cos(2πα) + 4)y + 1 > 0

for all α ∈ [0, 1) and all β > 0. Note that

y2(α) := −2− cos(2πα) +
√

(1 + cos(2πα))(3 + cos(2πα))

is the greatest of the two negative roots of the equation y2 + (2 cos(2πα) + 4)y + 1 = 0. It
turns out that

max
α∈[0,1)

y2(α) = −3 + 2
√
2 ∈ (−1, 0).

Since A ∈ [−3+ 2
√
2, 0) we have, since β > 0, that y = Ae−2πβ ∈ (−3+ 2

√
2, 0] and (3.11)

is veri�ed for all α ∈ [0, 1) and all β > 0.
In order to prove surjectivity we appeal like in [13] to the �Invariance of the Domain�
theorem. We only state this theorem here and refer the interested reader to [19]. Let Ω be
an open set (not necessarily bounded) of Rn. If F : Ω → Rn is one to one and continuous,
then F (Ω) is open and F (∂Ω) = ∂F (Ω).
To apply the above mentioned Invariance of the Domain Theorem we set Ω := {(α, β) :
β > 0} and let F be the map (2.9). We then infer that F (Ω) is open and that the boundary
of F (Ω) is F (∂Ω) which is the curve

{
(
λ

(
α− 2

π

A sin(2πα)

1 +A2 + 2A cos(2πα)

)
, λ

(
2

π
− 2

π

1 +A cos(2πα)

1 +A2 + 2A cos(2πα)

))
: α ∈ R},

(3.12) frees

obtained by setting β = 0 in (2.9), i.e., the free surface, which does not have self intersections
as we can infer from the injectivity up to β = 0 of the map (2.9). Since the boundary of
F (Ω) is the free surface it follows that F (Ω) is one of the domains separated by it. Putting
β = ∞ it follows that y = ∞. Therefore F (Ω) is the domain which contains y = ∞, namely
the water domain. This shows the surjectivity of the map (2.9).
Adding the previous considerations we have altogether that (2.9) is a global di�eomorphism.

�

A few remarks are in order.

Remark 3.3. A glance at the formula (2.10) shows that for the wave amplitude a of the
�ows that we found to be dynamically possible the following inequality is true

0 ≤ a ≤
√
2

2π
λ.

Remark 3.4. It is a fact ( [18], page 46) that Crapper's wave can be represented as y = η(x)
with a single valued function η if and only if |A| <

√
2− 1. It would be then interesting to

know whether we can extend the result of Theorem 3.1 beyond the value 3− 2
√
2.
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Remark 3.5. We want now to determine the value of A for which the �ows given by the
map (2.9) have the �at free surface. Setting β = 0 in formula (2.9) we have for the vertical
coordinate y of a point on the free surface the formula

y

λ
=

2

π
− 2

π

1 +A cos(2πα)

1 +A2 + 2A cos(2πα)
(3.13)

We then see that
2

π
− 2

π

1 +A cos(2πα)

1 +A2 + 2A cos(2πα)

is constant if and only if

1 +A cos(2πα)

1 +A2 + 2A cos(2πα)
= m = const,

which is true if and only if (2m − 1)A = 0. The case m = 1
2 leads to A2 = 1 which, due

to (2.8), leads further to λ = 0, which is impossible. It remains the case A = 0 which gives
the �ow with the �at free surface x = λα (α ∈ R), y = 0.

References

[1] A. Constantin. Edge waves along a sloping beach. J. Phys. A, 34(45):9723�9731, 2001.
[2] A. Constantin. On the deep water wave motion. J. Phys. A, 34(7):1405�1417, 2001.
[3] A. Constantin. The trajectories of particles in Stokes waves. Invent. Math., 166(3):523�535, 2006.
[4] A. Constantin, M. Ehrnström, and E. Wahlén. Symmetry of steady periodic gravity water waves with

vorticity. Duke Math. J., 140(3):591�603, 2007.
[5] A. Constantin and J. Escher. Particle trajectories in solitary water waves. Bull. Amer. Math. Soc.

(N.S.), 44(3):423�431 (electronic), 2007.
[6] A. Constantin and J. Escher. Analyticity of periodic traveling free surface water waves with vorticity.

Ann. of Math. (2), 173(1):559�568, 2011.
[7] A. Constantin and W. Strauss. Exact steady periodic water waves with vorticity. Comm. Pure Appl.

Math., 57(4):481�527, 2004.
[8] A. Constantin and W. Strauss. Periodic traveling gravity water waves with discontinuous vorticity.

Arch. Ration. Mech. Anal., 202(1):133�175, 2011.
[9] A. Constantin and E. Varvaruca. Steady periodic water waves with constant vorticity: regularity and

local bifurcation. Arch. Ration. Mech. Anal., 199(1):33�67, 2011.
[10] G. D. Crapper. An exact solution for progressive capillary waves of arbitrary amplitude. J. Fluid Mech.,

2:532�540, 1957.
[11] D. G. Crowdy. A new approach to free surface Euler �ows with capillarity. Stud. Appl. Math., 105(1):35�

58, 2000.
[12] F. Gerstner. Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichpro�le. Ann. Phys.,

2:412�445, 1809.
[13] D. Henry. On Gerstner's water wave. J. Nonlinear Math. Phys., 15(suppl. 2):87�95, 2008.
[14] D. Henry and B.-V. Matioc. On the existence of steady periodic capillary-gravity strati�ed water waves.

Ann. Scuola Norm. Sup. Pisa, 2013. to appear.
[15] W. Kinnersley. Exact large amplitude capillary waves on sheets of �uid. J. Fluid Mech., 77(2):229�241,

1976.
[16] A.-V. Matioc. On particle trajectories in linear water waves. Nonlinear Anal. Real World Appl.,

11(5):4275�4284, 2010.
[17] H. Okamoto. Uniqueness of Crapper's pure capillary waves of permanent shape. J. Math. Sci. Univ.

Tokyo, 12(1):67�75, 2005.
[18] H. Okamoto and M. Sh	oji. The mathematical theory of permanent progressive water-waves, volume 20

of Advanced Series in Nonlinear Dynamics. World Scienti�c Publishing Co. Inc., River Edge, NJ, 2001.
[19] E. H. Rothe. Introduction to various aspects of degree theory in Banach spaces, volume 23 of Mathe-

matical Surveys and Monographs. American Mathematical Society, Providence, RI, 1986.



8 C. I. MARTIN

Institut für Mathematik, Universität Wien, Nordbergstraÿe 15, 1090 Wien, Austria

E-mail address: calin.martin@univie.ac.at


