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1. Introduction

The papers [19–21] make clear that nonuniform currents give rise to water flows with vor-

ticity. There is an extensive research literature in the area of water waves with vorticity,

see [2–4] for existence results, [13,22] for matters of uniqueness, [5,6,8] and [18] for symme-

try results and [11,14,17] for regularity results. We would also like to mention the important

numerical simulations from [15] and [20].

We consider in this paper steady periodic capillary water waves with constant vorticity

under the assumption that there might be stagnation points in the fluid domain and that

the free surface is not necessarily a graph. More precisely, we study the regularity of periodic

traveling capillary waves at the free surface. The local existence of such waves was proved

in [16]. We base our approach on method developed in [10] and which uses conformal map-

pings to transform a free boundary problem into a quasilinear pseudodifferential equation

for a periodic function of one variable.

It is worth to point out that zero vorticity means either no underlying current (a situation

corresponding to swell due to a distant storm and entering a region of still water cf. the

discussion in [7]) or a uniform underlying current (cf. the discussion in [9]), while constant

vorticity is the hallmark of tidal currents cf. the discussion in [12,20].

Let us now present the free-boundary problem of steady periodic traveling capillary water

waves with constant vorticity γ in a flow of finite depth. The waves that we consider here

are two-dimensional and propagate over water with a flat bed. We will use variables (X,Y )

where X represents the direction of propagation and Y denotes the height. The water

domain Ω in the XY -plane is bounded below by the impermeable flat bed

B = {(X, 0);X ∈ R},

and above by an a priori unknown curve

S(t) = {u(t, s), v(t, s); s ∈ R}, t ≥ 0 (1.1)
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with

(us(t, s))
2 + (vs(t, s))

2 > 0 for all s ∈ R, t ≥ 0 (1.2)

and

u(t, s+ L) = u(t, s) + L, v(t, s+ L) = v(t, s) for all s ∈ R, t ≥ 0, (1.3)

representing the free surface of the water, which is L-periodic in the horizontal direction.

In addition to (1.1), (1.2) and (1.3) we ask that u, v ∈ C2,α where by Cp,α (p ≥ 0 an integer

and α ∈ (0, 1)) we understand the standard space of functions whose partial derivatives

up to order p are Hölder continuous with exponent α over their domain of definition. The

equation of mass conservation for water waves gives rise to the existence of a stream function

ψ(X,Y ) which is L-periodic in X throughout Ω and moreover (ψY ,−ψX) gives the velocity

field. Choosing a parametrization such that u and v are independent of t in the moving

frame we have the following governing equations and boundary conditions (see [16]).

∆ψ = −γ in Ω,

ψ = −m on B,
ψ = 0 on S,

|∇ψ|2 − 2σ usvss−ussvs
((us)2+(vs)2)

3/2 = Q on S.

(1.4)

where γ represents the constant vorticity, m denotes the relative mass flux, σ is the coeffi-

cient of surface tension (see [12]) and the constant Q is related to the hydraulic head E by

the relation Q = 2(E − P0), where P0 represents the constant atmospheric pressure.

Definition 1.1. We say that a solution (Ω, ψ) of the water wave equation (1.4) is of class

C2,α if the free surface satisfies (1.1),(1.2) and (1.3), with u, v ∈ C2,α and ψ ∈ C2(Ω) ∩
C2,α(Ω).

In order to deal with (1.4) we need a reformulation of it as a quasilinear equation in a

fixed domain for a periodic function of one variable. We need first a few notations.

By Cp,α
loc we will denote the set of functions of class Cp,α over any compact subset of their

domain of definition. By Cp,α
2π we denote the space of functions of one real variable which

are 2π periodic and of class Cp,α
loc in R. By Cp,α

2π,o we denote the functions that are in Cp,α
2π

and have zero mean over one period. For any d > 0 let

Rd = {(x, y) ∈ R2 : −d < y < 0}.

For any w ∈ Cp,α
2π let W ∈ Cp,α(Rd) be the unique solution of

∆W = 0 in Rd,

W (x,−d) = 0, x ∈ R,
W (x, 0) = w(x), x ∈ R.

(1.5)

The function (x, y) → W (x, y) is 2π-periodic in x throughout Rd. For p ∈ Z, p ≥ 1 and

α ∈ (0, 1) we define the periodic Dirichlet-Neumann operator for a strip Gd by

Gd(w)(x) =Wy(x, 0), x ∈ R.



April 24, 2012 15:32 WSPC/INSTRUCTION FILE regcapconstvor

Regularity of steady periodic capillary water waves with constant vorticity 3

We have that Gd : Cp,α
2π → Cp−1,α

2π is a bounded linear operator.

If the function w takes the constant value c then

Gd(c) =
c

d
. (1.6)

Let Z be the unique (up to a constant) harmonic function in Rd, such that Z + iW is

holomorphic in Rd. If w ∈ Cp,α
2π,o it follows from the discussion in Section 2 of [10] that the

function (x, y) → Z(x, y) is 2π-periodic in x throughout Rd. We specify the constant in the

definition of Z by asking that x→ Z(x, 0) has zero mean over one period. We define Cd(w)
by

Cd(w)(x) = Z(x, 0), x ∈ R.

The obtained mapping Cd : Cp,α
2π,o → Cp,α

2π,o is a bounded linear operator and is called the

periodic Hilbert transform for a strip. If w ∈ Cp,α
2π,o for p ≥ 1 we have

Gd(w) = (Cd(w))′ = Cd(w′). (1.7)

It also follows (see [10]) that for p ≥ 1,

Gd(w) =
[w]

d
+ Cd(w′), (1.8)

where [w] denotes the average of w over one period.

Definition 1.2.

• We say that Ω ⊂ R2 is an L-periodic strip like domain if it is contained in the upper

half (X,Y )-plane and if its boundary consists of the real axis B and a parametric

curve S defined by (1.1) and which satisfies (1.2) and (1.3).

• For any such domain, the conformal mean depth is defined to be the unique positive

number h such that there exists an onto conformal mapping Ũ+iṼ : Rh → Ω which

admits an extension between the closures of these domains, with onto mappings

{(x, 0) : x ∈ R} → S,

and

{(x,−h) : x ∈ R} → B,

and such that

Ũ(x+ L, y) = Ũ(x, y) + L,

Ṽ (x+ L, y) = Ṽ (x, y),
(x, y) ∈ Rh (1.9)

The existence and uniqueness of such an h was proved in Appendix A of the paper [10].

We are now able to formulate the equivalence of (1.4) with a quasilinear equation for a

periodic function of one variable in a fixed domain.
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Theorem 1.1. If (Ω, ψ) of class C2,α is a solution of (1.4) then there exists a positive

number h and a function v ∈ C2,α
2π such that{

m
kh + γ

(
Gkh(

v2

2 )− vGkh(v)
)}2

=
(
Q+ 2σ Gkh(v)v

′′−Gkh(v
′)v′

(v′ 2+Gkh(v)2)
3/2

) (
v′ 2 + Gkh(v)

2
)

[v] = h

v(x) > 0 for all x ∈ R,
the mapping x→

(
x
k + Ckh(v − h)(x), v(x)

)
is injective on R,

v′(x)2 + Gkh(v)(x)
2 6= 0 for all x ∈ R,

(1.10)

where k = 2π
L . Moreover

S =
{(
a+

x

k
+ Ckh(v − h)(x), v(x)

)
: x ∈ R

}
, (1.11)

for some constant a ∈ R, whose presence in the formula (1.11) is due to the invariance of

problem (1.4) to horizontal translations. Conversely, let h > 0 and v ∈ C2,α
2π be such that

(1.10) holds. Assume also that S is defined by (1.11), let Ω be the domain whose boundary

consists of S and of the real axis B and let a ∈ R be arbitrary. Then there exists a function

ψ in Ω such that (Ω, ψ) is a solution of (1.4) of class C2,α.

For the proof of Theorem 1.1 we refer the reader to [16] for the case of capillary water

waves, and to [10] for the case of gravity water waves. Concerning the existence of solutions

to the problem (1.10) we refer the reader to [16] (Theorem 3.3). There we proved the

following theorem.

Theorem 1.2. For any h > 0, k > 0, γ ∈ R and m ∈ R satisfying k3 ≥ γ2

σ , kh ≥ 1
2 there

exists laminar flows with a flat free surface in water of depth h, of constant vorticity γ and

relative mass flux m. The laminar flows of flux

m± =
γh2

2
− γh tanh(kh)

2k
± h

√
γ2 tanh2(kh)

4k2
+ kσ tanh(kh)

are exactely those with horizontal speeds at the flat free surface equal to

λ± = −γ tanh(kh)
2k

±

√
γ2 tanh2(kh)

4k2
+ kσ tanh(kh).

The flows of mass flux given by m± trigger the appearance of periodic steady waves of small

amplitude, with period 2π
k and conformal mean depth h, which have a smooth profile with

one crest and one trough per period, monotone between consecutive crests and troughs and

symmetric about any crest line.

2. Regularity

We are now able to present the regularity result for solutions of the problem (1.10).

Theorem 2.1. Let h > 0, α ∈ (0, 1) and v ∈ C2,α
2π be a solution of (1.10). Then v ∈ C∞

2π.
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Proof. From (1.6) and (1.8) we find that

Gkh(v)v
′′ − Gkh(v

′)v′ =

(
1

k
+ Ckh(v′)

)
v′′ − v′Ckh(v′′) (2.1)

From (1.8) and the second equation of (1.10) we have that

Gkh(
v2

2
)− vGkh(v) =

[
v2
]

2kh
+ Ckh(vv′)−

v

k
− vCkh(v′) =

[
v2
]

2kh
− v

k
−Qkh(v), (2.2)

where Qkh(v) = vCkh(v′)− Ckh(vv′). From Lemma 3.3 we have that Qkh(v) ∈ C
2,α/3
2π since

v ∈ C2,α
2π . The latter fact together with the formulas (2.1), (2.2), (1.10) and using v′ 2 +

Gkh(v)
2 ∈ C

1,α/3
2π yield (

1

k
+ Ckh(v′)

)
v′′ − v′Ckh(v′′) ∈ C

1,α/3
2π (2.3)

Now from Lemma (3.3) with f = −v′ ∈ C1,α
2π and g = Ckh(v′′) ∈ C0,α

2π it follows that

−v′Ckh(Ckh(v′′))− Ckh(−v′Ckh(v′′)) ∈ C
1,α/3
2π , (2.4)

and taking into account that C−1
kh = −Ckh (see Lemma (3.2)) we obtain from above that

v′v′′ − Ckh(−v′Ckh(v′′)) ∈ C
1,α/3
2π . (2.5)

By applying Ckh to (2.3) and using (2.5) we get

1

k
Ckh(v′′) + Ckh(v

′′Ckh(v
′)) + v′v′′ ∈ C

1,α/3
2π (2.6)

Setting f = Ckh(v′) ∈ C1,α
2π and g = v′′ ∈ C0,α

2π we get by applying Lemma (3.3)

Ckh(v′)Ckh(v′′)− Ckh(v′′Ckh(v′)) ∈ C
1,α/3
2π (2.7)

Adding up (2.6) and (2.7) yields(
1

k
+ Ckh(v′)

)
Ckh(v′′) + v′v′′ ∈ C

1,α/3
2π (2.8)

We now multiply (2.3) by 1
k + Ckh(v′) ∈ C1,α

2π and (2.8) by v′ ∈ C1,α
2π and by adding up the

resulting expressions we obtain((
1

k
+ Ckh(v′)

)2

+ v′2

)
v′′ ∈ C

1,α/3
2π (2.9)

Since the expression in the bracket on the left-hand side of (2.9) is strictly positive and

belongs to C1,α
2π we obtain that v′′ ∈ C

1,α/3
2π . Therefore v ∈ C

3,α/3
2π . An interation of this

method shows that v ∈ C∞
2π.



April 24, 2012 15:32 WSPC/INSTRUCTION FILE regcapconstvor

6 Calin Martin

3. Appendix

This section contains a more precise description of the operator Cd obtained in [10].

Denote by L2
2π the space of 2π-periodic locally square integrable functions of one real

variable. By L2
2π,o we denote the subspace of L2

2π whose elements have zero mean over one

period.

Lemma 3.1. If

w =

∞∑
n=1

an cos(nx) +

∞∑
n=1

bn sin(nx),

is the Fourier series expansion of w ∈ L2
2π then

Cd(w) =
∞∑
n=1

an coth(nd) sin(nx)−
∞∑
n=1

bn coth(nd) cos(nx) (3.1)

Lemma 3.2. For any d > 0, p ≥ 0 integer and α ∈ (0, 1), Cd : Cp,α
2π,o → Cp,α

2π,o is a bounded

linear operator. Moreover Cd is a bijection from L2
2π,o onto itself, and C−1

d = −Cd : Cp,α
2π,o →

Cp,α
2π,o is also a bounded linear operator.

Lemma 3.3. Let p ≥ 1 be an integer, α ∈ (0, 1) and d > 0. If f ∈ Cp,α
2π and g ∈ Cp−1,α

2π

then

fCd(g)− Cd(fg) ∈ Cp,δ
2π for all δ ∈ (0, α).

Proof. The proof follows the line of the proofs of Lemma 3.2 and of Lemma B1 from the

paper [10].
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