A regularity result for Calderón commutators

Calin Iulian Martin

Received: date / Accepted: date

Abstract We present a regularity result for the Calderon commutator $[u, \mathcal{H}](v)$ where u, v are moduli of continuity and \mathcal{H} is the Hilbert transform.

Mathematics Subject Classification[2010]: 42B20, 42C20.
Keywords Hilbert transform • moduli of continuity • commutators

1 Introduction

There are many instances where commutators are of interest. Some of them are the theory of pseudodifferential calculus and the theory of singular integral operators (see [5]).
We are motivated in this paper by the regularity result obtained by Constantin and Varvaruca (see Lemma B. 1 in [2]) in the context of water waves. Namely, they proved that if u is $C^{1, \alpha}$ periodic function and v is a C^{α} periodic function then the commutator $[u, \mathcal{H}] v$ is again a $C^{1, \delta}$ (with $\delta<\alpha$) periodic function, where \mathcal{H} is the Hilbert trasform (see below). We extend in this paper their result by replacing the Hölder regularity by the moduli of continuity. The main results are contained in Theorem 1 and Theorem 2.

[^0]
2 Commutator estimates

Let \mathcal{H} denote the singular integral operator

$$
\begin{equation*}
\mathcal{H}(u)(t)=\frac{1}{2 \pi} P V \int_{-\pi}^{\pi} \cot \left(\frac{t-s}{2}\right) u(s) d s \tag{1}
\end{equation*}
$$

with $P V$ denoting a principal value integral, where the formula (1) makes sense for $u \in L_{p}[-\pi, \pi]$ or for $u \in C^{\alpha}$, in which case \mathcal{H} gives rise to bounded operators

$$
: L_{p}[-\pi, \pi] \rightarrow L_{p}[-\pi, \pi] \text { for all } p \in(1, \infty)
$$

and

$$
: C^{\alpha} \rightarrow C^{\alpha} \text { for all } \alpha \in(0,1)
$$

cf., [1].
Definition 1 We say that a continuous, increasing function $\omega:(0, \pi] \rightarrow$ $[0, \infty)$ is a modulus of continuity if

$$
\begin{gather*}
\lim _{t \rightarrow 0} \omega(t)=0 \tag{2}\\
\frac{\omega(t)}{t} \text { is decreasing on }(0, \infty), \tag{3}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\omega(s)}{s} d s<\infty \tag{4}
\end{equation*}
$$

Definition 2 Let ω be a modulus of continuity as in Definition 1. Then
(i) $C_{\omega}^{2 \pi}$ denotes the space of continuous periodic (of period 2π) functions u on $[-\pi, \pi]$ such that $|u(x)-u(y)| \leq C \omega(|x-y|)$, for some constant $C>0$.
(ii) By $C_{\omega_{0}}^{2 \pi}$ we denote the space of continuous periodic (of period 2π) functions u on $[-\pi, \pi]$ such that $|u(x)-u(y)| \leq C \omega_{0}(|x-y|)$, where $\omega_{0}(t)=$ $\omega(t)|\log t|+\int_{0}^{t} \frac{\omega(s)}{s} d s$, for all $t>0$, for some constant $C>0$.

Definition 3 For $u, v \in C_{\omega}^{2 \pi}$ we denote $\mathcal{C}(u, v)=\left[M_{u}, \mathcal{H}\right](v)=u \mathcal{H}(v)-$ $\mathcal{H}(u v)$.

Remark 1 This type of commutators arise for example in the theory of traveling water waves, see for instance the recent papers [2], [3], [4].

Theorem 1 Let $u, v \in C_{\omega}^{2 \pi}$. Then $\mathcal{C}=\mathcal{C}(u, v) \in C_{\omega_{0}}^{2 \pi}$.
Proof The definition of \mathcal{H} yields

$$
\begin{equation*}
\mathcal{C}(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cot \left(\frac{t-s}{2}\right)(u(t)-u(s)) v(s) d s \tag{5}
\end{equation*}
$$

Since the operator defining \mathcal{C} commutes with translations, it suffices to show that

$$
\begin{equation*}
|\mathcal{C}(t)-\mathcal{C}(0)| \leq C \omega(|t|) \text { for all } t \text { close to } 0 \tag{6}
\end{equation*}
$$

Above and in what follows below C denotes a positive constant.
Rearranging and taking into account the periodicity of the functions involved in (6) we have that

$$
\begin{equation*}
\mathcal{C}(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cot \left(\frac{s}{2}\right)(u(t)-u(t-s)) v(t-s) d s \tag{7}
\end{equation*}
$$

Hence,

$$
2 \pi[\mathcal{C}(t)-\mathcal{C}(0)]=I_{1}(t)+I_{2}(t)
$$

where

$$
I_{1}(t)=\int_{-2|t|}^{2|t|} \cot \left(\frac{s}{2}\right)\{(u(t)-u(t-s)) v(t-s)-(u(0)-u(-s)) v(-s)\} d s
$$

and

$$
I_{2}(t)=\int_{T} \cot \left(\frac{s}{2}\right)\{(u(t)-u(t-s)) v(t-s)-(u(0)-u(-s)) v(-s)\} d s
$$

with $T=(-\pi,-2|t|) \cup(2|t|, \pi)$ and with t chosen such that $2|t|<\frac{1}{\pi}$. Using the inequality

$$
\begin{equation*}
\frac{1}{\sin ^{2} x} \leq \psi(|x|) \frac{1}{x^{2}} \text { for all } 0<|x|<\pi \tag{8}
\end{equation*}
$$

with $\psi:(0, \pi) \rightarrow[0, \infty)$ bounded on $(0, a]$ for all $a \in(0, \pi)$, the boundedness of v and that $|u(t)-u(t-s)| \leq \omega(|s|)$ yields

$$
\begin{equation*}
\left|\int_{-2|t|}^{2|t|} \cot \left(\frac{s}{2}\right)(u(t)-u(t-s)) v(t-s) d s\right| \leq C \int_{0}^{2|t|} \frac{\omega(s)}{s} d s \leq C \omega_{0}(|t|) \tag{9}
\end{equation*}
$$

An analogous argument gives that

$$
\begin{equation*}
\left|\int_{-2|t|}^{2|t|} \cot \left(\frac{s}{2}\right)(u(0)-u(-s)) v(-s) d s\right| \leq C \int_{0}^{2|t|} \frac{\omega(s)}{s} d s \leq C \omega_{0}(|t|) \tag{10}
\end{equation*}
$$

Therefore, (9) and (10) yield that $\left|I_{1}(t)\right| \leq C \omega_{0}(|t|)$. In estimating I_{2} we write

$$
\begin{align*}
& \int_{T} \cot \left(\frac{s}{2}\right)[(u(t)-u(t-s)) v(t-s)-(u(0)-u(-s)) v(-s)] d s \\
& =\int_{T} \cot \left(\frac{s}{2}\right)\{[u(t)-u(0)] v(t-s)-[u(t-s)-u(-s)] v(-s)\} d s \tag{11}\\
& +\int_{T} \cot \left(\frac{s}{2}\right)[u(0)-u(t-s)][v(t-s)-v(-s)] d s
\end{align*}
$$

Using inequality (8), the boundedness of v and that $|u(t)-u(0)| \leq \omega(|t|)$ we find that

$$
\begin{equation*}
\left|\int_{T} \cot \left(\frac{s}{2}\right)[u(t)-u(0)] v(t-s) d s\right| \leq C \omega(|t|) \int_{T} \frac{d s}{|s|} \leq C \omega(|t|)|\log | t| | \tag{12}
\end{equation*}
$$

Similarly, one can show that

$$
\begin{equation*}
\left|\int_{T} \cot \left(\frac{s}{2}\right)[u(t-s)-u(-s)] v(-s) d s\right| \leq C \omega(|t|) \int_{T} \frac{d s}{|s|} \leq C \omega(|t|)|\log | t| | \tag{13}
\end{equation*}
$$

In the same vein, using now the boundedness of u, inequality (8), and that $|v(t-s)-v(-s)| \leq C \omega(|t|)$ we obtain

$$
\begin{equation*}
\left|\int_{T} \cot \left(\frac{s}{2}\right)[u(0)-u(t-s)][v(t-s)-v(-s)] d s\right| \leq C \omega(|t|)|\log | t| | \tag{14}
\end{equation*}
$$

The estimates (12), (13), and (14) yield that $\left|I_{2}(t)\right| \leq C \omega(|t|)|\log | t| | \leq$ $C \omega_{0}(|t|)$.

Theorem 2 Let u be differentiable with $u^{\prime} \in C_{\omega}^{2 \pi}$ and $v \in C_{\omega}^{2 \pi}$. Then $\mathcal{C}=$ $\mathcal{C}(u, v)$ is differentiable and $\mathcal{C}(u, v)^{\prime} \in C_{\omega_{0}}^{2 \pi}$

Proof We adapt a method from [2] to the situation where the Hölder regularity is replaced by the one given by the moduli of continuity.
From the definition of \mathcal{H} we have that

$$
\begin{equation*}
\mathcal{C}(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cot \left(\frac{t-s}{2}\right)(u(t)-u(s)) v(s) d s \tag{15}
\end{equation*}
$$

for all $t \in \mathbb{R}$. We show first that \mathcal{C} is differentiable on \mathbb{R} with derivative given by formal differentiation in (15), namely:

$$
\begin{equation*}
\mathcal{C}^{\prime}(t)=\frac{1}{4 \pi} \int_{-\pi}^{\pi} \frac{u^{\prime}(t) \sin (t-s)-(u(t)-u(s))}{\sin ^{2}\left(\frac{t-s}{2}\right)} v(s) d s \tag{16}
\end{equation*}
$$

We observe that the above integral is finite by noticing that it is equal to the integral

$$
\begin{equation*}
\frac{1}{4 \pi} \int_{t-\pi}^{t+\pi} \frac{u^{\prime}(t) \sin (t-s)-(u(t)-u(s))}{\sin ^{2}\left(\frac{t-s}{2}\right)} v(s) d s \tag{17}
\end{equation*}
$$

about which we will show that it is finite. In doing so we write

$$
\begin{equation*}
u^{\prime}(t) \sin (t-s)-(u(t)-u(s))=u^{\prime}(t)[\sin (t-s)-(t-s)]+u^{\prime}(t)(t-s)-(u(t)-u(s)) \tag{18}
\end{equation*}
$$

Using the inequalities

$$
\begin{equation*}
|x-\sin x| \leq \frac{1}{6}|x|^{3} \text { for all } x \in \mathbb{R} \tag{19}
\end{equation*}
$$

and (8), we see that

$$
\left|\frac{u^{\prime}(t)[\sin (t-s)-(t-s)]}{\sin ^{2}\left(\frac{t-s}{2}\right)} v(s)\right| \leq C\left|u^{\prime}(t)(t-s)\right| \leq C|t-s|
$$

which implies that

$$
\begin{equation*}
\int_{t-\pi}^{t+\pi}\left|\frac{u^{\prime}(t)[\sin (t-s)-(t-s)]}{\sin ^{2}\left(\frac{t-s}{2}\right)} v(s)\right| d s<\infty \tag{20}
\end{equation*}
$$

From the Mean Value Theorem and properties of the modulus of continuity ω we have that

$$
\begin{align*}
\left|u^{\prime}(t)(t-s)-(u(t)-u(s))\right| & =\left|u^{\prime}(t)-u^{\prime}(c)\right||t-s| \\
& \leq C|t-s| \omega(|t-c|) \leq C|t-s| \omega(|t-s|) \tag{21}
\end{align*}
$$

for some $c=c(s, t)$ between s and t. Hence, using also (8) we see that

$$
\begin{equation*}
\left|\frac{u^{\prime}(t)(t-s)-(u(t)-u(s))}{\sin ^{2}\left(\frac{t-s}{2}\right)}\right| \leq C \frac{\omega(|t-s|)}{|t-s|} \tag{22}
\end{equation*}
$$

By a change of variable we obtain that

$$
\int_{t-\pi}^{t+\pi} \frac{\omega(|t-s|)}{|t-s|} d s=2 \int_{0}^{\pi} \frac{\omega(s)}{s} d s<\infty
$$

by requirement (4) in Definition 1. Therefore

$$
\begin{equation*}
\int_{t-\pi}^{t+\pi}\left|\frac{u^{\prime}(t)(t-s)-(u(t)-u(s))}{\sin ^{2}\left(\frac{t-s}{2}\right)} v(s)\right| d s<\infty \tag{23}
\end{equation*}
$$

From (20) and (23) we see that the integral in (17) is finite which implies, as argued before, that the integral in (16) is finite. We will now show that \mathcal{C} is differentiable at $t=0$. This will imply that \mathcal{C} is differentiable everywhere due to the fact that \mathcal{C} commutes with translations as it can be seen from (15). We see that

$$
2 \pi \frac{\mathcal{C}(t)-\mathcal{C}(0)}{t}=I_{1}(t)+I_{2}(t)
$$

with
$I_{1}(t)=\frac{1}{t} \int_{-2|t|}^{2|t|}\left[\cot \left(\frac{t-s}{2}\right)(u(t)-u(s))-\cot \left(\frac{-s}{2}\right)(u(0)-u(s))\right] v(s) d s$,

$$
I_{2}(t)=\frac{1}{t} \int_{T}\left[\cot \left(\frac{t-s}{2}\right)(u(t)-u(s))-\cot \left(\frac{-s}{2}\right)(u(0)-u(s))\right] v(s) d s
$$

where $T=(-\pi,-2|t|) \cup(2|t|, \pi)$. First, we prove that $I_{1}(t) \rightarrow 0$ as $t \rightarrow 0$. In doing this we rewrite $I_{1}(t)$ as

$$
\begin{aligned}
I_{1}(t) & =\frac{1}{t} \int_{-2|t|}^{2|t|}\left[\left(\cot \left(\frac{t-s}{2}\right)-\frac{2}{t-s}+\frac{2}{t-s}\right)(u(t)-u(s))\right. \\
& \left.-\left(\cot \left(\frac{-s}{2}\right)-\frac{2}{-s}+\frac{2}{-s}\right)(u(0)-u(s))\right] v(s) d s
\end{aligned}
$$

Let

$$
\begin{align*}
J_{1}(t) & =\frac{1}{t} \int_{-2|t|}^{2|t|}\left[\left(\cot \left(\frac{t-s}{2}\right)-\frac{2}{t-s}\right)(u(t)-u(s))\right. \tag{24}\\
& \left.-\left(\cot \left(\frac{-s}{2}\right)-\frac{2}{-s}\right)(u(0)-u(s))\right] v(s) d s
\end{align*}
$$

Using the fact that

$$
\begin{equation*}
\left|\cot (x)-\frac{1}{x}\right| \leq \varphi(|x|)|x| \text { for all } x, 0<|x|<\pi \tag{25}
\end{equation*}
$$

with $\varphi:(0, \pi) \rightarrow[0, \infty)$ bounded function on $(0, a]$ for all $a \in(0, \pi)$, we find that

$$
\begin{align*}
\left|J_{1}(t)\right| & \leq \frac{C}{|t|} \int_{-2|t|}^{2|t|}\left(\varphi\left(\frac{|t-s|}{2}\right)|t-s|+\varphi\left(\frac{|s|}{2}\right)|s|\right) d s \\
& \leq \frac{C}{|t|} \int_{-2|t|}^{2|t|}(|t-s|+|s|) d s \tag{26}\\
& =C\left(\left|t-s_{0}(t)\right|+\left|s_{0}(t)\right|\right)
\end{align*}
$$

with $s_{0}(t) \in(-2|t|, 2|t|)$ and where the last equality was obtained by applying the mean value theorem for integrals. Since $\lim _{t \rightarrow 0} s_{0}(t)=0$ we have from (26) that $\lim _{t \rightarrow 0} J_{1}(t)=0$. Let

$$
J_{2}(t)=\frac{2}{t} \int_{-2|t|}^{2|t|}\left\{\frac{u(t)-u(s)}{t-s}-\frac{u(0)-u(s)}{0-s}\right\} v(s) d s
$$

Using the mean value theorem for integrals we obtain that

$$
J_{2}(t)=\frac{8|t|}{t}\left\{\frac{u(t)-u\left(s_{1}(t)\right)}{t-s_{1}(t)}-\frac{u(0)-u\left(s_{1}(t)\right)}{0-s_{1}(t)}\right\} v\left(s_{1}(t)\right)
$$

where $s_{1}(t) \in(-2|t|, 2|t|)$. Using now the mean value theorem for differentiable functions reveals that

$$
J_{2}(t)=\frac{8|t|}{t}\left\{u^{\prime}\left(c_{1}(t)\right)-u^{\prime}\left(c_{2}(t)\right)\right\} v\left(s_{1}(t)\right)
$$

with $c_{1}(t), c_{2}(t) \in(-2|t|, 2|t|)$. From the boundedness of v and the continuity of u^{\prime} it follows that the right hand side of the above equality goes to 0 as $t \rightarrow 0$. Therefore we have that $\lim _{t \rightarrow 0} I_{1}(t)=0$, since $I_{1}(t)=J_{1}(t)+J_{2}(t)$.
We are now going to use the Dominated Convergence Theorem to prove that

$$
\begin{equation*}
I_{2}(t) \rightarrow \int_{-\pi}^{\pi} \frac{u^{\prime}(0) \sin (-s)-(u(0)-u(s))}{2 \sin ^{2}\left(\frac{s}{2}\right)} v(s) d s \tag{27}
\end{equation*}
$$

for $t \rightarrow 0$. Notice that

$$
I_{2}(t)=\int_{-\pi}^{\pi} F(t, s) \chi_{(-\pi,-2|t|) \cup(2|t|, \pi)} d s
$$

where
$F(t, s)=\left\{\frac{u(t)-u(0)}{t} \cot \left(\frac{t-s}{2}\right)+(u(0)-u(s)) \frac{\cot \left(\frac{t-s}{2}\right)-\cot \left(-\frac{s}{2}\right)}{t}\right\} v(s)$
where χ_{T} denotes the characteristic function of the set T.
Note that $F(t, s) \chi_{(-\pi,-2|t|) \cup(2|t|, \pi)}$ converges pointwise to $\frac{u^{\prime}(0) \sin (-s)-(u(0)-u(s))}{2 \sin ^{2}\left(\frac{s}{2}\right)} v(s)$ as $t \rightarrow 0$. Also notice that for each $s \in(-\pi, 0) \cup(0, \pi)$ and for each t with $0<|t|<\frac{|s|}{2}$ we obtain from the mean value theorem that

$$
\begin{align*}
\frac{1}{t} & {\left[\cot \left(\frac{t-s}{2}\right)(u(t)-u(s))-\cot \left(\frac{-s}{2}\right)(u(0)-u(s))\right] } \\
& =u^{\prime}(q) \cot \left(\frac{q-s}{2}\right)-\frac{1}{2 \sin ^{2}\left(\frac{q-s}{2}\right)}(u(q)-u(s)) \tag{28}\\
& =\frac{u^{\prime}(q) \sin (q-s)-(u(q)-u(s))}{2 \sin ^{2}\left(\frac{q-s}{2}\right)}
\end{align*}
$$

with $q=q(t, s)$ between 0 and t. We use (19) and (8) and obtain

$$
\begin{align*}
& \left|\frac{u^{\prime}(q) \sin (q-s)-(u(q)-u(s))}{2 \sin ^{2}\left(\frac{q-s}{2}\right)}\right| \\
& \leq C\left|\frac{u^{\prime}(q)(q-s)-(u(q)-u(s))}{(q-s)^{2}}\right|+C|q-s| \\
& =C\left|\frac{u^{\prime}(q)-u^{\prime}\left(q_{0}\right)}{q-s}\right|+C|q-s| \tag{29}\\
& \leq C \frac{\omega\left(\left|q-q_{0}\right|\right)}{|q-s|}+C|q-s| \\
& \leq C \frac{\omega(|q-s|)}{|q-s|}+C|q-s|
\end{align*}
$$

where we used that q_{0} is between q and $s, 0<|t|<|s| / 2$ and $u^{\prime} \in C_{\omega}$. For $s>0$ and since $0<q<t<\frac{s}{2}<s$ we have that $|q-s|=s-q>$ $s-t>\frac{|s|}{2}$. Analogously, for $s<0$ and since $s<\frac{s}{2}<t<q<0$ we have that $|q-s|=q-s>t-s>-\frac{s}{2}=\frac{|s|}{2}$. Therefore $\frac{\omega(|q-s|)}{|q-s|} \leq \frac{\omega(|s| / 2)}{|s| / 2}$. The conditions of the Dominated Convergence Theorem are thus checked since the function $s \rightarrow \frac{\omega(|s|)}{|s|}$ is integrable and v is bounded on $(-\pi, \pi)$. Hence (27) holds and, together with $\lim _{t \rightarrow 0} I_{1}(t)=0$, it follows that \mathcal{C} is differentiable at $t=0$ with $\mathcal{C}^{\prime}(0)$ given by formula (16) at $t=0$. As already explained, this implies that \mathcal{C} is differentiable on \mathbb{R}.
We now prove that $\mathcal{C}^{\prime} \in C_{\omega_{0}}^{2 \pi}$. It suffices to show that

$$
\left|\mathcal{C}^{\prime}(t)-\mathcal{C}^{\prime}(0)\right| \leq \omega_{0}(|t|) \text { for all } t \text { close to } 0
$$

Through changing of variables, rearranging and using the periodicity we obtain the formula

$$
\begin{equation*}
\mathcal{C}^{\prime}(t)=\frac{1}{4 \pi} \int_{-\pi}^{\pi} \frac{u^{\prime}(t) \sin (s)-(u(t)-u(t-s))}{\sin ^{2}\left(\frac{s}{2}\right)} v(t-s) d s \tag{30}
\end{equation*}
$$

for all $t \in \mathbb{R}$. Then

$$
\begin{equation*}
4 \pi\left(\mathcal{C}^{\prime}(t)-\mathcal{C}^{\prime}(0)\right)=T_{1}(t)-T_{2}(t)+T_{3}(t) \tag{31}
\end{equation*}
$$

with

$$
\begin{gather*}
T_{1}(t)=\int_{-2|t|}^{2|t|} \frac{u^{\prime}(t) \sin (s)-(u(t)-u(t-s))}{\sin ^{2}\left(\frac{s}{2}\right)} v(t-s) d s \\
T_{2}(t)=\int_{-2|t|}^{2|t|} \frac{u^{\prime}(0) \sin (s)-(u(0)-u(-s))}{\sin ^{2}\left(\frac{s}{2}\right)} v(-s) d s \\
T_{3}(t)= \\
\int_{(-\pi,-2|t|) \cup(2|t|, \pi)}\left\{\frac{u^{\prime}(t) \sin (s)-(u(t)-u(t-s))}{\sin ^{2}\left(\frac{s}{2}\right)} v(t-s)\right. \tag{32}\\
\\
\left.-\frac{u^{\prime}(0) \sin (s)-(u(0)-u(-s))}{\sin ^{2}\left(\frac{s}{2}\right)} v(-s)\right\} d s
\end{gather*}
$$

We write

$$
\begin{align*}
u^{\prime}(t) \sin (s)-(u(t)-u(t-s)) & =u^{\prime}(t)(\sin (s)-s)+s u^{\prime}(t)-(u(t)-u(t-s)) \\
& =u^{\prime}(t)(\sin (s)-s)+\int_{-s}^{0}\left[u^{\prime}(t)-u^{\prime}(t+\tau)\right] d \tau \tag{33}
\end{align*}
$$

Therefore

$$
\begin{align*}
\left|T_{1}(t)\right| & \leq \int_{-2|t|}^{2|t|}\left|u^{\prime}(t)\right||v(t-s)| \frac{|\sin (s)-s|}{\sin ^{2}\left(\frac{s}{2}\right)} d s \\
& +\int_{-2|t|}^{2|t|}|v(t-s)| \frac{\left|\int_{-s}^{0}\left[u^{\prime}(t)-u^{\prime}(t+\tau)\right] d \tau\right|}{\sin ^{2}\left(\frac{s}{2}\right)} d s \tag{34}
\end{align*}
$$

Using that $\left|u^{\prime}(t)-u^{\prime}(t+\tau)\right| \leq \omega(|\tau|)$ and that ω is increasing it follows via the Mean Value Theorem for integrals that

$$
\begin{equation*}
\left|\int_{-s}^{0}\left[u^{\prime}(t)-u^{\prime}(t+\tau)\right] d \tau\right| \leq|s| \omega(|s|) \tag{35}
\end{equation*}
$$

From the boundedness of u^{\prime} and v, inequalities (34), (35), (19), (8) we have that

$$
\begin{align*}
\left|T_{1}(t)\right| & \leq C\left(\int_{-2|t|}^{2|t|}|s| d s+\int_{-2|t|}^{2|t|} \frac{\omega(|s|)}{|s|} d s\right) \\
& \leq C\left(|t|^{2}+\int_{0}^{2|t|} \frac{\omega(|s|)}{|s|} d s\right) \leq C \omega_{0}(t) \tag{36}
\end{align*}
$$

Analogously one can prove that $\left|T_{2}(t)\right| \leq C \omega_{0}(t)$. We now write $T_{3}(t)=$ $R_{1}(t)+R_{2}(t)$ where

$$
\begin{align*}
R_{1}(t)= & \int_{T}\left\{\frac{\left[u^{\prime}(t)-u^{\prime}(0)\right] \sin (s)}{\sin ^{2}\left(\frac{s}{2}\right)} v(t-s)\right. \\
& \left.+\frac{[u(0)-u(-s)]-[u(t)-u(t-s)]}{\sin ^{2}\left(\frac{s}{2}\right)} v(t-s)\right\} d s \\
R_{2}(t)=\int_{T} & \frac{u^{\prime}(0) \sin (s)-[u(0)-u(-s)]}{\sin ^{2}\left(\frac{s}{2}\right)}[v(t-s)-v(-s)] d s, \tag{37}
\end{align*}
$$

where $T=(-\pi,-2|t|) \cup(2|t|, \pi)$. Concerning R_{1} we have using (8) that

$$
\begin{equation*}
\left|R_{1}(t)\right| \leq C \int_{T}|v(t-s)|\left\{\frac{\left|u^{\prime}(t)-u^{\prime}(0)\right|}{|s|}+\frac{\left|\int_{-s}^{0}\left[u^{\prime}(\tau)-u^{\prime}(t+\tau)\right] d \tau\right|}{|s|^{2}}\right\} d s \tag{38}
\end{equation*}
$$

Since $\left|u^{\prime}(\tau)-u^{\prime}(t+\tau)\right| \leq \omega(|t|)$ we obtain from (38) and from the boundedness of v that

$$
\left|R_{1}(t)\right| \leq C \omega(|t|) \int_{T} \frac{d s}{|s|} \leq C \omega(|t|)|\log | t| |
$$

for all t with $2|t|<\frac{1}{\pi}$. Using now (8) we have

$$
\begin{equation*}
\left|R_{2}(t)\right| \leq C \int_{T}|v(t-s)-v(-s)|\left\{\frac{\left|u^{\prime}(0)\right|}{|s|}+\frac{\left|\int_{-s}^{0} u^{\prime}(\tau) d \tau\right|}{|s|^{2}}\right\} d s \tag{39}
\end{equation*}
$$

Since $v \in C_{\omega}$ we have that $|v(t-s)-v(-s)| \leq \omega(|t|)$. The latter inequality, the boundedness of u^{\prime} and (39) yield that

$$
\left|R_{1}(t)\right| \leq C \omega(|t|) \int_{T} \frac{d s}{|s|} \leq C \omega(|t|)|\log | t| |
$$

for all t with $2|t|<\frac{1}{\pi}$.
Remark 2 Note that for $\alpha \in(0,1)$, the function $\omega_{\alpha}(t)=t^{\alpha}$ satisfies all the properties required by Definition 1. Thus the Hölder regularity results in [2] are particular cases of ours. To see that our result is more general, let us impose the following condition

$$
\begin{equation*}
\omega(t) \geq t^{\alpha} \text { for all } t \text { close to } 0, \text { and all } \alpha \in(0,1) \tag{40}
\end{equation*}
$$

in addition to those in Definition 1. The reason for this is that whenever a modulus of continuity is bounded above near $t=0$ by some ω_{α}, one may replace it by ω_{α}. New classes of functions are opened up by means of (40). Indeed, an example of ω satisfying (40), as well as the requirements of Definition 1 , is the function

$$
\omega(t)=\frac{1}{\left(2+\left|\log \left(\frac{t}{\pi}\right)\right|\right)^{1+\varepsilon}},
$$

where $\varepsilon \in(0,1)$. Indeed, it is easy to see that $\omega(t)$ is increasing on $(0, \pi]$ and $\lim _{t \rightarrow 0} \omega(t)=0$. Note that the property (3) is equivalent to showing that the function $f(t):=t(2+|\log (t / \pi)|)^{1+\varepsilon}$ is increasing. Computing the derivative of the latter function we find that

$$
f^{\prime}(t)=\left\{\begin{array}{l}
\left(2-\log \left(\frac{t}{\pi}\right)\right)^{\varepsilon}\left(1-\log \left(\frac{t}{\pi}\right)-\varepsilon\right), t<\pi \tag{41}\\
\left(2+\log \left(\frac{t}{\pi}\right)\right)^{\varepsilon}\left(3+\log \left(\frac{t}{\pi}\right)+\varepsilon\right), t>\pi
\end{array}\right.
$$

Therefore we have that $f^{\prime}(t)>0$ for all $t>0, t \neq \pi$. Hence f is increasing on $(0, \pi) \cup(\pi, \infty)$ and since f is continuous it follows that f is increasing on $(0, \infty)$ which implies that the function $t \rightarrow \frac{\omega(t)}{t}$ is decreasing on $(0, \infty)$.
We also have $\int_{0}^{\pi} \frac{\omega(s)}{s} d s=\int_{0}^{\infty} \frac{e^{-u}}{e^{-u}(2+|u|)^{1+\varepsilon}} d u=\int_{0}^{\infty} \frac{d u}{(2+u)^{1+\varepsilon}}<\infty$. This proves the property (4).
We now check (40). Note that $\frac{1}{(2+|\log (t / \pi)|)^{1+\varepsilon}} \geq t^{\alpha}$ is equivalent to $t^{\alpha}(2+$ $|\log (t / \pi)|)^{1+\varepsilon} \leq 1$ for $t>0$ and sufficiently close to 0 . From

$$
t^{\alpha}(2+|\log (t / \pi)|)^{1+\varepsilon} \leq t^{\alpha}(2+|\log (t / \pi)|)^{2}
$$

for t sufficiently small and using that $\lim _{t \rightarrow 0} t^{\alpha}(2+|\log (t / \pi)|)^{2}=0$ we obtain that (40) holds true.

Acknowledgements We are very grateful to the referee for the comments and suggestions which improved the presentation.

References

1. Buffoni, B., Toland, J. F., Analytic Theory of Global Bifurcation, Princeton University Press, Princeton, (2003).
2. Constantin, A., Varvaruca, E., Steady Periodic Water Waves with Constant Vorticity: Regularity and Local Bifurcation, Arch. Rational Mech. Anal. 199, 33-67 (2011).
3. Martin, C. I., Local bifurcation and regularity for steady periodic capillary-gravity water waves with constant vorticity, Nonlinear Analysis: Real World Applications, DOI: http://dx.doi.org/10.1016/j.nonrwa.2012.05.007.
4. Martin, C. I., Regularity of steady periodic capillary water waves with constant vorticity, to appear in J. of Nonl. Math. Physics.
5. Stein, E., Harmonic Analysis, Princeton University Press, Princeton, N. J., 1993.

[^0]: We acknowledge the support of the ERC Advanced Grant "Nonlinear Studies of Water Flows with Vorticity"

 Calin Martin
 Faculty of Mathematics
 University of Vienna
 Nordbergstrasse 15
 1090 Vienna
 Austria
 E-mail: calin.martin@univie.ac.at

