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Abstract. We study periodic capillary waves at the free surface of water
in a flow with constant vorticity over a flat bed. Using bifurcation theory
the local existence of waves of small amplitude is proved even in the
presence of stagnation points in the flow. We also derive the dispersion
relation.
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1. Introduction

It is by now well known that nonuniform currents give rise to water flows
with vorticity [20, 21, 22]. There is an extensive research literature in the
area of water waves with vorticity, see [1, 2, 3, 4, 6] for existence results,
[13, 24] for matters of uniqueness and [9, 14, 19] for regularity results. We
shall be interested in rotational capillary water waves, i.e., we consider the
effects of surface tension in the presence of vorticity, neglecting gravity. This
approximation is valid for short wave lengths (see the discussion in [18]). The
existence of steady periodic capillary water waves with arbitrary vorticity
distributions was proved in [25] under the assumption that there are no stag-
nation points and that the free surface of the fluid domain is a graph. In our
work we will allow stagnation points and overhanging surfaces. We will base
our approach on a method developed in [8] for gravity waves.
We now present the free-boundary value problem of steady periodic traveling
capillary water waves with constant vorticity γ in a flow of finite depth. We
consider two- dimensional waves propagating over water with a flat bed. The
X variable will represent the direction of propagation, Y will be the height
variable and ((V1(X,Y, t), V2(X,Y, t)) denotes the velocity field. The water

We acknowledge the support of the ERC Advanced Grant “Nonlinear Studies of Water
Flows with Vorticity”.



2 Calin Iulian Martin

domain Ω in the XY -plane is bounded below by the impermeable flat bed

B = {(X, 0);X ∈ R},

and above by an a priori unknown curve

S(t) = {(u(t, s), v(t, s)); s ∈ R}, t ≥ 0 (1.1)

with

(us(t, s))
2 + (vs(t, s))

2 > 0 for all s ∈ R, t ≥ 0 (1.2)

and

u(t, s+ L) = u(t, s) + L, v(t, s+ L) = v(t, s) for all s ∈ R, t ≥ 0, (1.3)

representing the free surface of the water (not necessary the graph of a func-
tion), which is L-periodic in the horizontal direction. The equations of motion
are the equation of mass conservation

V1X + V2Y = 0 (1.4)

and Euler’s equation {
V1t + V1V1X + V2V1Y = −PX

V2t + V1V2X + V2V2Y = −PY
(1.5)

where P (X,Y, t) denotes pressure. The boundary conditions are of two types:
dynamic and kinematic boundary conditions. The dynamic boundary condi-
tion expresses the stresses that the atmosphere exerts on the fluid surface
and takes therefore the form

P (u(t, s), v(t, s), t) = P0 − σ
us(t, s)vss(t, s)− uss(t, s)vs(t, s)

((us(t, s))2 + (vs(t, s))2)
3/2

on S, (1.6)

P0 being the constant atmospheric pressure, σ > 0 the coefficient of surface
tension which is a force per unit length due to a pressure difference across

a curved surface, cf. [16], 1 and us(t,s)vss(t,s)−uss(t,s)vs(t,s)

((us(t,s))2+(vs(t,s))2)
3/2 representing the

mean curvature of S. The kinematic boundary conditions require that the free
surface and the bed always consist of the same fluid particles. If S0(X,Y, t) =
0 is the implicit equation of the free surface, the kinematic boundary condition
can be expressed as

S0t + S0XV1 + S0Y V2 = 0 on S, (1.7)

cf. [10], while the kinematic boundary condition on the bed is

V2 = 0 on B. (1.8)

The assumption of steady periodic traveling waves at speed c > 0 means
that we have a space-time dependence of the form X− ct for the free surface,
the pressure, and for the velocity field. Then after the change of variables

1Surface tension is perpendicular to any line drawn in the surface having the same mag-
nitude for all directions of the line and the same value at all points on the surface, cf.
[10].
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x = X − ct, y = Y , the equation of the free surface becomes S(x, y) = 0 for
some S, and (1.5)− (1.8) are transformed to the stationary problem{

(V1(x, y)− c)V1x(x, y) + V2(x, y)V1y(x, y) = −Px(x, y)
(V1(x, y)− c)V2x(x, y) + V2(x, y)V2y(x, y) = −Py(x, y)

in Ω (1.9)

and 
Sx(V1 − c) + SyV2 = 0 on S
P = P0 − σ us(t,s)vss(t,s)−uss(t,s)vs(t,s)

((us(t,s))2+(vs(t,s))2)
3/2 on S,

V2 = 0 on B.
(1.10)

Note that if S(x, y) = y − η(x) the first equation becomes V2 = ηx(V1 − c)
The equation of mass conservation (1.4) permits us to introduce the stream
function ψ which satisfies:

ψx = −V2 and ψy = V1 − c (1.11)

being defined through the line integral

ψ(x, y) = −m+

∫ (x,y)

(0,0)

(−V2(x, y))dx+ (V1(x, y)− c)dy,

for some constantm. The equation of mass conservation V1x+V2y = 0 ensures
the path-independence of the above line integral provided the path is in the
simply connected domain Ω, where Ω is the set of all (x, y) ∈ R2 above the
line y = 0 bounded above by the curve {(x, y) ∈ R2 : S(x, y) = 0}.

Remark 1.1. 1. In the integral expression of ψ, since ψx = 0 on y = 0 we
can start from any point (x, 0) instead of (0, 0).

2. When S is the graph of the form y = η(x), then we recover the standard
formula [3]

ψ(x, y) = −m+

∫ y

0

(V1(x, z)− c)dz.

The function ψ is constant on S since d
dt (ψ(X(t)−ct, Y (t))) = ψx(X(t)−

ct, Y (t))(V1 − c) + ψy(X(t) − ct, Y (t))V2 = −V2(V1 − c) + (V1 − c)V2 = 0 if
t→ (X(t), Y (t)) is a water particle trajectory (confined to the free surface).
We then set ψ = 0 on S. Also, since ψx(x, 0) = −V2(x, 0) = 0 from (1.8), we
see that ψ is constant on the bed too. If (u(t, s0) − ct, v(t, s0)) is the wave
trough, then

m(t) =

∫ v(t,s0)

0

[V1(u(t, s0)− ct, y)− c] dy, (1.12)
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an expression which is called the relative mass flux. We then have

mt = [V1 (u(t, s0)− ct, v(t, s0))− c] vt(t, s0)

+

∫ v(t,s0)

0

V1x (u(t, s0)− ct, y) (ut(t, s0)− c) dy

= [V1 (u(t, s0)− ct, v(t, s0))− c]V2(u(t, s0)− ct, v(t, s0))

− (ut(t, s0)− c)

∫ v(t,s0)

0

V2y (u(t, s0)− ct, y) dy

= [V1 (u(t, s0)− ct, v(t, s0))− c]V2(u(t, s0)− ct, v(t, s0))

− [V1 (u(t, s0)− ct, v(t, s0))− c] [V2(u(t, s0)− ct, v(t, s0))− V2(u(t, s0)− ct, 0)]

= 0,

where the last equality is true since V2(u(t, s0)−ct, 0) = 0 by (1.8). Therefore
it follows that m is independent of t. Since ψ = 0 on S, we obtain from (1.11)
and (1.12) that

m = ψ(u(t, s0)− ct, v(t, s0))− ψ(u(t, s0)− ct, 0) = −ψ(u(t, s0)− ct, 0)

which shows that the stream function is constant on the flat bed, namely
ψ = −m on B. Alltogether we can write (1.5)− (1.8) in terms of ψ as follows{

ψyψxy − ψxψyy = −Px

−ψyψxx + ψxψxy = −Py
in Ω

and 
ψ = 0 on S
P = P0 − σ us(t,s)vss(t,s)−uss(t,s)vs(t,s)

((us(t,s))2+(vs(t,s))2)
3/2 on S,

ψ = −m on B.
(1.13)

If γ = V2X − V1Y is the vorticity we obtain from (1.9) and properties of ψ
Bernoulli’s law, which says that

E =
(V1 − c)2 + V 2

2

2
+ P + γψ

is constant throughout the fluid domain (this is a rephrasing of the Euler
equations in the moving frame). On the free surface we have

E =
(V1 − c)2 + V 2

2

2
+ P0 − σ

us(t, s)vss(t, s)− uss(t, s)vs(t, s)

((us(t, s))2 + (vs(t, s))2)
3/2

.

Therefore setting Q = 2(E − P0) we obtain

ψ2
x + ψ2

y − 2σ
us(t, s)vss(t, s)− uss(t, s)vs(t, s)

((us(t, s))2 + (vs(t, s))2)
3/2

= Q
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on the free surface. Thus the stream function ψ satisfies the following free
boundary value problem:

∆ψ = −γ in Ω,
ψ = −m on B,
ψ = 0 on S,

|∇ψ|2 − 2σ us(t,s)vss(t,s)−uss(t,s)vs(t,s)

((us(t,s))2+(vs(t,s))2)
3/2 = Q on S.

(1.14)

Choosing a parametrization so that u and v are independent of t in the
moving frame leads to the following free boundary value problem

∆ψ = −γ in Ω,
ψ = −m on B,
ψ = 0 on S,

|∇ψ|2 − 2σ usvss−ussvs

(u2
s+v2

s)
3/2 = Q on S.

(1.15)

We will prove in the paper the local existence of waves of small amplitude
to the problem (1.15). Moreover we derive the dispersion relation, i.e., a
formula which gives the speed of the bifurcating laminar flow (see the proof
of Theorem 3.3) in terms of the depth, the period and the vorticity. This
dispersion relation is obtained even in the presence of stagnation points in
the flow, feature that is not allowed in the paper [25]. We show that for flows
with sufficiently small wave-length L there do not exist stagnation points
while, if the vorticity is big enough we do have stagnation points.
Our investigation opens up possibilities for the detailed examination of the
flow pattern, in the same vein to the ones pursued in [5, 7] for irrotational
gravity water waves and in [15] for linear periodic capillary and capillary-
gravity water waves.

2. Equivalence of the free boundary problem with a problem
with a fixed domain

We give in this section a reformulation of the boundary value problem (1.15)
as the quasilinear equation (2.5) for a periodic function of one variable. We
give a few notations and state the necessary results; for the proofs we refer
the reader to [8].
For an integer p ≥ 0 and for α ∈ (0, 1) we denote Cp,α the standard space
of functions whose partial derivatives up to order p are Hölder continuous
with exponent α over their domain of definition. Cp,α

loc will denote the set of
functions of class Cp,α over any compact subset of their domain of definition.
By Cp,α

2π we denote the space of functions of one real variable which are 2π
periodic and of class Cp,α

loc in R. By Cp,α
2π,o we denote the functions that are in

Cp,α
2π and have zero mean over one period. For any d > 0 let

Rd = {(x, y) ∈ R2 : −d < y < 0}.
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For any w ∈ Cp,α
2π let W ∈ Cp,α(Rd) be the unique solution of

∆W = 0 in Rd,
W (x,−d) = 0, x ∈ R,
W (x, 0) = w(x), x ∈ R.

(2.1)

The function (x, y) → W (x, y) is 2π-periodic in x throughout Rd. For p ∈
Z, p ≥ 1, and α ∈ (0, 1) we define the periodic Dirichlet-Neumann operator
for a strip Gd by

Gd(w)(x) =Wy(x, 0), x ∈ R.
The operator Gd : Cp,α

2π → Cp−1,α
2π is a bounded linear operator. If the function

w takes the constant value c then

Gd(c) =
c

d
. (2.2)

Let Z be the unique (up to a constant) harmonic function in Rd, such that
Z + iW is holomorphic in Rd. If w ∈ Cp,α

2π,o it follows from the discussion

in Section 2 of [8] that the function (x, y) → Z(x, y) is 2π-periodic in x
throughout Rd. We specify the constant in the definition of Z by asking that
x→ Z(x, 0) has zero mean over one period. We define Cd(w) by

Cd(w)(x) = Z(x, 0), x ∈ R.

The obtained mapping Cd : Cp,α
2π,o → Cp,α

2π,o is a bounded linear operator and

is called the periodic Hilbert transform for a strip. If w ∈ Cp,α
2π,o for p ≥ 1 we

have

Gd(w) = (Cd(w))′ = Cd(w′). (2.3)

It also follows (see [8]) that for p ≥ 1,

Gd(w) =
[w]

d
+ Cd(w′), (2.4)

where [w] denotes the average of w over one period.

Definition 2.1. We say that a solution (Ω, ψ) of the water wave equation
(1.15) is of class C2,α if the free surface satifies (1.1),(1.2) and (1.3), with
u, v ∈ C2,α and ψ ∈ C∞(Ω) ∩ C2,α(Ω).

We are going to prove that the free boundary problem (1.15) is equiv-

alent to the problem of finding a positive number h and a function v ∈ C2,α
2π

subject to the following{
m
kh + γ

(
Gkh(

v2

2 )− vGkh(v)
)}2

=
(
Q+ 2σ Gkh(v)v

′′−Gkh(v
′)v′

(v′2+Gkh(v)2)
3/2

) (
v′2 + Gkh(v)

2
)

[v] = h
v(x) > 0 for all x ∈ R,
the mapping x→

(
x
k + Ckh(v − h)(x), v(x)

)
is injective on R,

v′(x)2 + Gkh(v)(x)
2 6= 0 for all x ∈ R,

(2.5)
where k = 2π

L . Before we state the result we explain the meaning of the
constant h that appears in (2.5).
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Definition 2.2. • We say that Ω ⊂ R2 is an L-periodic strip like domain if
it is contained in the upper half (X,Y )-plane and if its boudary consists
of the real axis B and a parametric curve S defined by (1.1) and (1.3).

• For any such domain, the conformal mean depth is defined to be the
unique positive number h such that there exists an onto conformal map-
ping Ũ + iṼ : Rh → Ω which admits an extension between the closures
of these domains, with onto mappings

{(x, 0) : x ∈ R} → S,
and

{(x,−h) : x ∈ R} → B,
and such that

Ũ(x+ L, y) = Ũ(x, y) + L,

Ṽ (x+ L, y) = Ṽ (x, y),
(x, y) ∈ Rh (2.6)

The existence and uniqueness of such an h was proved in Appendix A
of the paper [8].

Theorem 2.3. If (Ω, ψ) of class C2,α is a solution of (1.15) then there exists a

positive number h, a function v ∈ C2,α
2π and a constant a ∈ R such that (2.5)

holds and moreover

S =
{(
a+

x

k
+ Ckh(v − h)(x), v(x)

)
: x ∈ R

}
, (2.7)

for some constant a ∈ R. Conversely, let h > 0 and v ∈ C2,α
2π be such that

(2.5) holds. Assume also that S is defined by (2.7), let Ω be the domain whose
boundary consists of S and of the real axis B and let a ∈ R be arbitrary. Then
there exists a function ψ in Ω such that (Ω, ψ) is a solution of (1.15) of class
C2,α.

Proof. We first prove the necessity. Let (Ω, ψ) be a solution of class C2,α

of (1.15). Then we denote by h the conformal mean depth of Ω and by

Ũ + iṼ the conformal mapping associated to Ω. If we consider the mapping
U + iV : Rkh → Ω given by

U(x, y) = Ũ(xk ,
y
k ),

V (x, y) = Ṽ (xk ,
y
k ),

(x, y) ∈ Rkh, (2.8)

where k = 2π
L then following the proof of Theorem 2.2 in [8] we see that

U, V ∈ C2,α(Rh) and U + iV is a conformal mapping from Rkh onto Ω
which extends homeomorphically to the closures of these domains, with onto
mappings

{(x, 0) : x ∈ R} → S,
and

{(x,−kh) : x ∈ R} → B.
Moreover,

U2
x(x, 0) + V 2

x (x, 0) 6= 0 for all x ∈ R. (2.9)
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Let us set

v(x) = V (x, 0) for all x ∈ R, u(x) = U(x, 0) for all x ∈ R (2.10)

We then have that

u = Ckh(v),
and from (2.3) it is immediate that

u′ = Gkh(v) and u
′′ = Gkh(v

′) (2.11)

It also follows [8] that v ∈ C2,α
2π and

[v] = h
v(x) > 0 for all x ∈ R,
the mapping x→

(
x
k + Ckh(v − h)(x), v(x)

)
is injective on R,

S =
{(
a+ x

k + Ckh(v − h)(x), v(x)
)
: x ∈ R

}
,

(2.12)

for some a ∈ R, whose presence in the formula for S is due to the invariance
of problem (1.15) to horizontal translations. From (2.9) and the Cauchy-
Riemann equations it follows that

v′(x)2 + Gkh(v)(x)
2 6= 0 for all x ∈ R. (2.13)

Now let ξ : Rkh → R be defined by

ξ(x, y) = ψ(U(x, y), V (x, y)), (x, y) ∈ Rkh. (2.14)

The harmonicity in Ω of the function (x, y) → ψ(x, y)+ γ
2 y

2 and the invariance
of harmonic functions under conformal mappings imply that

ξ +
γ

2
V 2 is harmonic in Rkh. (2.15)

The chain rule and the Cauchy-Riemann equations imply that

ξ2x + ξ2y = (ψ2
x(U, V ) + ψ2

y(U, V ))(V 2
x + V 2

y ) in Rkh.

From the last equation in (1.15) and (2.11) it follows that

ξ2x + ξ2y =

(
Q+ 2σ

Gkh(v)v
′′ − Gkh(v

′)v′

(v′2 + Gkh(v)2)
3/2

)(
v′2 + Gkh(v)

2
)

(2.16)

Define ζ : Rkh → R through

ζ = ξ +m+
γ

2
V 2. (2.17)

Using the boundary conditions from (1.15) we obtain the following

∆ζ = 0 in Rkh,
ζ(x,−kh) = 0 for all x ∈ R,

ζ(x, 0) = m+ γ
2 v

2(x) for all x ∈ R,
(ζy − γV Vy)

2 =
(
Q+ 2σ Gkh(v)v

′′−Gkh(v
′)v′

(v′2+Gkh(v)2)
3/2

) (
v′2 + Gkh(v)

2
)
at (x, 0) for all x ∈ R.

(2.18)
The system (2.18) can be reformulated by using the Dirichlet-Neumann op-
erator and (2.2) as
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{
m

kh
+ γ

(
Gkh(

v2

2
)− vGkh(v)

)}2

=

(
Q+ 2σ

Gkh(v)v
′′ − Gkh(v

′)v′

(v′2 + Gkh(v)2)
3/2

)(
v′2 + Gkh(v)

2
)

(2.19)
For the sufficiency suppose that the positive number h and the function
v ∈ C2,α

2π satisfy (2.5). Let V be the harmonic function on Rkh which satisfies

V (x,−kh) = 0

and

V (x, 0) = v(x) for all x ∈ R,
and let U : Rkh → R be such that U + iV is holomorphic. An application of
Lemma 2.1 from [8] yields that U + iV ∈ C2,α(Rkh). From [v] = h we obtain{

U(x+ 2π, y) = U(x, y) + 2π
k ,

V (x+ 2π, y) = V (x, y),
(x, y) ∈ Rkh. (2.20)

The injectivity of the mapping x→
(
x
k + Ckh(v − h)(x), v(x)

)
gives that the

curve (2.7) is non-self-intersecting and from v(x) > 0 we have that (2.7) is
contained in the upper half-plane. If Ω denotes the domain whose boundary
consists of S and B, it follows from Theorem 3.4 in [23] that U + iV is a
conformal mapping from Rkh onto Ω, which extends to a homeomorphism
between the closures of these domains, with onto mappings

{(x, 0) : x ∈ R} → S,

and

{(x,−kh) : x ∈ R} → B.
Together with (2.20) this implies that Ω is a L-periodic strip-like domain,
with L = 2π/k. The conformal mean depth of Ω is h as it can be seen from

the properties of the mapping Ũ + iṼ : Rh → Ω, where Ũ , Ṽ are given by
(2.8). Let ζ be defined as the unique solution of the first three equations of
(2.18). Then ζ ∈ C2,α(Rkh)∩C∞(Rkh). Now, let ξ be defined by (2.17) and
ψ by (2.14). We obtain that ψ satisfies the first three equations in (1.15).
From the first equation in (2.5) we also have that the last equation from
(1.15) holds. �

3. Local bifurcation

This section is devoted to proving the existence of solutions to (2.5). The
relation [v] = h makes natural to set

v = w + h (3.1)

Equation (3.1) implies immediately that [w] = 0. We then use (2.4) to find
that

Gkh(w + h) = Gkh(w) + Gkh(h) =
[w]

kh
+ Ckh(w′) +

h

kh
=

1

k
+ Ckh(w′)
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and

Gkh(v
′) = Gkh(w

′) =
[w′]

kh
+ Ckh(w′′) = Ckh(w′′),

since w is periodic. Therefore we can rewrite (2.5) as{
m
kh + γ

(
[w2]
2kh − w

k − h
2k + Ckh(ww′)− wCkh(w′)

)}2

=

{
Q+ 2σ

w′′
k +w′′Ckh(w

′)−w′Ckh(w
′′)(

w′2+( 1
k+Ckh(w′))

2
)3/2

}{
w′2 +

(
1
k + Ckh(w′)

)2}
[w] = 0
w(x) > −h for all x ∈ R,
the mapping x→

(
x
k + Ckh(w)(x), w(x) + h

)
is injective on R,

w′(x)2 +
(
1
k + Ckh(w′)(x)

)2 6= 0 for all x ∈ R,

(3.2)

We will regard m and Q as parameters and will prove the existence of solu-
tions w ∈ C2,α

2π to the problem (3.2) for all γ ∈ R, k > 0, and h > 0 fixed and

such that k3 ≥ γ2

σ and kh ≥ 1
2 .

We observe that w = 0 ∈ C2,α
2π,o is a solution of (3.2) if and only if

Q =

(
m

h
− γh

2

)2

.

This suggests setting

λ = m
h − γh

2 ,

µ = Q−
(

m
h − γh

2

)2 (3.3)

Note that the mapping (m,Q) → (λ, µ) is a bijection from R2 onto itself.
Using (3.3) we see that the equation (3.2) can be rewritten as{

λ
k + γ

(
[w2]
2kh − w

k + Ckh(ww′)− wCkh(w′)
)}2

=

{
λ2 + µ+ 2σ

w′′
k +w′′Ckh(w

′)−w′Ckh(w
′′)(

w′2+( 1
k+Ckh(w′))

2
)3/2

}{
w′2 +

(
1
k + Ckh(w′)

)2} (3.4)

with w ∈ C2,α
2π,o, µ ∈ R and λ ∈ R. It is clear that w = 0 ∈ C2,α

2π,o and

µ = 0 is a solution of (3.4) for all λ ∈ R. We now apply the Crandall-
Rabinowitz theorem [11] on bifurcation from a simple eingevalue in order to
prove existence of non-trivial solutions to equation (3.4).

Theorem 3.1. Let X and Y be Banach spaces, I be an open interval in R
containing λ∗, and F : I×X → Y be a continous map satisfying the following
properties:

1. F (λ, 0) = 0 for all λ ∈ I;
2. ∂λF , ∂uF and ∂2λ,uF exist and are continuous;

3. N (∂uF (λ
∗, 0)) and Y/R(∂uF (λ

∗, 0)) are one-dimensional, with the null
space generated by u∗;

4. ∂2λ,uF (λ
∗, 0)(1, u∗) /∈ R(∂uF (λ

∗, 0))
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Then there exists a continuous local bifurcation curve {(λ(s), u(s) : |s| < ε}
with ε > 0 sufficiently small such that (λ(0), u(0)) = (λ∗, 0) and there exists
a neighbourhood O of (λ∗, 0) ∈ I ×X such that

{(λ, u) ∈ O : u 6= 0, F (λ, u) = 0} = {(λ(s), u(s)) : 0 < |s| < ε}.
Moreover, we have

u(s) = su∗ + o(s) in X, |s| < ε.

If ∂2uF is also continuous, then the curve is of class C1.

In order to apply the local bifurcation theorem 3.1 to (3.4) we set

X = R× Cp+1,α
2π,o,e , Y = Cp,α

2π,e,

where for any integer p ≥ 0 we denote:

Cp,α
2π,e = {f ∈ Cp,α

2π : f(x) = f(−x) for all x ∈ R},

Cp,α
2π,o,e = {f ∈ Cp,α

2π,o : f(x) = f(−x) for all x ∈ R}.
Equation (3.4) can be written as F (λ, (µ,w)) = 0 where F : R ×X → Y is
given by

F (λ, (µ,w)) = γ2
(
Ckh(ww′)− wCkh(w′)− w

k
+

[w2]

2kh

)2

+
2λγ

k

(
Ckh(ww′)− wCkh(w′)− w

k
+

[w2]

2kh

)

−

µ+ 2σ
w′′

k + w′′Ckh(w′)− w′Ckh(w′′)(
w′2 +

(
1
k + Ckh(w′)

)2)3/2
(w′2 +

(
1

k
+ Ckh(w′)

)2
)

− λ2
(
w′2 +

2

k
Ckh(w′) + (Ckh(w′))

2
)
.

(3.5)

Since F (λ, (0, 0)) = 0 the first condition from the local bifurcation theorem
3.1 is verified. We now compute

∂(µ,w)F (λ, (0, 0))(ν, f) = lim
t→0

F (λ, t(ν, f))− F (λ, (0, 0))

t
.

Using Lemma 4.2 it turns out that

∂(µ,w)F (λ, (0, 0))(ν, f) = −2λγ

k2
f − ν

k2
− 2σf ′′ − 2

λ2

k
Ckh(f ′)

= − 2

k2
(
λγf + λ2kCkh(f ′) + σk2f ′′

)
− ν

k2

(3.6)

From representation (4.1) it follows that

∂(µ,w)F (λ, (0, 0))(ν, f) = − 2

k2

∞∑
n=1

(λγ+λ2kn coth(nkh)−σk2n2)an cos(nx)−
ν

k2
.

(3.7)
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if

f =

∞∑
n=1

an cos(nx).

Using now Lemma 4.2 it follows that the bounded linear operator ∂(µ,w)F (λ, (0, 0)) :
X → Y is invertible whenever

λγ + λ2kn coth(nkh)− σk2n2 6= 0 for any integern ≥ 1. (3.8)

Therefore all the candidates for the bifurcation points of (3.4) are to be found
among the solutions of the equation

λγ + λ2kn coth(nkh)− σk2n2 = 0, (3.9)

for some integer n ≥ 1. Since we are looking for solutions of (3.4) of minimal
period 2π, we take n = 1 in (3.9).

Lemma 3.2. Let λ∗ 1 be a solution of (3.9) with n = 1, i.e.,

λ∗ 1
± = −γ tanh(kh)

2k
±

√
γ2 tanh2(kh)

4k2
+ kσ tanh(kh).

Assume that k3 ≥ γ2

σ and kh ≥ 1
2 . Then it follows from (3.7) and Lemma

4.2 that the kernel N (∂(µ,w)F (λ
∗, 0))) is one-dimensional, being generated by

(0, w∗) ∈ X, where w∗(x) = cos(x) for all x ∈ R.

Proof. It suffices to show that if n > 1 is an integer then the equations

λγ + λ2kn coth(nkh)− σk2n2 = 0,

and

λγ + λ2k coth(kh)− σk2 = 0,

do not have common solutions. Let

λ∗n
± = −γ tanh(nkh)

2kn
±

√
γ2 tanh2(nkh)

4k2n2
+ nkσ tanh(nkh),

denote the two solutions of equation (3.9). Since

λ∗n
+ > 0, λ∗n

+ < 0,

for all n ≥ 1 it suffices to show that λ∗n
+ 6= λ∗ 1

+ and λ∗n
− 6= λ∗ 1

− for all n > 1.
We consider only the case γ > 0, since for γ < 0 we can proceed in a similar
way. We assume ab absurdum that λ∗n

− = λ∗ 1
− for some n > 1 which leads to

tanh(nkh)

n
− tanh(kh) =√

tanh2(kh) +
4σk3

γ2
tanh(kh)−

√
tanh2(nkh)

n2
+

4σk3

γ2
n tanh(nkh)

(3.10)
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To ease the notation we set f(n) = tanh(nkh)
n and g(n) = n tanh(nkh). By

squaring (3.10) we obtain

−2f(n)f(1) =
4σk3

γ2
(g(n) + g(1))−2

√[
f2(n) +

4σk3

γ2
g(n)

] [
f2(1) +

4σk3

γ2
g(1)

]
which is equivalent to

2

√[
f2(n) +

4σk3

γ2
g(n)

] [
f2(1) +

4σk3

γ2
g(1)

]
= 2f(n)f(1)+

4σk3

γ2
(g(n) + g(1)) .

Further by squaring we obtain

4
4σk3

γ2
[
f2(n)g(1) + f2(1)g(n)

]
=

(
4σk3

γ2

)2

[g(n)− g(1)]
2

+ 4
4σk3

γ2
f(n)f(1) [g(n) + g(1)]

which is equivalent to(
4σk3

γ2

)2

[g(n)− g(1)]
2
+ 4

4σk3

γ2
[f(n)− f(1)] [f(1)g(n)− f(n)g(1)] = 0

(3.11)

Since k3 ≥ γ2

σ we have that the left hand side of (3.11) is greater than

4
4σk3

γ2
([n tanh(nkh)− tanh(kh)]

2
+ [tanh(nkh)− n tanh(kh)] (1− 1

n2
)×

× tanh(nkh) tanh(kh))

(3.12)

Using the following inequalities (whose proofs are given in Lemma 4.3 and
Lemma 4.4)

n tanh(nkh)− tanh(kh) ≥ 1 for all n ≥ 2, kh ≥ 1

2
,

tanh(nkh)− n tanh(kh) < 0 for all n ≥ 2, k > 0, h > 0,

(1− 1

n2
) tanh(nkh) tanh(kh) < 1 for all n ≥ 2,

we have that the expression in (3.12) is greater than

4
4σk3

γ2
(n tanh(nkh)− tanh(kh) + tanh(nkh)− n tanh(kh))

=
4σk3

γ2
(n [tanh(nkh)− tanh(kh)] + [tanh(nkh)− tanh(kh)]) > 0,

(3.13)

for all n ∈ N, n ≥ 2. This shows that the expression on the left hand side of
(3.11) is strictly greater than zero and therefore (3.10) can not hold. But this
implies that λ∗n

− 6= λ∗ 1
− for all n ∈ N, n > 1. It is easy to see that the same

argument can be applied to show that λ∗n
+ 6= λ∗ 1

+ for all n ∈ N, n > 1. �
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We also obtain that R(∂(µ,w)F (λ
∗, 0))) is the closed subspace of Y con-

sisting of all functions f ∈ Y which satisfy∫ π

−π

f(x) cos(x)dx = 0,

and therefore Y/R(∂(µ,w)F (λ
∗, 0))) is the one dimensional subspace of Y

generated by the function w∗(x) = cos(x). Using (3.6) we compute

∂2λ,(µ,w)F (λ
∗, (0, 0))(1, (0, w∗))

= lim
t→0

∂(µ,w)F (λ
∗ + t, (0, 0))(0, w∗)− ∂(µ,w)F (λ

∗, (0, 0))(0, w∗)

t

= − 2

k2
γw∗ − 4

k2
λ∗kCkh(w∗′)

(3.14)

For w∗ = cos(x) we have that Ckh(w∗) = coth(kh) sin(x) and Ckh(w∗′) =
(Ckh(w∗))′ = coth(kh) cos(x) = coth(kh)w∗, and therefore

∂2λ,(µ,w)F (λ
∗, (0, 0))(1, (0, w∗)) =

2

k2
(−γ − 2λ∗k coth(kh))w∗

/∈ R(∂(µ,w)F (λ
∗, (0, 0))),

(3.15)

since by (3.9) we have

−γ − 2λ∗k coth(kh) = −λ∗
(
k coth(kh) +

σk2

(λ∗)2

)
6= 0.

From the considerations above we obtain the bifurcation values

λ± = −γ tanh(kh)
2k

±

√
γ2 tanh2(kh)

4k2
+ kσ tanh(kh). (3.16)

From (3.3) we obtain the corresponding values for m as

m± =
γh2

2
− γh tanh(kh)

2k
± h

√
γ2 tanh2(kh)

4k2
+ kσ tanh(kh) (3.17)

Theorem 3.3. For any h > 0, k > 0, γ ∈ R and m ∈ R satisfying k3 > γ2

σ ,

kh ≥ 1
2 there exists laminar flows with a flat free surface in water of depth

h, of constant vorticity γ and relative mass flux m. The laminar flows of
flux m± are exactely those with horizontal speeds at the flat free surface equal
to λ± given by (3.16). The values of m± of the flux given by (3.17) trigger
the appearance of periodic steady waves of small amplitude, with period 2π

k
and conformal mean depth h, which have a smooth profile with one crest and
one trough per period, monotone between consecutive crests and troughs and
symmetric about any crest line.

Proof. We already saw that w = 0 satisfies (3.2) provided Q =
(

m
h − γh

2

)2
.

We are going to see that these solutions correspond to laminar flows in the
fluid domain bounded below by the rigid bed B and above by the flat free
surface Y = h. This can be shown as follows. First, since w = 0 we have
from (3.1) that v = h which implies that the free surface S corresponding
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to this flow is flat. Since S is flat and the stream function ψ is 0 on S by
(1.15) we conclude that ψX = 0 on S. Similarly ψX = 0 on the flat bed
B. Moreover from ∆ψ = −γ in Ω we have that ∆ψX = 0 in Ω. Therefore
from the maximum principle it follows that ψX = 0 in Ω. Now from the first
equation in (1.15) it follows that the laminar flow solutions have the form
ψ((X,Y ) = −γ

2Y
2+Ay+B and from the second and third equation of (1.15)

we finally have that the laminar flow solutions are given by

ψ(X,Y ) = −γ
2
Y 2 +

(
m

h
+
γh

2

)
Y −m, X ∈ R, 0 ≤ Y ≤ h,

while the velocity field is

(ψY ,−ψX) =

(
−γY +

m

h
+
γh

2
, 0

)
, X ∈ R, 0 ≤ Y ≤ h. (3.18)

Note that using (3.3) we can rewrite (3.18) as

(ψY ,−ψX) = (λ± + γ(h− Y ), 0) , X ∈ R, 0 ≤ Y ≤ h, (3.19)

where λ± is given by (3.16). Observe that ψY |Y=h = −γh+ m
h + γh

2 = m
h − γh

2
which shows that for laminar flows the horizontal velocity at the free surface
coincides with λ given in (3.3). The formula (3.16), of the speed λ± at the
free surface in terms of the depth h, period 2π/k and vorticity γ, is called
the dispersion relation.
The Crandall-Rabinowitz theorem provides the existence of the local bifur-
cation curve

{(λ(s), (0 + o(s), s cos(x) + o(s))) : |s| < ε} ⊂ R×X

consisting of solutions of (3.4) with λ± given by (3.16). We choose ε suffi-
ciently small and use Lemma 4.2 to ensure that

w(x) > −h for all x ∈ R,

and
1

k
+ Ckh(w′)(x) > 0 for all x ∈ R.

The latter inequality implies that the corresponding non-flat free surface S
given by (2.7) with v = w + h is the graph of a smooth function, symmetric
with respect to the points obtained for the values x = nπ, n ∈ Z. Choosing p
such that p ≥ 1 and using

w(x; s) = s cos(x) + o(s) in Cp+1,α
2π ,

we have that

sw′(x; s) < 0 for all x ∈ (0, π), 0 < |s| < ε,

for ε > 0 sufficiently small. Since x → w(x; s) is even we have alltogether
that S has one crest and one trough per minimal period and is monotone
between consecutive crests and troughs. �
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Remark 3.4. Please note that our formula for λ−-the horizontal velocity at
the free surface for laminar flows- coincides with the one given in [25]. However
the formula in [25] was obtained under stronger assumptions namely that the
flow does not contain stagnation points and that the free surface is always
a graph. While for the small amplitude waves whose existence we prove, at
least close to the bifurcation point, the free surface is always a graph, we will
see that stagnation is possible.

Remark 3.5. Concerning the hypothesis that the free surface is a graph (dis-
carded in the present paper and assumed in [25] we want to note that there
are examples of capillary irrotational waves whose free surface is not a graph.
In water of finite depth the explicit solutions are known as Kinnersley’s waves
[17], and in the case of infinite depth as Crapper’s waves [12].

We now want to analyze whether stagnation points can occur in such
laminar flows. It follows from (3.19) that the necessary and sufficient condi-
tion for the existence of stagnation points is

λ± + γ(h− Y ) = 0

for at least one Y in [0, h]. The latter condition is satisfied if and only if

λ±(λ± + γh) ≤ 0. (3.20)

If γ > 0 it follows that λ+(λ+ + γh) > 0 so from (3.20) we have that the
flow corresponding to λ+ does not contain stagnation points. The flow corre-
sponding to λ− contains stagnation points if and only if λ− + γh ≥ 0, which
is equivalent to

(γ2h+ k2σ)
tanh(kh)

kh
≤ γ2h. (3.21)

The case γ < 0 can be treated similarly. Namely, if γ < 0 we see that λ−(λ−+
γh) > 0 and therefore from (3.20) we have that the flow corresponding to λ−
does not contain stagnation points. The flow corresponding to λ+ contains
stagnation points if and only if λ+ + γh ≤ 0, which also is equivalent to
(3.21).

Remark 3.6. Notice that (3.21) does not hold true for k → ∞ since the limit
of the left-hand side is +∞ as k → ∞. It follows that a flow with L→ 0 does
not have stagnation points since in that case k = 2π

L → ∞ and we saw that
this violates (3.21).

Lemma 3.7. If the vorticity γ is such that γ2 ≥ 4 σ
h3 there are values

k1 :=
γ2h2 −

√
γ4h4 − 4σγ2h

2σ

k2 :=
γ2h2 +

√
γ4h4 − 4σγ2h

2σ
with the property that (3.21) holds true whenever k ∈ [k1, k2]. To see this note
that (3.21) is equivalent to

tanh(kh) ≤ γ2h2k

γ2h+ k2σ
(3.22)
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Now note that tanh(kh) < 1 for all k, h. We will prove that there are k1, k2

such that k ∈ [k1, k2] implies γ2h2k
γ2h+k2σ ≥ 1. Then (3.22) will follow. Due to

γ2 ≥ 4 σ
h3 we obtain that the equation σk2−γ2h2k+γ2h = 0 has two solutions

k1 and k2 since its discriminant equals γ4h4 − 4σγ2h = γ2h(γ2h3 − 4σ) ≥ 0.
This implies that σk2 − γ2h2k + γ2h ≤ 0 for all k ∈ [k1, k2]. The latter

inequality is equivalent to γ2h2k
γ2h+k2σ ≥ 1 and we are done.

Remark 3.8. Let γ and h be such that γ2 ≥ 4 σ
h3 . Let k1 and k2 be the values

from Lemma 3.7. If k ∈
[
k1+k2

2 , k2
]
then the sufficient conditions for the

existence of laminar flows from Theorem 3.3 are satisfied. In addition these
flows posses stagnation points as the proof of Lemma 3.7 shows.

Proof. Indeed, we only need to show that for all such k we have that k3 ≥ γ2

σ

and kh ≥ 1
2 . We show that the last two inequalities hold true for k = k1+k2

2 =
γ2h2

2σ . Indeed, we have(
γ2h2

2σ

)3

=
γ6h6

8σ3
=
γ2

σ
· γ

4h6

8σ2
≥ γ2

σ
· 16σ

2

8σ2
= 2

γ2

σ
.

Also k1+k2

2 h = γ2h3

2σ ≥ 2 and we are done. �

4. Appendix

This section contains some auxiliary results.
Denote by L2

2π the space of 2π-periodic locally square integrable functions
of one real variable. By L2

2π,o we denote the subspace of L2
2π whose elements

have zero mean over one period.

Lemma 4.1 ([8]). If

w =
∞∑

n=1

an cos(nx) +
∞∑

n=1

bn sin(nx),

is the Fourier series expansion of w ∈ L2
2π,o then

Cd(w) =
∞∑

n=1

an coth(nd) sin(nx)−
∞∑

n=1

bn coth(nd) cos(nx) (4.1)

Lemma 4.2 ([8]). For any d > 0, p ≥ 0 integer and α ∈ (0, 1), Cd : Cp,α
2π,o →

Cp,α
2π,o is a bounded linear operator. Moreover, C−1

d : Cp,α
2π,o → Cp,α

2π,o is also a
bounded linear operator.

Lemma 4.3. For all integers n ≥ 2 and all k > 0, h > 0 with kh ≥ 1
2 we have

that

n tanh(nkh)− tanh(kh) ≥ 1.
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Proof. Since the function x → x tanh(xkh) is strictly increasing for kh > 0
we only need to prove the inequality for n = 2. If we denote tanh(kh) = a
then

2 tanh(2kh)− tanh(kh) ≥ 1

is equivalent to

−a3 − a2 + 3a− 1

1 + a2
≥ 0

which in turn is equivalent to

(a− 1)(a2 + 2a− 1) ≤ 0 (4.2)

Since a = tanh(kh) ∈ (0, 1) the inequality in (4.2) is equivalent to a =

tanh(kh) ≥
√
2− 1. A routine calculation shows that tanh(12 ) >

√
2− 1 and

then it follows that tanh(kh) ≥
√
2 − 1 for all k, h with kh ≥ 1

2 since the
function y → tanh(h) is increasing. �

Lemma 4.4. For all integers n ≥ 2 and all k > 0, h > 0 we have that

tanh(nkh)− n tanh(kh) < 0.

Proof. Note first that

tanh(2kh) =
2 tanh(kh)

1 + tanh2(kh)
< 2 tanh(kh),

which shows that tanh(2kh) − 2 tanh(kh) < 0, for all k > 0, h > 0. The
asserted inequality is true if we show that the function x → tanh(xkh) −
x tanh(kh) =: q(x) is decreasing. Indeed

q′(x) =
kh

cosh2(xkh)
− tanh(kh) =

kh cosh(kh)− sinh(kh) cosh2(xkh)

cosh2(xkh) cosh(kh)
< 0

for all x ≥ 2, k > 0, h > 0, since

1 < cosh(kh) < cosh2(kh) < cosh2(xkh) for all x ≥ 2, k > 0, h > 0

and

kh < sinh(kh) for all k > 0, h > 0.

�
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