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Abstract. We derive the dispersion relation for periodic traveling waves propagating
at the surface of water with a layer of constant non-zero vorticity situated between two
layers of irrotational �ow. Due to the complicated nature of the dispersion relation-a
fourth order algebraic equation with intricate coe�cients-we also give an estimate of a
very simple form involving only the levels at which the vorticity has jumps. Our formula
generalizes a corresponding one from [5].

1. Introduction

The subject of this paper lies within the broader area of nonlinear �ows with vorticity
whose relatively recent rigorous development is due to the complexity of the problem cf.
[33]. Even in the framework of irrotational �ows substantial achievements appeared just in
the last decades with the extensive studies of the Stokes waves [34] and the �ow beneath
them concerning particle trajectories, behavior of the pressure [2, 3, 7, 12]. Allowing for
vorticity in the problem not only adds �avor to the mathematical problem but also de-
scribes physically relevant phenomena like wave-current interactions cf. [4, 26, 33] whose
study have not had a �rm theoretical basis until relatively recently through [11] where the
existence of small and large amplitude steady periodic gravity water waves with a general
(regular) vorticity distribution was proved. The richness of the subject is highlighted by
the numerous papers that followed [11] and treated topics ranging from symmetry [8, 9, 31],
stability [14], regularity of the free surface and of the stream lines [10, 17, 21, 22, 37], strat-
i�cations [18, 25, 36] to features like stagnation points and critical layers [15, 16, 27, 28, 35]
or the presence of a singular (merely bounded or piece-wise constant) vorticity distribution
[13, 30, 32].
In this paper we address the case of an interior layer of constant non zero vorticity sur-
rounded by irrotational �ow. This situation corresponds to the case of a strong undercur-
rent that does not extend to the bed. The Equatorial Undercurrent in the Paci�c Ocean is
an example of such an occurrence - see [6] for a discussion of the suitability of the constant
vorticity assumption in this setting.
The dispersion relation for small-amplitude waves indicates how the relative speed of the
wave at the free surface varies with respect to certain parameters like the wave-length, the
mean depth of the �ow, and-in the case of a piece-wise constant vorticity like the one we
consider here-the position of vorticity jumps. For the case of �ows with constant vorticity
the �rst accounts of the dispersion relation are due to Thompson [33] and Biesel [1]. As
far as our paper is concerned we derive here the dispersion relation for small-amplitude
two-dimensional steady periodic gravity water waves which propagate over a �at bed and
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have a discontinuous (piece-wice constant) vorticity distribution. The discontinuity we
consider here has the following form: we assume that there is a uniform layer of constant
non-zero vorticity which separates an irrotational �ow adjacent to the free surface from an-
other irrotational layer adjacent to the �at bed. The dispersion relation we obtain recovers
the corresponding formula (23) from [5] for the case of a layer of constant non vanishing
vorticity adjacent to the �at bed within an irrotational �ow as well as the dispersion re-
lation (81) from [13] in the context of a layer of constant non-zero vorticity adjacent to
the free surface above �uid in irrotational �ow. The existence of steady two-dimensional
periodic water waves of small and large amplitude in a �ow with an arbitrary bounded
(but discontinuous) vorticity- thus, incorporating the kind of waves we consider here-was
proven in [13] in the framework of a �xed mass �ux and in [20] in the context of a �xed
mean depth. Moreover, it was shown [23, 24] that the dispersion relations corresponding
to the approach in [20] coincide with those in [13] and [5].
It is worth to mention that the dispersion relation for capillary-gravity waves for the sit-
uation of a layer of vorticity adjacent to the surface above irrotational �uid as well as for
the case of an isolated layer of vorticity adjacent to the �at bed was obtained in [29].

2. Presentation of the problem

We will be working here with two-dimensional steady periodic waves which travel over a
rotational, inviscid and incompressible �uid propagating in the positive x-direction over the
�at bed y = −d (for some d > 0) and whose free surface y = η(x) is a small perturbation
of the �at free surface y = 0. In a reference frame moving in the same direction as the
wave with wave speed c > 0 and assuming that the only restoring force acting upon the
�uid is gravity, the equations of motion are the Euler's equations{

(u− c)ux + vuy = −Px

(u− c)vx + vvy = −Py − g,
(2.1)

together with the incompressibility condition

ux + vy = 0, (2.2)

whereby (u, v) denotes the velocity �eld, P is the pressure and g is the gravitational
constant. We will work under the assumption that (u, v), P and the surface wave pro�le
x → η(x) are periodic in the variable x and for simplicity we choose the period L = 2π.
The vorticity of the �ow is

ω := uy − vx.

Associated with equations (2.1) and (2.2) are the kinematic boundary conditions and the
dynamic boundary condition. The kinematic boundary conditions take the form{

v = (u− c)ηx on y = η(x)
v = 0 on y = −d (2.3)

and represent essentially a necessary and su�cient condition for the �ow to move along a
boundary but not across/through the boundary. The dynamic boundary condition

P = Patm on y = η(x), (2.4)

decouples the motion of the air above the free surface from that of the water. Here P
represents pressure, Patm being the constant atmospheric pressure. We refer the interested
reader to [4] for details concerning the validity of (2.1)-(2.4). We seek further to reduce
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the number of unknowns and introduce the stream function ψ de�ned (up to a constant)
by the relations

ψx = −v, ψy = u− c.

One more assumption, namely

u < c throughout the fluid, (2.5)

expressing the absence of stagnation points in the �ow, ensures cf. [4, 11] that the vorticity
ω is a single-valued function of ψ, i.e.,

ω(x, y) = γ(−ψ(x, y)),

which �nally yields the reformulation of (2.1)-(2.4) as the free boundary value problem
∆ψ = γ(−ψ) in −d < y < η(x),

|∇ψ|2 + 2g(y + d) = Q on y = η(x),
ψ = 0 on y = η(x),
ψ = −p0 on y = −d,

(2.6)

where Q is a constant related to the total head, and p0 < 0 is a constant representing the
relative mass �ux, given by

p0 =

∫ η(x)

−d
(u(x, y)− c) dy.

It is now customary to transform the free boundary value problem (2.6) into a problem in
the �xed domain Ω := [−π, π]× [p0, 0]. This is achieved by means of the partial hodograph
transform

q(x, y) = x, p(x, y) = −ψ(y) (2.7)

which, due to assumption (2.5), provides a di�eomorphism from the �uid domain to Ω and
renders the problem (2.6) into the quasilinear elliptic boundary value problem

(1 + h2q)hpp − 2hphqhpq + h2phqq − γh3p = 0 in Ω,

1 + h2q + (2gh−Q)h2p = 0 on p = 0,
h = 0 on p = p0,

(2.8)

where the unknown function h de�ned on Ω by

h(q, p) := y + d

represents the height above the �at bed and is even and of period 2π in the q-variable.
The discontinuous vorticity we work with here requires the reformulation of (2.8) in a week
form. This was achieved in [13] by putting (2.8) in the week formulation

{
1+h2

q

2h2
p

+ Γ(p)
}
p
−
{

hq

hp

}
q

= 0 in Ω,

1+h2
q

2h2
p

+ gh = Q
2 on p = 0,

h = 0 on p = 0,

(2.9)

whereby Γ is de�ned by

Γ(p) =

∫ p

0
γ(s) ds, p ∈ [p0, 0].
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Remark 2.1. In the formula above the division by hp is possible because of the elliptic
non-degeneracy condition

hp > 0 in Ω,

which is in fact equivalent to the absence of stagnation points expressed by (2.5).

By a solution of (2.9) we understand a function h ∈ W 2,r
per ⊂ C1,α

per , with r >
2

1−α , (for a

�xed α ∈ (1/3, 1)) that is a generalized solution cf. [19], Section 8. A family of laminar
solutions, i.e. parallel shear �ows with �at free surfaces, parametrized by λ > 2max[p0,0] Γ
is given by

H(p) := H(p, λ) =

∫ p

0

ds√
λ− 2Γ(s)

+
Q− λ

2g
∈ C1,α([p0, 0]) (2.10)

cf. [13]. The parameter λ is related to wave speed at the �at free surface y = 0 of the
laminar �ow by the formula

√
λ = (c− u)|y=0 =

1

Hp(0)
,

and to Q through the relation ∫ 0

p0

ds√
λ− 2Γ(s)

=
Q− λ

2g
.

The considerations in [13] show that the necessary and su�cient condition for the existence
of waves of small amplitude that are perturbations of the laminar �ow solutions (2.10) is
that the Sturm-Liouville problem (a3Up)p = aU in (p0, 0),

a3Up = gU at p = 0,
U = 0 at p = p0

(2.11)

has a nontrivial solution U ∈ C1,α(p0, 0), U ≡/ 0. Here a(λ, p) =
√
λ− 2Γ(p) ∈ Cα([p0, 0]).

We will study in the next section the problem (2.11) for the case when the �ow has a layer
of constant non vanishing vorticity between two other layers of irrotational �ow.

3. The dispersion relation

Let p1, p2 ∈ [p0, 0] such that p1 < p2. We consider a current of constant vorticity γ 6= 0
in the middle layer corresponding to p ∈ [p1, p2] and zero vorticity in the lower and upper
layers corresponding to p ∈ [p0, p1] and to p ∈ [p2, 0], respectively. We then have

Γ(p) =

 0, p ∈ [p2, 0],
γ(p− p2), p ∈ [p1, p2],
γ(p1 − p2), p ∈ [p0, p1],

(3.1)

and therefore

a(p) =


√
λ, p ∈ [p2, 0],√

λ− 2γ(p− p2), p ∈ [p1, p2],√
λ− 2γ(p1 − p2), p ∈ [p0, p1].

(3.2)

We are looking for a function U ∈ C1,α(p0, 0) subject to (2.11). Denoting

u := U |[p0,p1], v := U |[p1,p2] w := U |[p2,0]
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it follows that the functions u, v, w will have to satisfy

(a3up)p = au, for p ∈ (p0, p1), (3.3)

(a3vp)p = av, for p ∈ (p1, p2), (3.4)

(a3wp)p = aw, for p ∈ (p2, 0), (3.5)

together with the compatibility conditions

u(p1) = v(p1), up(p1) = vp(p1), (3.6)

v(p2) = w(p2), vp(p2) = wp(p2), (3.7)

and the boundary conditions

u(p0) = 0, (3.8)

(a3wp)(0) = gw(0). (3.9)

Since a is constant on [p0, p1], equation (3.3) becomes upp = a−2u with the general solution

u(p) = q1 cosh

(
p√

λ− 2γ(p1 − p2)

)
+ q2 sinh

(
p√

λ− 2γ(p1 − p2)

)
,

for some constants q1, q2 ∈ R. From the boundary condition (3.8) we deduce that

u(p) = c sinh

(
p− p0√

λ− 2γ(p1 − p2)

)
, (3.10)

with c being a constant.
To solve equation (3.4) for v on [p1, p2] we set

v =
2γ

a(p)
ṽ

(
a(p)

γ

)
, p ∈ [p1, p2].

We �nd �rst that

vp =
2γ2

a3(p)
ṽ

(
a(p)

γ

)
− 2γ

a2(p)
ṽ′
(
a(p)

γ

)
, (3.11)

and

(a3vp)p = 2γṽ′′
(
a(p)

γ

)
.

Therefore, the equation (3.4) yields ṽ′′(s) = ṽ(s) for s = a(p)
γ . Therefore,

v(p) =
2γ

a(p)

(
c1 cos

(
a(p)

γ

)
+ c2 sinh

(
a(p)

γ

))
, p ∈ [p1, p2], (3.12)

for some constants c1, c2 ∈ R, whereby a(p) =
√
λ− 2γ(p− p2) for all p ∈ [p1, p2].

Solving for w in (3.5) on [p2, 0] we �nd the general solution

w(p) = α1 cosh

(
p√
λ

)
+ α2 sinh

(
p√
λ

)
, (3.13)
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for some constants α1, α2 ∈ R.
The compatibility conditions (3.7) can be written as:

α1 cosh
(

p2√
λ

)
+ α2 sinh

(
p2√
λ

)
= 2γ√

λ

[
c1 cosh

(√
λ
γ

)
+ c2 sinh

(√
λ
γ

)]
α1√
λ
sinh

(
p2√
λ

)
+ α2√

λ
cosh

(
p2√
λ

)
= 2γ2

λ
√
λ

[
c1 cosh

(√
λ
γ

)
+ c2 sinh

(√
λ
γ

)]
−2γ

λ

[
c1 sinh

(√
λ
γ

)
+ c2 cosh

(√
λ
γ

)] (3.14)

and the compatibility conditions (3.6) read as
c sinh

(
p1−p0
a(p1)

)
= 2γ

a(p1)

[
c1 cosh

(
a(p1)
γ

)
+ c2 sinh

(
a(p1)
γ

)]
,

c
a(p1)

cosh
(
p1−p0
a(p1)

)
= 2γ2

a3(p1)

[
c1 cosh

(
a(p1)
γ

)
+ c2 sinh

(
a(p1)
γ

)]
,

− 2γ
a2(p1)

[
c1 sinh

(
a(p1)
γ

)
+ c2 cosh

(
a(p1)
γ

)]
,

(3.15)

which after setting

θ :=
a(p1)

γ
, ρ :=

p1 − p0
a(p1)

becomes{
c sinh(ρ) = 2

θ [c1 cosh(θ) + c2 sinh(θ)]
c cosh(ρ) = 2

θ2
[c1 cosh(θ) + c2 sinh(θ)]− 2

θ [c1 sinh(θ) + c2 cosh(θ)].
(3.16)

Solving for c1, c2 in (3.16) we �nd

c1 =
c

2
[θ sinh(ρ+ θ)− sinh(ρ) sinh(θ)] (3.17)

c2 =
c

2
[−θ cos(ρ+ θ) + sinh(ρ) cosh(θ)] (3.18)

We intend now to express the compatibility conditions in a more transparent way. We set
d1 to be the average depth corresponding to p1 and d2 the average depth corresponding to
p2. At the bifurcation point we have a horizontal �uid velocity u that is only a function of
y, with uy = ω and (c − u)(0) =

√
λ. Therefore, (c − u)(y) − (c − u)(0) =

∫ y
0 (−ω(s)) ds.

Thus,

(c− u)(y) =


√
λ, y ∈ [−d2, 0],√
λ− γ(y + d2), y ∈ [−d1,−d2]√
λ− γ(−d1 + d2), y ∈ [−d,−d1].

(3.19)

We use now equation (3.19) in the formulas for the relative mass �uxes and obtain

−p2 =
∫ 0

−d2

(c− u)(y) dy =

∫ 0

−d2

√
λ dy =

√
λd2. (3.20)

−p1 =
∫ 0

−d1

(c− u)(y) dy =

∫ −d2

−d1

[
√
λ− γ(y + d2)] dy +

∫ 0

−d2

√
λ dy

=
√
λd1 +

γ

2
(d1 − d2)

2. (3.21)

Writing (3.21) as an equation of degree two in d1 we obtain

γ

2
d21 + (

√
λ− γd2)d1 +

γ

2
d22 + p1 = 0 (3.22)
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with the discriminant ∆ = λ− 2γ(p1 − p2). Thus,

d1 =
−
√
λ+ γd2 ±

√
λ− 2γ(p1 − p2)

γ
,

which implies that

d1 − d2 =
−
√
λ±

√
λ− 2γ(p1 − p2)

γ
. (3.23)

Using that p1 < p2 we have that

√
λ−2γ(p1−p2)−

√
λ

γ > 0 irrespective of the sign of γ. Since

d1 > d2 only the plus sign is possible in relation (3.23). Therefore

d1 − d2 =

√
λ− 2γ(p1 − p2)−

√
λ

γ
=
a(p1)− a(p2)

γ
(3.24)

A calculation reveals that the total mass �ux equals

−p0 =
∫ 0

−d
(c− u)(y) dy =

√
λd− γ(d2 − d1)(d− d1) +

γ

2
(d2 − d1)

2. (3.25)

From (3.21) and (3.25) we obtain now that

p1 − p0 = [
√
λ+ γ(d1 − d2)](d− d1) =

√
λ− 2γ(p1 − p2)(d− d1),

whereby the last equality above follows from (3.24). Hence, it follows from the above
relation that

p1 − p0
a(p1)

= d− d1. (3.26)

Using that p2√
λ
= −d2 we see that the system (3.14) has the simpler form

α1 cosh(d2)− α2 sinh(d2) = 2γ√
λ

[
c1 cosh

(√
λ
γ

)
+ c2 sinh

(√
λ
γ

)]
−α1 sinh(d2) + α2 cosh(d2) = 2γ2

λ

[
c1 cosh

(√
λ
γ

)
+ c2 sinh

(√
λ
γ

)]
− 2γ√

λ

[
c1 sinh

(√
λ
γ

)
+ c2 cosh

(√
λ
γ

)] (3.27)

Multiplying above the �rst equation by cosh(d2), the second by sinh(d2) and adding the
results we obtain

α1 = 2γ√
λ

[
c1 cosh

(
d2 −

√
λ
γ

)
− c2 sinh

(
d2 −

√
λ
γ

)]
+2γ2

λ sinh(d2)
[
c1 cosh

(√
λ
γ

)
+ c2 sinh

(√
λ
γ

)] (3.28)

and similarly

α2 = 2γ√
λ

[
c1 sinh

(
d2 −

√
λ
γ

)
− c2 cosh

(
d2 −

√
λ
γ

)]
+2γ2

λ cosh(d2)
[
c1 cosh

(√
λ
γ

)
+ c2 sinh

(√
λ
γ

)] (3.29)

Replacing c1 and c2 from (3.17) and (3.18) we obtain the following

c1 cosh

(√
λ

γ

)
+ c2 sinh

(√
λ

γ

)
=
cθ

2
sinh

(
ρ+ θ −

√
λ

γ

)
+
c

2
sinh(ρ) sinh

(√
λ

γ

)
(3.30)

c1 cosh
(
d2 −

√
λ
γ

)
− c2 sinh

(
d2 −

√
λ
γ

)
= cθ

2 sinh
(
ρ+ θ −

√
λ
γ + d2

)
+ c

2 sinh(ρ) sinh
(√

λ
γ − θ − d2

) (3.31)
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c1 sinh
(
d2 −

√
λ
γ

)
− c2 cosh

(
d2 −

√
λ
γ

)
= cθ

2 cosh
(
ρ+ θ −

√
λ
γ + d2

)
− c

2 sinh(ρ) cosh
(√

λ
γ − θ − d2

) (3.32)

Recall now that

ρ = d− d1 (3.33)

by (3.26). Moreover,

θ −
√
λ

γ
=
a(p1)− a(p2)

γ
= d1 − d2, (3.34)

by (3.24). In view of (3.30)-(3.32), (3.33) and (3.34) we can rewrite (3.28) and (3.29) as

α1 = 2γ√
λ

[
cθ
2 sinh(d)− c

2 sinh(d− d1) sinh(d1)
]

+2γ2

λ sinh(d2)
[
cθ
2 sinh(d− d2) +

c
2 sinh(d− d1) sinh(d2 − d1)

]
,

(3.35)

and

α2 = 2γ√
λ

[
cθ
2 cosh(d)− c

2 sinh(d− d1) cosh(d1)
]

+2γ2

λ cosh(d2)
[
cθ
2 sinh(d− d2) +

c
2 sinh(d− d1) sinh(d2 − d1)

]
.

(3.36)

We return now to the top boundary condition (3.9) which due to (3.13) is equivalent to

λα2 = gα1.

Using the formulas (3.35) and (3.36) in the latter relation we obtain (after division by 2γc)
the following

λ
3
2 [θ cosh(d) − sinh(d− d1) cos(d1)]

+ γ cosh(d2) [θ sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)]λ

=
√
λg [θ sinh(d) − sinh(d− d1) sinh(d1)]

+ γg sinh(d2) [θ sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)] (3.37)

After replacing θ =
√
λ
γ + d1 − d2 in (3.37) we have

cosh(d)λ2 + [(d1 − d2) cosh(d) + sinh(d1 − d2) cosh(d− d1 − d2)]γλ
3
2

+
{
[(d1 − d2) sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)] cosh(d2)γ

2 − g sinh(d)
}
λ

−[(d1 − d2) sinh(d) + sinh(d2 − d1) sinh(d− d1 − d2)]gγ
√
λ

−[(d1 − d2) sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)]g sinh(d2)γ
2 = 0 (3.38)

Before we study in detail formula (3.38) we analyze two limit cases.

Remark 3.1. We set d2 = 0 i.e. we are in the situation of a layer of constant non-zero
vorticity adjacent to the free surface above �uid in irrotational �ow. Equation (3.38)

becomes in this case (after division by
√
λ)

cosh(d)λ
3
2 + [d1 cosh(d) + sinh(d1) cosh(d− d1)]γλ

+
{
[d1 sinh(d)− sinh(d1) sinh(d− d1)]γ

2 − g sinh(d)
}√

λ

−[d1 sinh(d)− sinh(d1) sinh(d− d1)]gγ = 0, (3.39)
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which after a further division by cosh(d) reads as

λ
3
2 +

[
d1 +

sinh(d1) sinh(d− d1)

cosh(d)

]
γλ

+

{[
d1 −

sinh(d1) sinh(d− d1)

sinh(d)

]
γ2 − g

}√
λ tanh(d)

−
[
d1 −

sinh(d1) sinh(d− d1)

sinh(d)

]
gγ tanh(d) = 0, (3.40)

i.e. we recover relation (81) from [13].

Remark 3.2. We put now d1 := d in formula (3.38), which means that we are in the
situation of a layer of constant non-zero vorticity adjacent to the �at bed below �uid in
irrotational �ow. Equation (3.38) is then transformed in

cosh(d)λ
3
2 [
√
λ+ γ(d− d2)] + [

√
λ+ γ(d− d2)]λγ cosh(d2) sinh(d− d2)

−[
√
λ+ γ(d− d2)]g sinh(d)

√
λ− [

√
λ+ γ(d− d2)]gγ sinh(d2) sinh(d− d2) = 0. (3.41)

By relation (3.19) we have that
√
λ+ γ(d− d2) > 0. After dividing by

√
λ+ γ(d− d2) > 0

above we are left with

cosh(d)λ
3
2 + γ cosh(d2) sinh(d− d2)λ− g sinh(d)

√
λ− gγ sinh(d2) sinh(d− d2) = 0, (3.42)

which recovers formula (23) in [5].

Proposition 3.3. If γ > 0 then the local bifurcation always holds.

Proof. Let p(x) be the polynomial obtained by replacing
√
λ by x in the left hand side of

(3.38), i.e.

p(x) = cosh(d)x4 + [(d1 − d2) cosh(d) + sinh(d1 − d2) cosh(d− d1 − d2)]γx
3

+
{
[(d1 − d2) sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)] cosh(d2)γ

2 − g sinh(d)
}
x2

−[(d1 − d2) sinh(d) + sinh(d2 − d1) sinh(d− d1 − d2)]gγx

−[(d1 − d2) sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)]g sinh(d2)γ
2 = 0 (3.43)

Note that p(0) = −H(d1)γ
2g sinh(d2) < 0 by Lemma 4.1 (c). This implies that p has at

least one positive root. We will show in the sequel that this is the only positive root. For
this we analyze the derivative of p. We have

p′(x) = 4 cosh(d)x3 + 3[(d1 − d2) cosh(d) + sinh(d1 − d2) cosh(d− d1 − d2)]γx
2

+ 2
{
[(d1 − d2) sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)] cosh(d2)γ

2 − g sinh(d)
}
x

− [(d1 − d2) sinh(d) + sinh(d2 − d1) sinh(d− d1 − d2)]gγ. (3.44)

We notice �rst that p′(0) = −G(d1)gγ < 0 cf. Lemma 4.1 (b). This implies that p′ has
at least one root y0 > 0. We will show that y0 is in fact the unique positive root of p′.
Indeed, the existence of a second positive root would imply that the third root is also real

and positive, since by Viète's relations the product of the three roots equals − p′(0)
4 cosh(d) > 0.

But this is impossible since the sum of the three roots is − 3F (d1)γ
4 cosh(d) < 0 by Lemma 4.1 (a).

We conclude now from the previous discussion that p′(x) < 0 on [0, y0) and p
′(x) > 0 on

(y0,∞). Therefore, p is strictly decreasing on [0, y0) and strictly increasing on (y0,∞).
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Since p(0) < 0 we can conclude, by inspecting the graph of p, that p has indeed a unique
positive solution x+ giving the dispersion relation. �

Remark 3.4. One can write an exact formula for
√
λ, but its intricacy makes it of little

use. We prefer instead to give in the following proposition an estimate on
√
λ which in

fact generalizes the estimate (27) from [5], obtained in the context of a layer of constant
non-zero vorticity adjacent to the �at bed below �uid in irrotational �ow . The latter
mentioned situation can be derived from our setting by puting d1 = d.

Proposition 3.5. If γ > 0 and d1+d2
2 < d < d1 + d2 then√

g tanh(d1 + d2 − d) <
√
λ <

√
g tanh(d). (3.45)

Proof. Note that the dispersion relation (3.38) can be written

(λ+ (d1 − d2)γ
√
λ[λ cosh(d)− g sinh(d)]

+ [(d1 − d2) sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)]γ
2(λ cosh(d2)− g sinh(d2)]

+ sinh(d1 − d2)γ
√
λ[λ cosh(d1 + d2 − d)− g sinh(d1 + d2 − d)] = 0. (3.46)

We prove �rst the second inequality in (3.45). Indeed, assuming that λ ≥ g tanh(d) we
obtain that λ > g tanh(d2), since d > d2, and λ > g tanh(d1 + d2 − d), since 2d > d1 + d2.
Using the latter inequalities, Lemma 4.1 (c) together with γ > 0 yields that the left hand
side of (3.46) is strictly positive, which is a contradiction. To prove the �rst inequality in
(3.45) we assume for the sake of contradiction that

λ ≤ g tanh(d1 + d2 − d). (3.47)

Inequality (3.47) implies immediately that

λ < g tanh(d2). (3.48)

The positivity of γ, Lemma 4.1 (c) and inequalities (3.47) and (3.48) imply now that

[(d1 − d2) sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)]γ
2(λ cosh(d2)− g sinh(d2)]

+ sinh(d1 − d2)γ
√
λ[λ cosh(d1 + d2 − d)− g sinh(d1 + d2 − d)] < 0. (3.49)

We see now from (3.46) and (3.49) that the �rst expression in (3.46) has to be non-negative,
which implies that λ ≥ g tanh(d). But the latter is a contradiction with the already proven
second inequality in (3.45) �

Proposition 3.6. Let γ < 0. Assume that

g

γ2
> (d1 − d2)

2 (d1 − d2) cosh(d1) + sinh(d2 − d1) cosh(d2)

(d1 − d2) sinh(d1) + sinh(d2 − d1) sinh(d2)
(3.50)

and that

g

γ2
>

(d1 − d2)
2[(d1 − d2) cosh(d)− 3 sinh(d1 − d2) cosh(d− d1 − d2)]

[(d1 − d2) sinh(d) + sinh(d1 − d2) sinh(d− d1 − d2)]

+
2(d1 − d2)[(d1 − d2) sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)] cosh(d2)

[(d1 − d2) sinh(d) + sinh(d1 − d2) sinh(d− d1 − d2)]
. (3.51)

Then local bifurcation occurs.
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Proof. Since we have from (3.19) that
√
λ+γ(d1−d2) > 0 we make in (3.38) the substitution√

λ = −γ(x+ d1 − d2) and obtain the equation

γ4 cosh(d)x4 + (4γ4(d1 − d2) cosh(d)− f1γ
4)x3

+ (6γ4(d1 − d2)
2 cosh(d)− 3f1γ

4(d1 − d2) + f2γ
2)x2

+ (4γ4(d1 − d2)
3 cosh(d)− 3f1γ

4(d1 − d2)
2 + 2f2γ

2(d1 − d2) + f3γ
2)x

+ γ4(d1 − d2)
4 cosh(d)− f1γ

4(d1 − d2)
3 + f2γ

2(d1 − d2)
2 + f3γ

2(d1 − d2)− f4γ
2 = 0
(3.52)

whereby
f1 = (d1 − d2) cosh(d) + sinh(d1 − d2) cosh(d− d1 − d2),

f2 = [(d1 − d2) sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)] cosh(d2)γ
2 − g sinh(d),

f3 = [(d1 − d2) sinh(d) + sinh(d2 − d1) sinh(d− d1 − d2)]g,

and
f4 = [(d1 − d2) sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)]g sinh(d2).

�
If we denote by q(x) the polynomial obtained by dividing by γ4 the left-hand side of the

equation (3.52) we have that

q(0) =− (d1 − d2)
3 sinh(d1 − d2) cosh(d− d1 − d2)

+ (d1 − d2)
2[(d1 − d2) sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)] cosh(d2)

+
g

γ2
(d1 − d2) sinh(d2 − d1) sinh(d− d1 − d2)

− g

γ2
([(d1 − d2) sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)] sinh(d2). (3.53)

Using that

sinh(d− d2) cosh(d2)− sinh(d1 − d2) cosh(d− d1 − d2)

=
1

2
(sinh(d) + sinh(d− 2d2))−

1

2
(sinh(d− 2d2) + sinh(2d1 − d))

=
1

2
(sinh(d)− sinh(2d1 − d))

= sinh(d− d1) cosh(d1)

and

sinh(d2 − d1) sinh(d− d1 − d2)− sinh(d− d2) sinh(d2) =

=
1

2
(cosh(d− 2d1)− cosh(d− 2d2))−

1

2
(cosh(d)− cosh(d− 2d2))

=
1

2
(cosh(d− 2d1)− cosh(d))

= sinh(d− d1) sinh(−d1)
we have that

q(0) = (d1 − d2)
2 sinh(d− d1)[(d1 − d2) cosh(d1) + sinh(d2 − d1) cosh(d2)]

− g

γ2
sinh(d− d1)[(d1 − d2) sinh(d1) + sinh(d2 − d1) sinh(d2)] < 0
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by (3.50) and Lemma 4.2. Note also that

q′(0) = 4(d1 − d2)
3 cosh(d)− 3f1(d1 − d2)

2 + 2
f2
γ2

(d1 − d2) +
f3
γ2

= (d1 − d2)
2[(d1 − d2) cosh(d)− 3 sinh(d1 − d2) cosh(d− d1 − d2)]

+ 2(d1 − d2)[(d1 − d2) sinh(d− d2) + sinh(d− d1) sinh(d2 − d1)] cosh(d2)

− g

γ2
[(d1 − d2) sinh(d) + sinh(d1 − d2) sinh(d− d1 − d2)] < 0

by (3.51) and Lemma 4.3.
Note now that the sum of roots of the polynomial q′(x) equals

− 3

4

(
4(d1 − d2)−

f1
cosh(d)

)
= −3

4

(
4(d1 − d2)− (d1 − d2)−

sinh(d1 − d2) cosh(d− d1 − d2)

cosh d

)
= −3

4

(
2(d1 − d2) + (d1 − d2)−

sinh(d1 − d2) cosh(d− d1 − d2)

cosh d

)
. (3.54)

The expression in the bracket above is positive since the function

d1 → (d1 − d2)−
sinh(d1 − d2) cosh(d− d1 − d2)

cosh d

is zero at d2 and its derivative is 1− cosh(d−2d1)
cosh(d) > 0 for d > d1 > 0. Equation (3.54) ensures

now that the sum of roots of q′(x) is negative. Using the latter and that q(0) < 0, q′(0) < 0
we employ an argument similar to that in the proof of Proposition 3.3 and conclude that
the polynomial q(x) has a unique positive root x0 giving the dispersion relation by means

of the formula
√
λ = −γ(x0 + d1 − d2).

4. Appendix

Lemma 4.1. (a) Let

F (d1) := (d1 − d2) cosh(d) + sinh(d1 − d2) cosh(d− d1 − d2).

Then F (d1) > 0 for all d1 > d2.
(b) Let

G(d1) := (d1 − d2) sinh(d) + sinh(d2 − d1) sinh(d− d1 − d2).

Then G(d1) > 0 for all d1 > d2.
(c) Let

H(d1) := (d1 − d2) sinh(d− d2) + sinh(d− d1) sinh(d2 − d1).

Then H(d1) > 0 for all d1 > d2.

Proof. We see �rst that F (d1)|d1:=d2 = 0. Secondly,

F ′(d1) = 1 + cosh(d1 − d2) cosh(d− d1 − d2)− sinh(d1 − d2) sinh(d− d1 − d2)

= 1 + cosh(2d1 − d) > 0,
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and therefore the claim in (a) is proved.
For (b) note that G(d1)|d1:=d2 = 0 and

G′(d1) = sinh(d)− cosh(d2 − d1) sinh(d− d1 − d2)− sinh(d2 − d1) cosh(d− d1 − d2)

= sinh(d)− sinh(d− 2d1) > 0,

since d > d− 2d1. Thus, the assertion in (b) is proved.
Similarly, in (c) we have that H(d1)|d1:=d2 = 0 and

H ′(d1) = sinh(d− d2)− cosh(d− d1) sinh(d2 − d1)− sinh(d− d1) cosh(d2 − d1)

= sinh(d− d2)− sinh(d+ d2 − 2d1) = 2 sinh(d1 − d2) cosh(d− d1) > 0

for all d1 > d2. �
Lemma 4.2. Let

E(d1) = (d1 − d2) sinh(d1)− sinh(d1 − d2) sinh(d2).

Then E(d1) > 0 for all d1 > d2 > 0.

Proof. We see that E(d1)|d1:=d2 = 0 and

E′(d1) = sinh(d1) + d1 cosh(d1)− sinh(d2) cosh(d1 − d2) (4.1)

= sinh(d1) + d1 cosh(d1)−
1

2
sinh(d1)−

1

2
sinh(2d2 − d1) (4.2)

= d1 cosh(d1) +
1

2
[sinh(d1)− sinh(2d2 − d1)] (4.3)

= d1 cosh(d1) + sinh(d1 − d2) cosh(d2) > 0 (4.4)

for all d1 > d2 > 0. �
Lemma 4.3. Let

K(d1) = (d1 − d2) sinh(d) + sinh(d1 − d2) sinh(d− d1 − d2).

Then K(d1) > 0 for all d > d1 > d2 > 0.

Proof. Notice that K(d1)|d1:=d2 = 0 and

K ′(d1) = sinh(d) + cosh(d2 − d1) sinh(d− d1 − d2) + sinh(d2 − d1) cosh(d− d1 − d2)

= sinh(d) + sinh(d− 2d1) = 2 sinh(d− d1) cosh(d1) > 0

for all d > d1 > 0. �
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