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A regularity result for Calderón commutators
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Abstract We present a regularity result for the Calderon commutator [u,H](v)
where u, v are moduli of continuity and H is the Hilbert transform.
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1 Introduction

There are many instances where commutators are of interest. Some of them
are the theory of pseudodifferential calculus and the theory of singular integral
operators (see [5]).
We are motivated in this paper by the regularity result obtained by Constantin
and Varvaruca (see Lemma B.1 in [2]) in the context of water waves. Namely,
they proved that if u is C1,α periodic function and v is a Cα periodic function
then the commutator [u,H]v is again a C1,δ (with δ < α) periodic function,
where H is the Hilbert trasform (see below). We extend in this paper their
result by replacing the Hölder regularity by the moduli of continuity. The main
results are contained in Theorem 1 and Theorem 2.

We acknowledge the support of the ERC Advanced Grant “Nonlinear Studies of Water
Flows with Vorticity”

Calin Martin
Faculty of Mathematics
University of Vienna
Nordbergstrasse 15
1090 Vienna
Austria
E-mail: calin.martin@univie.ac.at



2 Calin Iulian Martin

2 Commutator estimates

Let H denote the singular integral operator

H(u)(t) =
1

2π
PV

∫ π

−π

cot

(
t− s

2

)
u(s) ds, (1)

with PV denoting a principal value integral, where the formula (1) makes
sense for u ∈ Lp[−π, π] or for u ∈ Cα, in which case H gives rise to bounded
operators

: Lp[−π, π] → Lp[−π, π] for all p ∈ (1,∞),

and
: Cα → Cα for all α ∈ (0, 1),

cf., [1].

Definition 1 We say that a continuous, increasing function ω : (0, π] →
[0,∞) is a modulus of continuity if

lim
t→0

ω(t) = 0, (2)

ω(t)

t
is decreasing on (0,∞), (3)

and ∫ π

0

ω(s)

s
ds <∞. (4)

Definition 2 Let ω be a modulus of continuity as in Definition 1. Then

(i) C2π
ω denotes the space of continuous periodic (of period 2π) functions u on

[−π, π] such that |u(x)− u(y)| ≤ Cω(|x− y|), for some constant C > 0.
(ii) By C2π

ω0
we denote the space of continuous periodic (of period 2π) func-

tions u on [−π, π] such that |u(x) − u(y)| ≤ Cω0(|x − y|), where ω0(t) =

ω(t)| log t|+
∫ t

0
ω(s)
s ds, for all t > 0, for some constant C > 0.

Definition 3 For u, v ∈ C2π
ω we denote C(u, v) = [Mu,H](v) = uH(v) −

H(uv).

Remark 1 This type of commutators arise for example in the theory of trav-
eling water waves, see for instance the recent papers [2], [3], [4].

Theorem 1 Let u, v ∈ C2π
ω . Then C = C(u, v) ∈ C2π

ω0
.

Proof The definition of H yields

C(t) = 1

2π

∫ π

−π

cot

(
t− s

2

)
(u(t)− u(s))v(s) ds, (5)

Since the operator defining C commutes with translations, it suffices to show
that

|C(t)− C(0)| ≤ Cω(|t|) for all t close to 0. (6)
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Above and in what follows below C denotes a positive constant.
Rearranging and taking into account the periodicity of the functions involved
in (6) we have that

C(t) = 1

2π

∫ π

−π

cot
(s
2

)
(u(t)− u(t− s))v(t− s) ds (7)

Hence,
2π[C(t)− C(0)] = I1(t) + I2(t),

where

I1(t) =

∫ 2|t|

−2|t|
cot
(s
2

)
{(u(t)− u(t− s))v(t− s)− (u(0)− u(−s))v(−s)} ds,

and

I2(t) =

∫
T

cot
(s
2

)
{(u(t)− u(t− s))v(t− s)− (u(0)− u(−s))v(−s)} ds,

with T = (−π,−2|t|) ∪ (2|t|, π) and with t chosen such that 2|t| < 1
π . Using

the inequality
1

sin2 x
≤ ψ(|x|) 1

x2
for all 0 < |x| < π, (8)

with ψ : (0, π) → [0,∞) bounded on (0, a] for all a ∈ (0, π), the boundedness
of v and that |u(t)− u(t− s)| ≤ ω(|s|) yields∣∣∣∣∣
∫ 2|t|

−2|t|
cot
(s
2

)
(u(t)− u(t− s))v(t− s) ds

∣∣∣∣∣ ≤ C

∫ 2|t|

0

ω(s)

s
ds ≤ Cω0(|t|).

(9)
An analogous argument gives that∣∣∣∣∣
∫ 2|t|

−2|t|
cot
(s
2

)
(u(0)− u(−s))v(−s) ds

∣∣∣∣∣ ≤ C

∫ 2|t|

0

ω(s)

s
ds ≤ Cω0(|t|). (10)

Therefore, (9) and (10) yield that |I1(t)| ≤ Cω0(|t|). In estimating I2 we write∫
T

cot
(s
2

)
[(u(t)− u(t− s))v(t− s)− (u(0)− u(−s))v(−s)] ds

=

∫
T

cot
(s
2

)
{[u(t)− u(0)]v(t− s)− [u(t− s)− u(−s)]v(−s)} ds

+

∫
T

cot
(s
2

)
[u(0)− u(t− s)][v(t− s)− v(−s)] ds

(11)

Using inequality (8), the boundedness of v and that |u(t)− u(0)| ≤ ω(|t|) we
find that∣∣∣∣∫

T

cot
(s
2

)
[u(t)− u(0)]v(t− s) ds

∣∣∣∣ ≤ Cω(|t|)
∫
T

ds

|s|
≤ Cω(|t|)| log |t||. (12)
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Similarly, one can show that∣∣∣∣∫
T

cot
(s
2

)
[u(t− s)− u(−s)]v(−s) ds

∣∣∣∣ ≤ Cω(|t|)
∫
T

ds

|s|
≤ Cω(|t|)| log |t||.

(13)
In the same vein, using now the boundedness of u, inequality (8), and that
|v(t− s)− v(−s)| ≤ Cω(|t|) we obtain∣∣∣∣∫

T

cot
(s
2

)
[u(0)− u(t− s)][v(t− s)− v(−s)] ds

∣∣∣∣ ≤ Cω(|t|)| log |t|| (14)

The estimates (12), (13), and (14) yield that |I2(t)| ≤ Cω(|t|)| log |t|| ≤
Cω0(|t|).

Theorem 2 Let u be differentiable with u′ ∈ C2π
ω and v ∈ C2π

ω . Then C =
C(u, v) is differentiable and C(u, v)′ ∈ C2π

ω0

Proof We adapt a method from [2] to the situation where the Hölder regularity
is replaced by the one given by the moduli of continuity.
From the definition of H we have that

C(t) = 1

2π

∫ π

−π

cot

(
t− s

2

)
(u(t)− u(s))v(s) ds, (15)

for all t ∈ R. We show first that C is differentiable on R with derivative given
by formal differentiation in (15), namely:

C′(t) =
1

4π

∫ π

−π

u′(t) sin(t− s)− (u(t)− u(s))

sin2
(
t−s
2

) v(s) ds. (16)

We observe that the above integral is finite by noticing that it is equal to the
integral

1

4π

∫ t+π

t−π

u′(t) sin(t− s)− (u(t)− u(s))

sin2
(
t−s
2

) v(s) ds, (17)

about which we will show that it is finite. In doing so we write

u′(t) sin(t−s)−(u(t)−u(s)) = u′(t)[sin(t−s)−(t−s)]+u′(t)(t−s)−(u(t)−u(s))
(18)

Using the inequalities

|x− sinx| ≤ 1

6
|x|3 for all x ∈ R, (19)

and (8), we see that∣∣∣∣∣u′(t)[sin(t− s)− (t− s)]

sin2
(
t−s
2

) v(s)

∣∣∣∣∣ ≤ C|u′(t)(t− s)| ≤ C|t− s|
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which implies that∫ t+π

t−π

∣∣∣∣∣u′(t)[sin(t− s)− (t− s)]

sin2
(
t−s
2

) v(s)

∣∣∣∣∣ ds <∞. (20)

From the Mean Value Theorem and properties of the modulus of continuity ω
we have that

|u′(t)(t− s)− (u(t)− u(s))| = |u′(t)− u′(c)||t− s|
≤ C|t− s|ω(|t− c|) ≤ C|t− s|ω(|t− s|)

(21)

for some c = c(s, t) between s and t. Hence, using also (8) we see that∣∣∣∣∣u′(t)(t− s)− (u(t)− u(s))

sin2
(
t−s
2

) ∣∣∣∣∣ ≤ C
ω(|t− s|)
|t− s|

(22)

By a change of variable we obtain that∫ t+π

t−π

ω(|t− s|)
|t− s|

ds = 2

∫ π

0

ω(s)

s
ds <∞,

by requirement (4) in Definition 1. Therefore∫ t+π

t−π

∣∣∣∣∣u′(t)(t− s)− (u(t)− u(s))

sin2
(
t−s
2

) v(s)

∣∣∣∣∣ ds <∞. (23)

From (20) and (23) we see that the integral in (17) is finite which implies, as
argued before, that the integral in (16) is finite. We will now show that C is
differentiable at t = 0. This will imply that C is differentiable everywhere due
to the fact that C commutes with translations as it can be seen from (15). We
see that

2π
C(t)− C(0)

t
= I1(t) + I2(t),

with

I1(t) =
1

t

∫ 2|t|

−2|t|

[
cot

(
t− s

2

)
(u(t)− u(s))− cot

(
−s
2

)
(u(0)− u(s))

]
v(s) ds,

I2(t) =
1

t

∫
T

[
cot

(
t− s

2

)
(u(t)− u(s))− cot

(
−s
2

)
(u(0)− u(s))

]
v(s) ds,

where T = (−π,−2|t|) ∪ (2|t|, π). First, we prove that I1(t) → 0 as t → 0. In
doing this we rewrite I1(t) as

I1(t) =
1

t

∫ 2|t|

−2|t|

[(
cot

(
t− s

2

)
− 2

t− s
+

2

t− s

)
(u(t)− u(s))

−
(
cot

(
−s
2

)
− 2

−s
+

2

−s

)
(u(0)− u(s))

]
v(s)ds,
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Let

J1(t) =
1

t

∫ 2|t|

−2|t|

[(
cot

(
t− s

2

)
− 2

t− s

)
(u(t)− u(s))

−
(
cot

(
−s
2

)
− 2

−s

)
(u(0)− u(s))

]
v(s)ds.

(24)

Using the fact that∣∣∣∣cot(x)− 1

x

∣∣∣∣ ≤ ϕ(|x|)|x| for all x, 0 < |x| < π, (25)

with ϕ : (0, π) → [0,∞) bounded function on (0, a] for all a ∈ (0, π), we find
that

|J1(t)| ≤
C

|t|

∫ 2|t|

−2|t|

(
ϕ

(
|t− s|

2

)
|t− s|+ ϕ

(
|s|
2

)
|s|
)
ds

≤ C

|t|

∫ 2|t|

−2|t|
(|t− s|+ |s|) ds

= C(|t− s0(t)|+ |s0(t)|),

(26)

with s0(t) ∈ (−2|t|, 2|t|) and where the last equality was obtained by applying
the mean value theorem for integrals. Since limt→0 s0(t) = 0 we have from
(26) that limt→0 J1(t) = 0. Let

J2(t) =
2

t

∫ 2|t|

−2|t|

{
u(t)− u(s)

t− s
− u(0)− u(s)

0− s

}
v(s) ds

Using the mean value theorem for integrals we obtain that

J2(t) =
8|t|
t

{
u(t)− u(s1(t))

t− s1(t)
− u(0)− u(s1(t))

0− s1(t)

}
v(s1(t)),

where s1(t) ∈ (−2|t|, 2|t|). Using now the mean value theorem for differentiable
functions reveals that

J2(t) =
8|t|
t

{u′(c1(t))− u′(c2(t))}v(s1(t)),

with c1(t), c2(t) ∈ (−2|t|, 2|t|). From the boundedness of v and the continuity
of u′ it follows that the right hand side of the above equality goes to 0 as
t→ 0. Therefore we have that limt→0 I1(t) = 0, since I1(t) = J1(t) + J2(t).
We are now going to use the Dominated Convergence Theorem to prove that

I2(t) →
∫ π

−π

u′(0) sin(−s)− (u(0)− u(s))

2 sin2( s2 )
v(s) ds, (27)

for t→ 0. Notice that

I2(t) =

∫ π

−π

F (t, s)χ(−π,−2|t|)∪(2|t|,π) ds,
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where

F (t, s) =

{
u(t)− u(0)

t
cot

(
t− s

2

)
+ (u(0)− u(s))

cot( t−s
2 )− cot(− s

2 )

t

}
v(s)

where χT denotes the characteristic function of the set T .

Note that F (t, s)χ(−π,−2|t|)∪(2|t|,π) converges pointwise to
u′(0) sin(−s)−(u(0)−u(s))

2 sin2( s
2 )

v(s)

as t → 0. Also notice that for each s ∈ (−π, 0) ∪ (0, π) and for each t with

0 < |t| < |s|
2 we obtain from the mean value theorem that

1

t

[
cot

(
t− s

2

)
(u(t)− u(s))− cot

(
−s
2

)
(u(0)− u(s))

]
= u′(q) cot

(
q − s

2

)
− 1

2 sin2
(
q−s
2

) (u(q)− u(s))

=
u′(q) sin(q − s)− (u(q)− u(s))

2 sin2
(
q−s
2

)
(28)

with q = q(t, s) between 0 and t. We use (19) and (8) and obtain∣∣∣∣∣u′(q) sin(q − s)− (u(q)− u(s))

2 sin2
(
q−s
2

) ∣∣∣∣∣
≤ C

∣∣∣∣u′(q)(q − s)− (u(q)− u(s))

(q − s)2

∣∣∣∣+ C|q − s|

= C

∣∣∣∣u′(q)− u′(q0)

q − s

∣∣∣∣+ C|q − s|

≤ C
ω(|q − q0|)
|q − s|

+ C|q − s|

≤ C
ω(|q − s|)
|q − s|

+ C|q − s|,

(29)

where we used that q0 is between q and s, 0 < |t| < |s|/2 and u′ ∈ Cω.
For s > 0 and since 0 < q < t < s

2 < s we have that |q − s| = s − q >

s − t > |s|
2 . Analogously, for s < 0 and since s < s

2 < t < q < 0 we have that

|q−s| = q−s > t−s > − s
2 = |s|

2 . Therefore ω(|q−s|)
|q−s| ≤ ω(|s|/2)

|s|/2 . The conditions

of the Dominated Convergence Theorem are thus checked since the function

s → ω(|s|)
|s| is integrable and v is bounded on (−π, π). Hence (27) holds and,

together with limt→0 I1(t) = 0, it follows that C is differentiable at t = 0 with
C′(0) given by formula (16) at t = 0. As already explained, this implies that C
is differentiable on R.
We now prove that C′ ∈ C2π

ω0
. It suffices to show that

|C′(t)− C′(0)| ≤ ω0(|t|) for all t close to 0.
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Through changing of variables, rearranging and using the periodicity we obtain
the formula

C′(t) =
1

4π

∫ π

−π

u′(t) sin(s)− (u(t)− u(t− s))

sin2
(
s
2

) v(t− s) ds, (30)

for all t ∈ R. Then

4π(C′(t)− C′(0)) = T1(t)− T2(t) + T3(t), (31)

with

T1(t) =

∫ 2|t|

−2|t|

u′(t) sin(s)− (u(t)− u(t− s))

sin2
(
s
2

) v(t− s) ds,

T2(t) =

∫ 2|t|

−2|t|

u′(0) sin(s)− (u(0)− u(−s))
sin2

(
s
2

) v(−s) ds,

T3(t) =

∫
(−π,−2|t|)∪(2|t|,π)

{
u′(t) sin(s)− (u(t)− u(t− s))

sin2
(
s
2

) v(t− s)

−u
′(0) sin(s)− (u(0)− u(−s))

sin2
(
s
2

) v(−s)

}
ds.

(32)

We write

u′(t) sin(s)− (u(t)− u(t− s)) = u′(t)(sin(s)− s) + su′(t)− (u(t)− u(t− s))

= u′(t)(sin(s)− s) +

∫ 0

−s

[u′(t)− u′(t+ τ)] dτ

(33)

Therefore

|T1(t)| ≤
∫ 2|t|

−2|t|
|u′(t)||v(t− s)| | sin(s)− s|

sin2
(
s
2

) ds

+

∫ 2|t|

−2|t|
|v(t− s)|

∣∣∣∫ 0

−s
[u′(t)− u′(t+ τ)] dτ

∣∣∣
sin2

(
s
2

) ds.

(34)

Using that |u′(t) − u′(t + τ)| ≤ ω(|τ |) and that ω is increasing it follows via
the Mean Value Theorem for integrals that

|
∫ 0

−s

[u′(t)− u′(t+ τ)] dτ | ≤ |s|ω(|s|). (35)

From the boundedness of u′ and v, inequalities (34), (35), (19), (8) we have
that

|T1(t)| ≤ C

(∫ 2|t|

−2|t|
|s| ds+

∫ 2|t|

−2|t|

ω(|s|)
|s|

ds

)

≤ C

(
|t|2 +

∫ 2|t|

0

ω(|s|)
|s|

ds

)
≤ Cω0(t).

(36)
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Analogously one can prove that |T2(t)| ≤ Cω0(t). We now write T3(t) =
R1(t) +R2(t) where

R1(t) =

∫
T

{
[u′(t)− u′(0)] sin(s)

sin2
(
s
2

) v(t− s)

+
[u(0)− u(−s)]− [u(t)− u(t− s)]

sin2
(
s
2

) v(t− s)

}
ds

R2(t) =

∫
T

u′(0) sin(s)− [u(0)− u(−s)]
sin2

(
s
2

) [v(t− s)− v(−s)] ds, (37)

where T = (−π,−2|t|) ∪ (2|t|, π). Concerning R1 we have using (8) that

|R1(t)| ≤ C

∫
T

|v(t− s)|

{
|u′(t)− u′(0)|

|s|
+

|
∫ 0

−s
[u′(τ)− u′(t+ τ)] dτ |

|s|2

}
ds

(38)

Since |u′(τ)−u′(t+τ)| ≤ ω(|t|) we obtain from (38) and from the boundedness
of v that

|R1(t)| ≤ Cω(|t|)
∫
T

ds

|s|
≤ Cω(|t|)| log |t||,

for all t with 2|t| < 1
π . Using now (8) we have

|R2(t)| ≤ C

∫
T

|v(t− s)− v(−s)|

{
|u′(0)|
|s|

+
|
∫ 0

−s
u′(τ) dτ |
|s|2

}
ds. (39)

Since v ∈ Cω we have that |v(t − s) − v(−s)| ≤ ω(|t|). The latter inequality,
the boundedness of u′ and (39) yield that

|R1(t)| ≤ Cω(|t|)
∫
T

ds

|s|
≤ Cω(|t|)| log |t||,

for all t with 2|t| < 1
π .

Remark 2 Note that for α ∈ (0, 1), the function ωα(t) = tα satisfies all the
properties required by Definition 1. Thus the Hölder regularity results in [2] are
particular cases of ours. To see that our result is more general, let us impose
the following condition

ω(t) ≥ tα for all t close to 0, and all α ∈ (0, 1), (40)

in addition to those in Definition 1. The reason for this is that whenever a
modulus of continuity is bounded above near t = 0 by some ωα, one may
replace it by ωα. New classes of functions are opened up by means of (40). In-
deed, an example of ω satisfying (40), as well as the requirements of Definition
1, is the function

ω(t) =
1

(2 + | log( t
π )|)1+ε

,
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where ε ∈ (0, 1). Indeed, it is easy to see that ω(t) is increasing on (0, π] and
limt→0 ω(t) = 0. Note that the property (3) is equivalent to showing that the
function f(t) := t(2 + | log(t/π)|)1+ε is increasing. Computing the derivative
of the latter function we find that

f ′(t) =

{
(2− log( t

π ))
ε(1− log( t

π )− ε), t < π
(2 + log( t

π ))
ε(3 + log( t

π ) + ε), t > π
(41)

Therefore we have that f ′(t) > 0 for all t > 0, t 6= π. Hence f is increasing
on (0, π) ∪ (π,∞) and since f is continuous it follows that f is increasing on

(0,∞) which implies that the function t→ ω(t)
t is decreasing on (0,∞).

We also have
∫ π

0
ω(s)
s ds =

∫∞
0

e−u

e−u(2+|u|)1+ε du =
∫∞
0

du
(2+u)1+ε < ∞. This

proves the property (4).
We now check (40). Note that 1

(2+| log(t/π)|)1+ε ≥ tα is equivalent to tα(2 +

| log(t/π)|)1+ε ≤ 1 for t > 0 and sufficiently close to 0. From

tα(2 + | log(t/π)|)1+ε ≤ tα(2 + | log(t/π)|)2

for t sufficiently small and using that limt→0 t
α(2+ | log(t/π)|)2 = 0 we obtain

that (40) holds true.
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