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Abstract

We study periodic capillary-gravity waves at the free surface of water in a flow

with constant vorticity over a flat bed. Using bifurcation theory the local exis-

tence of waves of small amplitude is proved even in the presence of stagnation

points in the flow. We also derive the dispersion relation. Moreover, we prove

a regularity result for the free surface.
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1. Introduction

The mathematical theory of periodic traveling waves was for a long time

confined to the study of irrotational flows (see, e.g., [14, 26, 38]) which are

suitable for waves traveling into still water. Nevertheless the papers [34, 35, 36]

make clear that nonuniform currents give rise to water flows with vorticity.

It is worth to point out that zero vorticity means either no underlying current

(a situation corresponding to swell due to a distant storm and entering a region

of still water cf. the discussion in [8]) or a uniform underlying current (cf. the

discussion in [10]), while constant vorticity is the hallmark of tidal currents cf.

the discussion in [13, 35].

Lately a lot of research had been carried out in the field of water waves with
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vorticity: see [3, 4, 5] for existence results, [17, 40] for matters of uniqueness,

[12, 20, 33] for regularity results and [6, 7] concerning the symmetry of rotational

water waves. However, the surface tension-a force per unit length due to a

pressure difference across a curved surface- is neglected in most of the recent

works on rotational water waves. The existence of pure capillary water waves

with vorticity was proved in [41] and the existence of capillary-gravity waves

with vorticity was shown in [42]. However in both of these two papers it was

assumed that there are no stagnation points throughout the fluid domain,

i.e., that the wave speed c is strictly larger than the horizontal fluid

velocity. We established in [30] the local existence of capillary water waver

with constant vorticity in the presence of stagnation points in the fluid domain

whose free surface is not necessarily the graph of a function. In [31] we proved a

regularity result for steady periodic travelling capillary waves of small amplitude

at the free surface of water in a flow with constant vorticity over a flat bed. In the

present paper we consider both gravity and surface tension i.e., we investigate

capillary-gravity water waves with vorticity in the presence of stagnation points

and of a free surface which admits overhanging profiles. The existence of small

amplitude capillary and capillary-gravity water waves with stagnation points, for

flows with varying vorticity and stratification, but with the free surface a graph,

was proven in [25], following on work in [19]. We want to mention that capillary

waves with arbitrary vorticity were considered in the paper [42] but under the

assumption that there are no stagnation points in the fluid domain and that the

free surface is always a graph. We base our approach on a method developed

in [11] which uses a reformulation of the original problem as an equation for a

function of one variable, giving the elevation of the free surface when the fluid

domain is the conformal image of a half-plane. The reformulation is presented

in Section 2. In Section 3 we use bifurcation theory from a simple eigenvalue

in the spirit of Crandall-Rabinowitz to prove the existence of waves of small

amplitude. Due to the length of the discussion we do not address here the issue

of double bifurcation. In Section 4 we prove that any C2,α free surface is in fact

C∞.
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We now present the free-boundary value problem of steady periodic traveling

capillary water waves with constant vorticity γ in a flow of finite depth. We

consider two- dimensional waves propagating over water with a flat bed. The X

variable will represent the direction of propagation, Y will be the height variable

and ((V1(X,Y, t), V2(X,Y, t)) denotes the velocity field. The water domain Ω in

the XY -plane is bounded below by the impermeable flat bed

B = {(X, 0);X ∈ R},

and above by an a priori unknown curve

S(t) = {(u(t, s), v(t, s)); s ∈ R}, t ≥ 0 (1)

with

(us(t, s))
2 + (vs(t, s))

2 > 0 for all s ∈ R, t ≥ 0 (2)

and

u(t, s+ L) = u(t, s) + L, v(t, s+ L) = v(t, s) for all s ∈ R, (3)

representing the free surface of the water (not necessary the graph of a function),

which is L-periodic in the horizontal direction. The equations of motion are the

equation of mass conservation

V1X + V2Y = 0 (4)

and Euler’s equation V1t + V1V1X + V2V1Y = −PX

V2t + V1V2X + V2V2Y = −PY − g
(5)

where P (X,Y, t) denotes pressure and g is the gravitational constant of accel-

eration. The boundary conditions associated to (4) and (5) are of two types

dynamic and kinematic boundary conditions. The dynamic boundary condition

expresses the stresses that the atmosphere exerts on the fluid surface and takes

therefore the form

P (u(t, s), v(t, s), t) = P0 − σ
us(t, s)vss(t, s)− uss(t, s)vs(t, s)

((us(t, s))2 + (vs(t, s))2)
3/2

on S, (6)
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P0 being the constant atmospheric pressure, σ > 0 the coefficient of surface

tension which is a force per unit length due to a pressure difference across a

curved surface, cf. [28], 1 and us(t,s)vss(t,s)−uss(t,s)vs(t,s)

((us(t,s))2+(vs(t,s))2)
3/2 representing the mean

curvature of S. The kinematic boundary conditions require that the free surface

and the bed always consist of the same fluid particles. If S0(X,Y, t) = 0 is the

implicit equation of the free surface, the kinematic boundary condition can be

expressed as

S0t + S0XV1 + S0Y V2 = 0 on S, (7)

cf. [28], while the kinematic boundary condition on the bed is

V2 = 0 on B. (8)

The assumption of steady periodic traveling waves at speed c > 0 means that we

have a space-time dependence of the formX−ct for the free surface, the pressure,

and for the velocity field. Then after the change of variables x = X − ct, y = Y

the equation of the free surface becomes S(x, y) = 0 for some S, and (5) − (8)

are transformed to the stationary problem (V1(x, y)− c)V1x(x, y) + V2(x, y)V1y(x, y) = −Px(x, y)

(V1(x, y)− c)V2x(x, y) + V2(x, y)V2y(x, y) = −Py(x, y)− g
in Ω (9)

and 
Sx(V1 − c) + SyV2 = 0 on S

P = P0 − σ usvss−ussvs

((us)2+(vs)2)
3/2 on S,

V2 = 0 on B.

(10)

We remark that if S(x, y) = y − η(x) the first equation becomes V2 = ηx(V1 −

c) The equation of mass conservation (4) permits us to introduce the stream

function ψ which satisfies:

ψx = −V2 and ψy = V1 − c (11)

1Surface tension is perpendicular to any line drawn in the surface having the same magni-

tude for all directions of the line and the same value at all points on the surface, cf. [13]
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being defined through the line integral

ψ(x, y) = −m+

∫ (x,y)

(0,0)

(−V2(x, y))dx+ (V1(x, y)− c)dy,

for some constant m. The equation of mass conservation V1x + V2y = 0 ensures

the path-independence of the above line integral provided the path is in the

simply connected domain Ω, where Ω is the set of all (x, y) ∈ R2 above the line

y = 0 bounded above by the curve {(x, y) ∈ R2 : S(x, y) = 0}. We proved in

[30] that

ψ = 0 on S

and

ψ = −m on B,

where m is the relative mass flux defined through

m =

∫ v(t,s0)

0

[V1(u(t, s0)− ct, y)− c] dy,

with (u(t, s0−ct, v(t, s0)) being the wave trough. For the fact thatm is constant

we refer the reader to [30]. We can then write (5)− (8) in terms of ψ as follows ψyψxy − ψxψyy = −Px

−ψyψxx + ψxψxy = −Py − g
in Ω (12)

and 
ψ = 0 on S,

P = P0 − σ us(t,s)vss(t,s)−uss(t,s)vs(t,s)

((us(t,s))2+(vs(t,s))2)
3/2 on S,

ψ = −m on B.

(13)

If γ = V2X − V1Y is the vorticity we obtain from (9) and properties of ψ

Bernoulli’s law, which says that

E =
(V1 − c)2 + V 2

2

2
+ P + gy + γψ

is constant throughout the fluid domain. On the free surface we have

E =
(V1 − c)2 + V 2

2

2
+ P0 − σ

us(t, s)vss(t, s)− uss(t, s)vs(t, s)

((us(t, s))2 + (vs(t, s))2)
3/2

+ gv.
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Therefore setting Q = 2(E − P0) we obtain

ψ2
x + ψ2

y − 2σ
us(t, s)vss(t, s)− uss(t, s)vs(t, s)

((us(t, s))2 + (vs(t, s))2)
3/2

+ 2gv = Q

on the free surface. We therefore have that the stream function ψ satisfies the

following boundary value problem:

∆ψ = −γ in Ω,

ψ = −m on B,

ψ = 0 on S,

|∇ψ|2 − 2σ us(t,s)vss(t,s)−uss(t,s)vs(t,s)

((us(t,s))2+(vs(t,s))2)
3/2 + 2gv = Q on S.

(14)

Choosing a parametrization so that u and v are independent of t in the moving

frame leads to the following free boundary value problem

∆ψ = −γ in Ω,

ψ = −m on B,

ψ = 0 on S,

|∇ψ|2 − 2σ usvss−ussvs

(u2
s+v2

s)
3/2 + 2gv = Q on S.

(15)

We will prove in the paper the local existence of waves of small amplitude to

the problem (15) and a regularity result for the free surface. Moreover we derive

the dispersion relation, i.e., a formula which gives the speed of the bifurcating

laminar flow (see the proof of Theorem 8) in terms of the depth, the period

and the vorticity. This dispersion relation is obtained even in the presence of

stagnation points in the flow, feature that is not allowed in the paper [42]. We

show that for flows with sufficiently small wave-length L there do not exist

stagnation points while, if the vorticity is big enough we do have stagnation

points.

Our investigation opens up possibilities for the detailed examination of the flow

pattern, in the same vein to the ones pursued in [8, 10] for irrotational gravity

water waves and in [21] for linear periodic capillary and capillary-gravity water

waves. Concerning the particle flow patterns we would also like to mention the

papers [9], [32] and [22].
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2. Equivalence of the free boundary problem with a problem with a

fixed domain

We give in this section a reformulation of the boundary value problem (15) as

a quasilinear equation in a fixed domain for a periodic function of one variable.

We need first a few notations and some preliminary results; for the proofs of

these results we refer the reader to [11].

For an integer p ≥ 0 and for α ∈ (0, 1) we denote Cp,α the standard space

of functions whose partial derivatives up to order p are Hölder continuous with

exponent α over their domain of definition. Cp,α
loc will denote the set of functions

of class Cp,α over any compact subset of their domain of definition. By Cp,α
2π

we denote the space of functions of one real variable which are 2π periodic and

of class Cp,α
loc in R. By Cp,α

2π,o we denote the functions that are in Cp,α
2π and have

zero mean over one period. For any d > 0 let

Rd = {(x, y) ∈ R2 : −d < y < 0}.

For any w ∈ Cp,α
2π let W ∈ Cp,α(Rd) be the unique solution of

∆W = 0 in Rd,

W (x,−d) = 0, x ∈ R,

W (x, 0) = w(x), x ∈ R.

(16)

The function (x, y) → W (x, y) is 2π-periodic in x throughout Rd. For p ∈

Z, p ≥ 1, and α ∈ (0, 1) we define the periodic Dirichlet-Neumann operator for

a strip Gd by

Gd(w)(x) =Wy(x, 0), x ∈ R.

The operator Gd : Cp,α
2π → Cp−1,α

2π is a bounded linear operator. If the function

w takes the constant value c then

Gd(c) =
c

d
. (17)

Let Z be the unique (up to a constant) harmonic function in Rd, such that

Z + iW is holomorphic in Rd. If w ∈ Cp,α
2π,o it follows from the discussion in
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Section 2 of [11] that the function (x, y) → Z(x, y) is 2π-periodic in x throughout

Rd. We specify the constant in the definition of Z by asking that x → Z(x, 0)

has zero mean over one period. We define Cd(w) by

Cd(w)(x) = Z(x, 0), x ∈ R.

The obtained mapping Cd : Cp,α
2π,o → Cp,α

2π,o is a bounded linear operator and is

called the periodic Hilbert transform for a strip. If w ∈ Cp,α
2π,o for p ≥ 1 we have

Gd(w) = (Cd(w))′ = Cd(w′). (18)

It also follows (see [11]) that for p ≥ 1,

Gd(w) =
[w]

d
+ Cd(w′), (19)

where [w] denotes the average of w over one period.

Definition 1. We say that a solution (Ω, ψ) of the water wave equation (15)

is of class C2,α if the free surface satifies (1), (2) and (3) with u, v ∈ C2,α and

ψ ∈ C2(Ω) ∩ C2,α(Ω).

Definition 2. • We say that Ω ⊂ R2 is an L-periodic strip like domain if it

is contained in the upper half (X,Y )-plane and if its boudary consists of

the real axis B and a parametric curve S defined by (1) and which satisfies

(2) and (3).

• For any such domain, the conformal mean depth is defined to be unique

positive number h such that there exists an onto conformal mapping Ũ +

iṼ : Rh → Ω which admits an extension between the closures of these

domains, with onto mappings

{(x, 0) : x ∈ R} → S,

and

{(x,−h) : x ∈ R} → B,

and such that
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Ũ(x+ L, y) = Ũ(x, y) + L,

Ṽ (x+ L, y) = Ṽ (x, y),
(x, y) ∈ Rh (20)

The existence and uniqueness of such an h was proved in Appendix A of the

paper [11].

We are now able to formulate the equivalence of (15) with a quasilinear equation

for a periodic function of one variable in a fixed domain.

Theorem 1. If (Ω, ψ) of class C2,α is a solution of (15) then there exists a

positive number h, a function v ∈ C2,α
2π and a constant a ∈ R such that{

m
kh + γ

(
Gkh(

v2

2 )− vGkh(v)
)}2

=
(
Q+ 2σ Gkh(v)v

′′−Gkh(v
′)v′

(v′ 2+Gkh(v)2)
3/2 − 2gv

) (
v′ 2 + Gkh(v)

2
)

[v] = h

v(x) > 0 for all x ∈ R,

the mapping x→
(
x
k + Ckh(v − h)(x), v(x)

)
is injective on R,

v′(x)2 + Gkh(v)(x)
2 6= 0 for all x ∈ R,

(21)

where k = 2π
L . Moreover

S =
{(
a+

x

k
+ Ckh(v − h)(x), v(x)

)
: x ∈ R

}
. (22)

Conversely, let h > 0 and v ∈ C2,α
2π be such that (21) holds. Assume also that

S is defined by (22), let Ω be the domain whose boundary consists of S and of

the real axis B and let a ∈ R be arbitrary. Then there exists a function ψ in Ω

such that (Ω, ψ) is a solution of (15) of class C2,α.

Proof. We first prove the necessity. Let (Ω, ψ) be a solution of class C2,α of (15).

Then we denote by h the conformal mean depth of Ω and by Ũ+iṼ the conformal

mapping associated to Ω. If we consider the mapping U + iV : Rkh → Ω given

by

U(x, y) = Ũ(xk ,
y
k ),

V (x, y) = Ṽ (xk ,
y
k ),

(x, y) ∈ Rkh, (23)

where k = 2π
L then following the proof of Theorem 2.2 in [11] we see that

U, V ∈ C2,α(Rh) and U + iV is a conformal mapping from Rkh onto Ω which
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extends homeomorphically to the closures of these domains, with onto mappings

{(x, 0) : x ∈ R} → S,

and

{(x,−kh) : x ∈ R} → B.

Moreover,

U2
x(x, 0) + V 2

x (x, 0) 6= 0 for all x ∈ R. (24)

Let us set

v(x) = V (x, 0) for all x ∈ R, u(x) = U(x, 0) for all x ∈ R (25)

We then have that

u = Ckh(v),

and from (18) it is immediate that

u′ = Gkh(v) and u
′′ = Gkh(v

′) (26)

It also follows [11] that v ∈ C2,α
2π and

[v] = h (27)

v(x) > 0 for all x ∈ R, (28)

the mapping x→
(x
k
+ Ckh(v − h)(x), v(x)

)
is injective on R, (29)

S =
{(
a+

x

k
+ Ckh(v − h)(x), v(x)

)
: x ∈ R

}
, (30)

for some a ∈ R, whose presence in the formula (30) is due to the invariance of

problem (15) to horizontal translations. From (24) and the Cauchy-Riemann

equations it follows that

v′(x)2 + Gkh(v)(x)
2 6= 0 for all x ∈ R. (31)
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Now let ξ : Rkh → R be defined by

ξ(x, y) = ψ(U(x, y), V (x, y)), (x, y) ∈ Rkh. (32)

The harmonicity in Ω of the function (x, y) → ψ(x, y) + γ
2 y

2 and the invariance

of harmonic functions under conformal mappings imply that

ξ +
γ

2
V 2 is harmonic in Rkh. (33)

The chain rule and the Cauchy-Riemann equations imply that

ξ2x + ξ2y = (ψ2
x(U, V ) + ψ2

y(U, V ))(V 2
x + V 2

y ) in Rkh.

From the last equation in (15) and (26) it follows that

ξ2x + ξ2y =

(
Q+ 2σ

Gkh(v)v
′′ − Gkh(v

′)v′

(v′2 + Gkh(v)2)
3/2

− 2gv

)(
v′2 + Gkh(v)

2
)

(34)

Define ζ : Rkh → R through

ζ = ξ +m+
γ

2
V 2. (35)

Using the boundary conditions from (15) we obtain the following

∆ζ = 0 in Rkh,

ζ(x,−kh) = 0 for all x ∈ R,

ζ(x, 0) = m+ γ
2 v

2(x) for all x ∈ R,

(ζy − γV Vy)
2 =

(
Q+ 2σ Gkh(v)v

′′−Gkh(v
′)v′

(v′2+Gkh(v)2)
3/2 − 2gv)

(
v′2 + Gkh(v)

2
)
at (x, 0) for all x ∈ R.

(36)

The system (36) can be reformulated by using the Dirichlet-Neumann operator

and (17) as

{
m

kh
+ γ

(
Gkh(

v2

2
)− vGkh(v)

)}2

=

(
Q+ 2σ

Gkh(v)v
′′ − Gkh(v

′)v′

(v′2 + Gkh(v)2)
3/2

− 2gv

)(
v′2 + Gkh(v)

2
)

(37)

For the sufficiency suppose that the positive number h and the function v ∈ C2,α
2π

satisfy (21). Let V be the harmonic function on Rkh which satisfies

V (x,−kh) = 0
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and

V (x, 0) = v(x) for all x ∈ R,

and let U : Rkh → R be such that U + iV is holomorphic. An application of

Lemma 2.1 from [11] yields that U + iV ∈ C2,α(Rkh). From [v] = h we obtain U(x+ 2π, y) = U(x, y) + 2π
k ,

V (x+ 2π, y) = V (x, y),
(x, y) ∈ Rkh. (38)

The injectivity of the mapping x →
(
x
k + Ckh(v − h)(x), v(x)

)
gives that the

curve (30) is non-self-intersecting and from v(x) > 0 we have that (30) is con-

tained in the upper half-plane. If Ω denotes the domain whose boundary consists

of S and B, it follows from Theorem 3.4 in [39] that U + iV is a conformal map-

ping from Rkh onto Ω, which extends to a homeomorphism between the closures

of these domains, with onto mappings

{(x, 0) : x ∈ R} → S,

and

{(x,−kh) : x ∈ R} → B.

Together with (38) this implies that Ω is a L-periodic strip-like domain, with

L = 2π/k. The conformal mean depth of Ω is h as it can be seen from the

properties of the mapping Ũ + iṼ : Rh → Ω, where Ũ , Ṽ are given by (23). Let

ζ be defined as the unique solution of the first three equations of (36). Then

ζ ∈ C2,α(Rkh) ∩ C∞(Rkh). Now, let ξ be defined by (35) and ψ by (32). We

obtain that ψ satisfies the first three equations in (15). From the first equation

in (21) we also have that the last equation from (15) holds.

3. Local bifurcation

This section is devoted to proving the existence of solutions to (21). The

relation [v] = h makes natural to set

v = w + h (39)
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Equation (39) implies immediately that [w] = 0. We then use (19) to find that

Gkh(w + h) = Gkh(w) + Gkh(h) =
[w]

kh
+ Ckh(w′) +

h

kh
=

1

k
+ Ckh(w′)

and

Gkh(v
′) = Gkh(w

′) =
[w′]

kh
+ Ckh(w′′) = Ckh(w′′),

since w is periodic. Therefore we can rewrite (21) as{
m
kh + γ

(
[w2]
2kh − w

k − h
2k + Ckh(ww′)− wCkh(w′)

)}2

=

{
Q+ 2σ

w′′
k +w′′Ckh(w

′)−w′Ckh(w
′′)(

w′2+( 1
k+Ckh(w′))

2
)3/2 − 2gh− 2gw

}{
w′2 +

(
1
k + Ckh(w′)

)2}
[w] = 0

w(x) > −h for all x ∈ R,

the mapping x→
(
x
k + Ckh(w)(x), w(x) + h

)
is injective on R,

w′(x)2 +
(
1
k + Ckh(w′)(x)

)2 6= 0 for all x ∈ R,
(40)

We will regard m and Q as parameters and will prove the existence of solutions

w ∈ C1,α
2π to the problem (40) for all γ ∈ R, k > 0, and h > 0 fixed.

We observe that w = 0 ∈ C1,α
2π,o is a solution of (40) if and only if

Q = 2gh+

(
m

h
− γh

2

)2

.

This suggests setting

λ = m
h − γh

2 ,

µ = Q− 2gh−
(

m
h − γh

2

)2 (41)

Note that the mapping (m,Q) → (λ, µ) is a bijection from R2 onto itself. Using

(41) we see that the equation (40) can be rewritten as{
λ
k + γ

(
[w2]
2kh − w

k + Ckh(ww′)− wCkh(w′)
)}2

=

{
λ2 + µ+ 2σ

w′′
k +w′′Ckh(w

′)−w′Ckh(w
′′)(

w′2+( 1
k+Ckh(w′))

2
)3/2 − 2gw

}{
w′2 +

(
1
k + Ckh(w′)

)2}
(42)

with w ∈ C1,α
2π,o, µ ∈ R and λ ∈ R. It is clear that w = 0 ∈ C1,α

2π,o and µ = 0

is a solution of (42) for all λ ∈ R. We now apply the Crandall-Rabinowitz
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theorem [15] on bifurcation from a simple eingevalue in order to prove existence

of non-trivial solutions to equation (42).

Theorem 2. Let X and Y be Banach spaces, I be an open interval in R con-

taining λ∗, and F : I × X → Y be a continous map satisfying the following

properties:

1. F (λ, 0) = 0 for all λ ∈ I;

2. ∂λF , ∂uF and ∂2λ,uF exist and are continuous;

3. N (∂uF (λ
∗, 0)) and Y/R(∂uF (λ

∗, 0)) are one-dimensional, with the null

space generated by u∗;

4. ∂2λ,uF (λ
∗, 0)(1, u∗) /∈ R(∂uF (λ

∗, 0))

Then there exists a continuous local bifurcation curve {(λ(s), u(s) : |s| < ε}

with ε > 0 sufficiently small such that (λ(0), u(0)) = (λ∗, 0) and there exists a

neighbourhood O of (λ∗, 0) ∈ I ×X such that

{(λ, u) ∈ O : u 6= 0, F (λ, u) = 0} = {(λ(s), u(s) : 0 < |s| < ε}.

Moreover, we have

u(s) = su∗ + o(s) in X, |s| < ε.

If ∂2uF is also continuous, then the curve is of class C1.

In order to apply the local bifurcation theorem 2 to (42) we set

X = R× Cp+1,α
2π,o,e , Y = Cp,α

2π,e,

where for any integer p ≥ 0 we denote:

Cp,α
2π,e = {f ∈ Cp,α

2π : f(x) = f(−x) for all x ∈ R},

Cp,α
2π,o,e = {f ∈ Cp,α

2π,o : f(x) = f(−x) for all x ∈ R}.

Equation (42) can be written as F (λ, (µ,w)) = 0 where F : R×X → Y is given
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by

F (λ, (µ,w)) = γ2
(
Ckh(ww′)− wCkh(w′)− w

k
+

[w2]

2kh

)2

+
2λγ

k

(
Ckh(ww′)− wCkh(w′)− w

k
+

[w2]

2kh

)

−

µ+ 2σ
w′′

k + w′′Ckh(w′)− w′Ckh(w′′)(
w′2 +

(
1
k + Ckh(w′)

)2)3/2 − 2gw

(w′2 +

(
1

k
+ Ckh(w′)

)2
)

− λ2
(
w′2 +

2

k
Ckh(w′) + (Ckh(w′))

2
)
.

(43)

Since F (λ, (0, 0)) = 0 the first condition from the local bifurcation theorem 2 is

verified. We now compute

∂(µ,w)F (λ, (0, 0))(ν, f) = lim
t→0

F (λ, t(ν, f))− F (λ, (0, 0))

t
.

Using Lemma 12 it turns out that

∂(µ,w)F (λ, (0, 0))(ν, f) = −2λγ

k2
f +

2gf

k2
− ν

k2
− 2σf ′′ − 2

λ2

k
Ckh(f ′)

= − 2

k2
(
λγf − gf + λ2kCkh(f ′) + σk2f ′′

)
− ν

k2

(44)

From representation (92) it follows that

∂(µ,w)F (λ, (0, 0))(ν, f) = − 2

k2

∞∑
n=1

(λγ−g+λ2kn coth(nkh)−σk2n2)an cos(nx)−
ν

k2
.

(45)

if

f =

∞∑
n=1

an cos(nx).

Using now Lemma 12 it follows that the bounded linear operator ∂(µ,w)F (λ, (0, 0)) :

X → Y is invertible whenever

λγ − g + λ2kn coth(nkh)− σk2n2 6= 0 for any integern ≥ 1. (46)

Therefore all the candidates for the bifurcation points of (42) are to be found

among the solutions of the equation

λγ − g + λ2kn coth(nkh)− σk2n2 = 0, (47)

17



for some integer n ≥ 1. Since we are looking for solutions of (42) of minimal

period 2π, we take n = 1 in (47). Let

λ∗n
± = −γ tanh(nkh)

2kn
±

√
γ2 tanh2(nkh)

4k2n2
+ (nkσ +

g

kn
) tanh(nkh),

denote the two solutions of equation (47).

Remark 1. Note that

λ∗1± (nk) = λ∗n± (k), (48)

for all integers n ≥ 1 and all k > 0.

Lemma 3. Let λ(k) = λ∗1+ (k).

(i) If σ
gh2 >

γ2h
6g + 1

3−
γ
6g

√
γ2h2 + 4gh then the function λ is strictly increasing.

(ii) If σ
gh2 <

γ2h
6g + 1

3 −
γ
6g

√
γ2h2 + 4gh then the function λ has a maximum at

k = 0 and a unique local extremum, namely a local minimum at k = k0 >

0. Moreover, there is a strictly decreasing sequence (kn)n≥2 such that

λ(k) = λ(nk)

for k > 0 if and only if k = kn.

Proof. Let us denote F (x) = γ2h2

4
tanh2(hk)

(hk)2 andG(k) = σ
hhk tanh(hk)+gh

tanh(hk)
hk .

We can then write

λ(k) = −γh
2

tanh(hk)

hk
+
√
F (k) +G(k).

We have that d
dk

tanh(hk)
hk |k=0 = 0 and F ′(0) = G′(0) = 0. This implies λ′(0) = 0

and

λ′′(0) =− γh

2

d2

dk2
tanh(hk)

hk
|{k=0} +

2(F +G)(F ′′ +G′′)− (F ′ +G′)2

4(F +G)
√
F +G

|{k=0}

=
γ

3
h3 +

F ′′ +G′′

2
√
F +G

|{k=0}

=
γ

3
h3 +

−γ2

3 h
4 + 2hσ − 2

3gh
3√

γ2h2 + 4gh

(49)
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One sees also easily that limk→∞ λ(k) = ∞.

Set now f(k) = k coth(hk). From the formula for λ∗1+ (k) we obtain that

λ = − γ

2f
+

√
γ2

4f2
+
k2σ + g

f

which by squaring leads further to

λ2 = γ2

4f2 + γ2

4f2 + k2σ+g
f − γ

f

√
γ2

4f2 + k2σ+g
f

= γ2

2f2 + k2σ+g
f − γ

f

(
λ+ γ

2f

)
= k2σ+g−λγ

f

and therefore it follows that

λ2f = k2σ + g − λγ. (50)

Implicit differentiation of (50) gives

λ′(γ + 2λf) = 2kσ − λ2f ′ (51)

Again by implicit differentiation of (51) we get

λ′′(γ + 2λf) = 2σ − 2(λ′)2f − 4λλ′f ′ − λ2f ′′. (52)

Let k = k0 be a potential critical point of λ. It follows then from (51) that

λ2(k0) =
2σk0

f ′(k0)
and therefore

λ′′(k0)(γ + 2λf(k0)) = 2σ − λ2f ′′(k0) = 2σ
f ′(k0)− k0f

′′(k0)

f ′(k0)
(53)

where f ′(k) − kf ′′(k) = sinh2(hk) cosh(hk)+hk sinh(hk)−2(hk)2 cosh(hk)
sinh3(hk)

. Denoting

g(x) = sinh2(x) cosh(x) + x sinh(x) − 2x2 cosh(x) a computation reveals that

g(3)(x) > 0 for all x > 0, g(0) = g′(0) = g′′(0) = 0 which implies that g(x) > 0

for all x > 0. The latter together with γ+2λf(k0) > 0 and f ′(k0) > 0 imply via

(53) that λ′′(k0) > 0. Hence λ has at most one critical point for k > 0, which

is then a minimum point. Note now that the requirement in (i) is equivalent

to asking λ′′(0) > 0 which in turn says that λ has a local minimum at k = 0.

The latter together with limk→∞ λ(k) = ∞ and the fact λ can not have a local
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maximum at k > 0 implies the conclusion. The condition in (ii) is equivalent

to asking λ′′(0) < 0 which in turn says that λ has a local maximum at k = 0.

Since limk→∞ λ(k) = ∞ and because λ can not have a local maximum at k > 0

we have that λ has a unique local minimum at some k0 > 0.

It remains to prove the existence of the sequence kn with the asserted prop-

erty. For k ∈ (0, k0) let k̃ > k0 be such that λ(k) = λ(k̃). Define now

F : (0, k0) → (1,∞), F (k) = k̃
k . It is easy to see that F is strictly decreas-

ing with F (k) → ∞ as k → 0 and F (k) → 1 as k → k0. Set kn = F−1(n).

Since F−1 is decreasing it follows that kn is well-defined and decreases to 0.

Moreover, the only point k with λ(k) = λ(nk) is k = kn.

Lemma 4. Let λ̃(k) = λ∗1− (k).

(i) If σ
gh2 ≥ γ2h

6g + 1
3 +

γ
6g

√
γ2h2 + 4gh then the function λ̃ is strictly decreas-

ing.

(ii) If σ
gh2 <

γ2h
6g + 1

3 +
γ
6g

√
γ2h2 + 4gh then the function λ̃ has a minimum at

k = 0 and a unique local extremum, namely a local maximum at k = k̃0 >

0. Moreover, there is a strictly decreasing sequence (k̃n)n≥2 such that

λ̃(k) = λ̃(nk)

for k > 0 if and only if k = k̃n.

Proof. Except for the equality in (i) the proof is similar to the one in Lemma

3. Assume now that σ
gh2 = γ2h

6g + 1
3 + γ

6g

√
γ2h2 + 4gh. With the notation from

Lemma 3 we have that

λ̃′′(0) =
γ

3
h3 − F ′′ +G′′

2
√
F +G

|{k=0}

=
γ

3
h3 −

−γ2

3 h
4 + 2hσ − 2

3gh
3√

γ2h2 + 4gh

(54)

Notice that σ
gh2 = γ2h

6g + 1
3 + γ

6g

√
γ2h2 + 4gh is equivalent to λ̃′′(0) = 0. We

claim that

λ̃(3)(0) = 0 and λ̃(4)(0) < 0. (55)

20



This implies that λ̃′′ has a local maximum at k = 0 and since we are in the case

λ̃′′(0) = 0 it follows further that λ̃′′(k) < 0 for k > 0 and close to 0. Therefore

λ̃′ is strictly decreasing for k > 0. Since λ̃′(0) = 0 we have that λ̃′(k) < 0 for

k > 0 close to 0. Hence λ̃ is decreasing for k > 0 close to 0 and since λ̃ does not

have local minima and limk→∞ λ̃(k) = −∞ we infer that λ̃ is strictly decreasing.

We now proceed with the claim (55).

We have first that

λ̃(3) = −γh
2

d3

dk3
tanh(hk)

hk

− (F +G)2(F (3) +G(3))
√
F +G− [(F +G)(F ′′ +G′′)− (F ′ +G′)2]E

2(F +G)3

(56)

where E = 3
2 (F

′+G′)
√
F +G. Using that F ′(0) = G′(0) = F (3)(0) = G(3)(0) =

0 we see that λ̃(3)(0) = 0.

From (56) and using that

0 = λ̃′′(0) =
γ

3
h3 − F ′′ +G′′

2
√
F +G

|{k=0}

we have

λ̃(4)(0) = −γh
2

d4

dk4
tanh(hk)

hk
|{k=0}

−
2(F +G)2(F (4) +G(4))

√
F +G− 2(F +G)(F ′′ +G′′) 32

√
F +G(F ′′ +G′′)

4(F +G)3
|{k=0}

= −24

15
γh5 −

2(F +G)2(F (4) +G(4))
√
F +G− 3(F +G)

√
F +G 4

9 (F +G)γ2h6

4(F +G)3
|{k=0}

= −24

15
γh5 −

(F +G)2
√
F +G[2(F (4) +G(4))− 4

3γ
2h6]

4(F +G)3
|{k=0}

= −24

15
γh5 − 1

4
√
F +G

[2(F (4) +G(4))− 4

3
γ2h6]|{k=0}

=
−96γh5

√
F +G− 15[2(F (4) +G(4))− 4

3γ
2h6]

60
√
F +G

|{k=0}

(57)
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Now, the expression at the numerator equals

− 96γh5
3

2

F ′′(0) +G′′(0)

γh3
− 15

[
2

(
34

15
γ2h6 +

48

15
gh5 − 8σh3

)
− 4

3
γ2h6

]
= −48 · 3h2

(
2hσ − 2

3
gh3 − 1

3
γ2h4

)
− 68γ2h6 − 96gh5 + 240σh3 + 20γ2h6

= −48σh3 < 0

(58)

The conclusions of Lemmas 3 and 4 and Remark 1 yield the following necessary

and sufficient conditions for the one-dimensionality of the kernelN (∂(µ,w)F (λ
∗, 0))

Lemma 5. Let λ∗ 1 be a solution of (47) with n = 1, i.e.,

λ∗ 1
± = −γ tanh(kh)

2k
±

√
γ2 tanh2(kh)

4k2
+ (kσ +

g

k
) tanh(kh).

Then the kernel N (∂(µ,w)F (λ
∗, 0))) is one-dimensional if and only if

σ

gh2
≥ γ2h

6g
+

1

3
+

γ

6g

√
γ2h2 + 4gh (59)

or

σ

gh2
<
γ2h

6g
+

1

3
+

γ

6g

√
γ2h2 + 4gh and k 6= kn and k 6= k̃n for all n ≥ 2 (60)

Moreover, in these situations, N (∂(µ,w)F (λ
∗, 0)) is generated by (0, w∗) ∈ X,

where w∗(x) = cos(x) for all x ∈ R.

Remark 2. Due to the length of the paper we do not address here the ques-

tion of double bifurcation which takes place in the situation when the kernel

N (∂(µ,w)F (λ
∗, 0)) is two-dimensional.

Remark 3. If we set γ = 0 in (59) and (60) we rediscover the necessary and

sufficient condition for the one-dimensionality of the kernel N (∂(µ,w)F (λ
∗, 0))

found in the irrotational case in the paper [27].

We now give a sufficient condition for the one dimensionality of the kernel

N (∂(µ,w)F (λ
∗, 0)). This will prove to be very useful later on when we establish

the existence of stagnation points.
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Lemma 6. Let λ∗ 1 be a solution of (47) with n = 1, i.e.,

λ∗ 1
± = −γ tanh(kh)

2k
±

√
γ2 tanh2(kh)

4k2
+ (kσ +

g

k
) tanh(kh).

Assume that k3 ≥ 2γ2

σ , k2 ≥ 4 g
σ and kh ≥ 1

2 . Then it follows from (45) and

Lemma 12 that the kernel N (∂(µ,w)F (λ
∗, 0)) is one-dimensional being generated

by (0, w∗) ∈ X, where w∗(x) = cos(x) for all x ∈ R.

Proof. It suffices to show that if n > 1 is an integer then the equations

λγ + λ2kn coth(nkh)− σk2n2 − g = 0,

and

λγ + λ2k coth(kh)− σk2 − g = 0,

do not have common solutions. Let

λ∗n
± = −γ tanh(nkh)

2kn
±

√
γ2 tanh2(nkh)

4k2n2
+ (nkσ +

g

kn
) tanh(nkh),

denote the two solutions of equation (47). Since

λ∗n
+ > 0, λ∗n

+ < 0,

for all n ≥ 1 it suffices to show that λ∗n
+ 6= λ∗ 1

+ and λ∗n
− 6= λ∗ 1

− for all n > 1.

We consider only the case γ > 0, since for γ < 0 we can proceed in a similar

way.

We now assume ab absurdum that λ∗n
− = λ∗ 1

− for some n > 1 which leads to

tanh(nkh)

n
− tanh(kh) =√

tanh2(kh) +
4σk3

γ2
tanh(kh) +

4kg

γ2
tanh(kh)−

√
tanh2(nkh)

n2
+

4σk3

γ2
n tanh(nkh) +

4kg

γ2
1

n
tanh(nkh)

(61)

To ease the notation we set f(n) = tanh(nkh)
n and g(n) = n tanh(nkh), c = 4σk3

γ2

and d = 4kg
γ2 . Then (61) is equivalent to

f(n)− f(1) =
√
f2(1) + cg(1) + df(1)−

√
f2(n) + cg(n) + df(n),
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which by squaring leads to

−2f(n)f(1) = c(g(n)+g(1))+d(f(n)+f(1))−2
√
[f2(n) + cg(n) + df(n)] [f2(1) + cg(1) + df(1)].

By rearranging and squaring we arrive at

c2 [g(n) + g(1)]
2
+ d2 [f(n) + f(1)]

2
+ 2cd [g(n) + g(1)] [f(n) + f(1)] + 4f2(n)f2(1)

+ 4f(n)f(1) [c(g(n) + g(1)) + d(f(n) + f(1))]

= 4[f2(n)f2(1) + cf2(n)g(1) + df2(n)f(1) + cf2(1)g(n) + c2g(n)g(1) + cdg(n)f(1) + df(n)f2(1)

+ cdf(n)g(1) + d2f(n)f(1)]

(62)

which after grouping and canceling terms is equivalent to

c2 [g(n)− g(1)]
2
+ d2 [f(n)− f(1)]

2
+ 2cd [g(n)− g(1)] [f(n)− f(1)]

+ 4cf(n) [f(1)g(n)− f(n)g(1)] + 4cf(1) [f(n)g(1)− f(1)g(n)] = 0
(63)

which is simply written as

c2 [g(n)− g(1)]
2
+d2 [f(n)− f(1)]

2
+ 2cd [g(n)− g(1)] [f(n)− f(1)]

+ 4c [f(n)− f(1)] [f(1)g(n)− f(n)g(1)] = 0.
(64)

We rearrange (64) as

E(n) :=
c2

2
[g(n)− g(1)]

2
+ 2cd [g(n)− g(1)] [f(n)− f(1)]

+
c2

2
[g(n)− g(1)]

2
+ 4c [f(n)− f(1)] [f(1)g(n)− f(n)g(1)]

+ d2 [f(n)− f(1)]
2
= 0.

(65)

We aim to prove that E(n) > 0 for all n ∈ N, n ≥ 2. Since k3 ≥ 2γ2

σ it follows

that c2

2 ≥ 4c and therefore

c2

2
[g(n)− g(1)]

2
+ 4c [f(n)− f(1)] [f(1)g(n)− f(n)g(1)]

≥ 4c
{
[g(n)− g(1)]

2
+ [f(n)− f(1)] [f(1)g(n)− f(n)g(1)]

}
= 4c

{
[n tanh(nkh)− tanh(kh)]

2
+ [tanh(nkh)− n tanh(kh)] (1− 1

n2
) tanh(nkh) tanh(kh))

}
> 4c(n tanh(nkh)− tanh(kh) + tanh(nkh)− n tanh(kh))

= 4c (n [tanh(nkh)− tanh(kh)] + [tanh(nkh)− tanh(kh)]) > 0, for all n ∈ N, n ≥ 2,

(66)
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where we have used the following inequalities proved in the Appendix of [30]

n tanh(nkh)− tanh(kh) ≥ 1 for all n ≥ 2, kh ≥ 1

2
,

tanh(nkh)− n tanh(kh) < 0 for all n ≥ 2, k > 0, h > 0,

(1− 1

n2
) tanh(nkh) tanh(kh) < 1 for all n ≥ 2,

and the fact that the function x→ tanh(xkh) is strictly increasing for kh > 0.

Now from k2 ≥ 4 g
σ it follows that c2

2 ≥ 2cd. Hence

c2

2
[g(n)− g(1)]

2
+2cd [g(n)− g(1)] [f(n)− f(1)]

≥ 2cd [g(n)− g(1)] [g(n)− g(1) + f(n)− f(1)]

= [g(n)− g(1)]

[
n tanh(nkh)− tanh(kh) +

1

n
tanh(nkh)− tanh(kh)

]
= [g(n)− g(1)]

[
n tanh(nkh)− 2 tanh(kh) +

1

n
tanh(nkh)

]
> 0

(67)

for all n ∈ N, n ≥ 2. From (66) and (67) we have that E(n) > 0 for all

n ∈ N, n ≥ 2 and therefore (61) can not hold. This proves that λ∗n
− 6= λ∗ 1

− for

all n ∈ N, n ≥ 2. It is easy to see that the same argument as above can be

applied to prove that λ∗n
+ 6= λ∗ 1

+ for all n ∈ N, n ≥ 2.

We now proceed with checking the remaining conditions from the Crandall-

Rabinowitz Theorem.

It is easy to see that R(∂(µ,w)F (λ
∗, 0)) is the closed subspace of Y consisting of

all functions f ∈ Y which satisfy∫ π

−π

f(x) cos(x)dx = 0,

and therefore Y/R(∂(µ,w)F (λ
∗, 0)) is the one dimensional subspace of Y gener-

ated by the function w∗(x) = cos(x).

Using (44) we compute

∂2λ,(µ,w)F (λ
∗, (0, 0))(1, (0, w∗))

= lim
t→0

∂(µ,w)F (λ
∗ + t, (0, 0))(0, w∗)− ∂(µ,w)F (λ

∗, (0, 0))(0, w∗)

t

(68)
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Since

∂(µ,w)F (λ
∗+t, (0, 0))(0, w∗) = − 2

k2
[
(λ∗ + t)γw∗ + (λ∗ + t)2kCkh(w∗′) + σk2w∗′′ − gw∗]

(69)

and

∂(µ,w)F (λ
∗, (0, 0))(0, w∗) = − 2

k2
[
λ∗γw∗ + λ∗2kCkh(w∗′) + σk2w∗′′ − gw∗]

(70)

we obtain that

∂2λ,(µ,w)F (λ
∗, (0, 0))(1, (0, w∗)) = − 2

k2
γw∗ − 4

k2
λ∗kCkh(w∗′) (71)

For w∗ = cos(x) we have from (92) that Ckh(w∗) = coth(kh) sin(x) and Ckh(w∗′) =

(Ckh(w∗))′ = coth(kh) cos(x) = coth(kh)w∗, and therefore

∂2λ,(µ,w)F (λ
∗, (0, 0))(1, (0, w∗)) =

2

k2
(−γ − 2λ∗k coth(kh))w∗

/∈ R(∂(µ,w)F (λ
∗, (0, 0))),

(72)

since by (47) we have

−γ − 2λ∗k coth(kh) = −λ∗
(
k coth(kh) +

σk2 + g

(λ∗)2

)
6= 0.

From the local bifurcation theorem we obtain the bifurcation values

λ± = −γ tanh(kh)
2k

±

√
γ2 tanh2(kh)

4k2
+
k2σ + g

k
tanh(kh). (73)

Please note that if σ = 0 i.e., in the case of gravity waves the formula for the

bifurcation values (73) is the same as formula 5.13 in [11], while for g = 0 i.e.,

for pure capillary waves we regain the corresponding formula from [30].

From (41) we obtain the corresponding values for the relative mass flux m as

m± =
γh2

2
− γh tanh(kh)

2k
± h

√
γ2 tanh2(kh)

4k2
+
k2σ + g

k
tanh(kh) (74)

In the case of gravity waves (g = 0) we obtain from (74) the formula 5.14 from

[11] and in the case of pure capillary waves we regain from (74) the corresponding

formula from [30]. We can now formulate the results concerning the existence

of small amplitude periodic capillary-gravity water waves of constant vorticity.
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Theorem 7. For any h > 0, k > 0, σ > 0, γ ∈ R satisfying condition (59) or

(60) and m ∈ R there exists laminar flows with a flat free surface in water of

depth h, of constant vorticity γ and relative mass flux m. The laminar flows of

flux m± are exactely those with horizontal speeds at the flat free surface equal to

λ± given by (73). The values of m± of the flux given by (74) trigger the appear-

ance of periodic steady waves of small amplitude, with period 2π
k and conformal

mean depth h, which have a smooth profile with one crest and one trough per

period, monotone between consecutive crests and troughs and symmetric about

any crest line.

Proof. See the proof of Theorem 8 below.

Theorem 8. For any h > 0, k > 0, γ ∈ R and m ∈ R satisfying k3 ≥

2γ2

σ , k2 ≥ 4 g
σ and kh ≥ 1

2 there exists laminar flows with a flat free surface

in water of depth h, of constant vorticity γ and relative mass flux m. The

laminar flows of flux m± are exactely those with horizontal speeds at the flat free

surface equal to λ± given by (73). The values of m± of the flux given by (74)

trigger the appearance of periodic steady waves of small amplitude, with period

2π
k and conformal mean depth h, which have a smooth profile with one crest and

one trough per period, monotone between consecutive crests and troughs and

symmetric about any crest line.

Proof. Using the argument from the proof of Theorem 3.2 in [30] we see that

w = 0 gives rise to laminar flows in the fluid domain bounded below by the rigid

bed B and above by the flat free surface Y = h. These laminar flow solutions

are given by

ψ(X,Y ) = −γ
2
Y 2 +

(
m

h
+
γh

2

)
Y −m, X ∈ R, 0 ≤ Y ≤ h,

while the velocity field is

(ψY ,−ψX) =

(
−γY +

m

h
+
γh

2
, 0

)
, X ∈ R, 0 ≤ Y ≤ h. (75)

Note that using (41) we can rewrite (75) as

(ψY ,−ψX) = (λ± + γ(h− Y ), 0) , X ∈ R, 0 ≤ Y ≤ h, (76)
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where λ± is given by (73). Observe that ψY |Y=h = −γh + m
h + γh

2 = m
h − γh

2

which shows that for laminar flows the horizontal velocity at the free surface

coincides with λ given in (41). The formula (73), of the speed λ± at the free

surface in terms of the depth h, period 2π/k and vorticity γ, is called the dis-

persion relation.

Concerning the existence of waves of small amplitude with the properties men-

tioned in the statement of the theorem we apply the Crandall-Rabinowitz the-

orem which asserts the existence of the local bifurcation curve

{(λ(s), (0 + o(s), s cos(x) + o(s))) : |s| < ε} ⊂ R×X

consisting of solutions of (42) with λ± given by (73).

Choosing ε sufficiently small and using Lemma 12 we can ensure that

w(x) > −h for all x ∈ R,

and
1

k
+ Ckh(w′)(x) > 0 for all x ∈ R. (77)

The inequality (77) implies that the corresponding non-flat free surface S given

by (22) with v = w + h is the graph of a smooth function, symmetric with

respect to the points obtained for the values x = nπ, n ∈ Z. From

w(x; s) = s cos(x) + o(s) in Cp+1,α
2π ,

we have that

sw′(x; s) < 0 for all x ∈ (0, π), 0 < |s| < ε,

for ε > 0 sufficiently small and p ≥ 1. Using the eveness of x → w(x; s) we

conclude the proof of the assertion about the free surface S, i.e., S has one crest

and one trough per minimal period and is monotone between consecutive crests

and troughs.

Remark 4. Please note that our formula for λ−-the horizontal velocity at the

free surface for laminar flows- coincides with the one given in [42]. However the

formula in [42] was obtained under stronger assumptions namely that the flow
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does not contain stagnation points and that the free surface is always a graph.

While for the small amplitude waves whose existence we prove, at least close

to the bifurcation point, the free surface is always a graph, we will see that

stagnation is possible.

In the case of periodic traveling gravity waves in a flow with constant vorticity

the formula giving λ was rigourously obtained by Constantin and Varvaruca in

[11] although by formal arguments appeared already in the papers [1, 37].

Remark 5. Concerning the hypothesis that the free surface is a graph (dis-

carded in the present paper and assumed in [42] we want to note that there are

examples of capillary irrotational waves whose free surface is not a graph. In

water of finite depth the explicit solutions are known as Kinnersley’s waves [29],

and in the case of infinite depth as Crapper’s waves [16].

We are now concerned with the question as whether such flows contain stagna-

tion points. Note first that it follows from (76) that the necessary and sufficient

condition for the existence of stagnation points is

λ± + γ(h− Y ) = 0

for at least one Y in [0, h]. The latter condition is satisfied if and only if

λ±(λ± + γh) ≤ 0. (78)

If γ > 0 it follows that λ+(λ+ + γh) > 0 so from (78) we have that the flow

corresponding to λ+ does not contain stagnation points. The flow corresponding

to λ− contains stagnation points if and only if λ− + γh ≥ 0, which is equivalent

to

tanh(kh) ≤ γ2h2k

γ2h+ k2σ + g
. (79)

The case γ < 0 can be treated similarly. Namely, if γ < 0 we see that λ−(λ− +

γh) > 0 and therefore from (78) we have that the flow corresponding to λ−

does not contain stagnation points. The flow corresponding to λ+ contains

stagnation points if and only if λ+ + γh ≤ 0, which also is equivalent to (79).
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Note that in the case of gravity water waves (σ = 0) the condition (79) becomes

tanh(kh) ≤ γ2h2k
γ2h+g , which is the same as the condition for existence of stagnation

points found in [11]. Also if we set g = 0 in (79) we regain the condition of

existence of stagnation points in the case of capillary water waves which we

found in [30].

Remark 6. Notice that (79) does not hold true for k → ∞ since the limit of

the left-hand side is 1 as k → ∞ while the limit of the right hand side is 0 as

k → ∞. It follows that a flow with L→ 0 does not have stagnation points since

in that case k = 2π
L → ∞ and we saw that this violates (79).

Lemma 9. If the vorticity γ is such that

γ2 ≥ 4σh+
√
16σ2h2 + 16h4σg

2h4
(80)

there are values k1 ≤ k2 with the property that (79) holds true whenever k ∈

[k1, k2].

Proof. Note that

γ± = ±

√
4σh+

√
16σ2h2 + 16h4σg

2h4

are the only real solutions of the equation

h4γ4 − 4σhγ2 − 4σg = 0,

which besides γ± has another two complex conjugate solutions. It follows that

h4γ4 − 4σhγ2 − 4σg ≥ 0, (81)

for all γ ∈ (−∞, γ−] ∪ [γ+,∞). But (81) ensures that the equation

σk2 − γ2h2k + γ2h+ g = 0

has two (not necessarily distinct) solutions

k1 :=
γ2h2 −

√
γ4h4 − 4σγ2h− 4σg

2σ
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k2 :=
γ2h2 +

√
γ4h4 − 4σγ2h− 4σg

2σ

We then have that

σk2 − γ2h2k + γ2h+ g ≤ 0,

for all k ∈ [k1, k2] which implies that

γ2h2k

γ2h+ k2σ + g
≥ 1.

Therefore (79) holds true for all k ∈ [k1, k2].

Remark 7. Observe that if we set g = 0 in (80) we discover the sufficient

condition for the existence of stagnation points for capillary water waves which

we found already in [30].

Remark 8. Let γ and h be such that

γ2 ≥ 4σh+
√
16σ2h2 + 64h4σg

2h4
. (82)

Let k1 and k2 be the values from Lemma 9. If k ∈
[
k1+k2

2 , k2
]
then the sufficient

conditions for the existence of laminar flows from Theorem 8 are satisfied. In

addition, these flows posses stagnation points as the proof of Lemma 9 shows.

Proof. We have to show that for all such k we have that k3 ≥ γ2

σ , k2 ≥ 4 g
σ

and kh ≥ 1
2 . We only need to show that the last two inequalities hold true for

k = k1+k2

2 = γ2h2

2σ and then the rest follows. Note first that (82) implies that

γ2 ≥ 4
σ

h3

and

γ2 ≥
√
64h4σg

2h4
= 4

√
σg

h2
.

If k = k1+k2

2 = γ2h2

2σ then we have

k3 =

(
γ2h2

2σ

)3

=
γ6h6

8σ3
=
γ2

σ
· γ

4h6

8σ2
≥ γ2

σ
· 16σ

2

8σ2
= 2

γ2

σ
,

k2 =

(
γ2h2

2σ

)2

=
γ4h4

4σ2
≥ 16σg

4σ2
= 4

g

σ
,

kh =
γ2h3

2σ
≥ 2.
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4. Regularity

We are now ready to prove a regularity result for the free surface. We would

like to mention that for flows without stagnation points recent results proving a

priori regularity for the free-surface and streamlines of capillary and capillary-

gravity waves with vorticity were obtained in [23], [24]-(for a recent survey of

regularity results for flows with vorticity see [18]).

Theorem 10. Let h > 0 and v ∈ C2,α
2π be a solution of (21). Then v ∈ C∞

2π.

Proof. From (17) and (19) we find that

Gkh(v)v
′′ − Gkh(v

′)v′ =

(
1

k
+ Ckh(v′)

)
v′′ − v′Ckh(v′′) (83)

From (19) and the second equation of (21) we have that

Gkh(
v2

2
)−vGkh(v) =

[
v2
]

2kh
+Ckh(vv′)−

v

k
−vCkh(v′) =

[
v2
]

2kh
− v

k
−Qkh(v), (84)

where Qkh(v) = vCkh(v′) − Ckh(vv′). From Lemma 14 we have that Qkh(v) ∈

C
2,α/3
2π since v ∈ C2,α

2π . The latter fact together with the formulas (83), (84), (21)

and using v′ 2 + Gkh(v)
2 ∈ C

1,α/3
2π yield(

1

k
+ Ckh(v′)

)
v′′ − v′Ckh(v′′) ∈ C

1,α/3
2π (85)

Now from Lemma 14 with f = −v′ ∈ C1,α
2π and g = Ckh(v′′) ∈ C0,α

2π it follows

that

−v′Ckh(Ckh(v′′))− Ckh(−v′Ckh(v′′)) ∈ C
1,α/3
2π , (86)

and taking into account that C−1
kh = −Ckh (see Lemma 12) we obtain from above

that

v′v′′ − Ckh(−v′Ckh(v′′)) ∈ C
1,α/3
2π . (87)

By applying Ckh to (85) and using (87) we get

1

k
Ckh(v′′) + Ckh(v

′′Ckh(v
′)) + v′v′′ ∈ C

1,α/3
2π (88)

Setting f = Ckh(v′) ∈ C1,α
2π and g = v′′ ∈ C0,α

2π we get by applying Lemma 14

Ckh(v′)Ckh(v′′)− Ckh(v′′Ckh(v′)) ∈ C
1,α/3
2π (89)
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Adding up (88) and (89) yields(
1

k
+ Ckh(v′)

)
Ckh(v′′) + v′v′′ ∈ C

1,α/3
2π (90)

We now multiply (85) by 1
k + Ckh(v′) ∈ C1,α

2π and (90) by v′ ∈ C1,α
2π and by

adding up the resulting expressions we obtain((
1

k
+ Ckh(v′)

)2

+ v′2

)
v′′ ∈ C

1,α/3
2π (91)

Since the expression in the bracket on the left-hand side of (91) is strictly positive

and belongs to C1,α
2π we obtain that v′′ ∈ C

1,α/3
2π . Therefore v ∈ C

3,α/3
2π . An

iteration of this method shows that v ∈ C∞
2π.

5. Appendix

This section contains a more precise description of the operator Cd as was

obtained in [11]. We only formulate the results.

Denote by L2
2π the space of 2π-periodic locally square integrable functions of

one real variable. By L2
2π,o we denote the subspace of L2

2π whose elements have

zero mean over one period.

Lemma 11. If

w =

∞∑
n=1

an cos(nx) +

∞∑
n=1

bn sin(nx),

is the Fourier series expansion of w ∈ L2
2π,o then

Cd(w) =
∞∑

n=1

an coth(nd) sin(nx)−
∞∑

n=1

bn coth(nd) cos(nx) (92)

Lemma 12. For any d > 0, p ≥ 0 integer and α ∈ (0, 1), Cd : Cp,α
2π,o → Cp,α

2π,o

is a bounded linear operator. Moreover, C−1
d = −Cd : Cp,α

2π,o → Cp,α
2π,o is also a

bounded linear operator.

Lemma 13. Let w ∈ Cp,α
2π with p ≥ 1 an integer and α ∈ (0, 1). Let Qd denote

the mapping

w → Qd(w) = wCd(w′)− Cd(ww′),

We then have that Qd(w) ∈ Cp,δ
2π for any δ ∈ (0, α).
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Lemma 14. Let p ≥ 1 be an integer, α ∈ (0, 1) and d > 0. If f ∈ Cp,α
2π and

g ∈ Cp−1,α
2π then

fCd(g)− Cd(fg) ∈ Cp,δ
2π for all δ ∈ (0, α).

Proof. The proof follows the line of the proofs of Lemma 3.2 and of Lemma B1

from the paper [11].
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