Processing Math: 57%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
Wenn Sie das Buch noch nicht kennen, dann können Sie hier weitere Informationen finden.

Lösung für Aufgabe 7.3.86

Bestimmen Sie jeweils Ai+Aj, AiAj und Aixj für ij=123:
\begin{gather*} A_{1} := \begin{pmatrix} 1 & 1 & 1\\0 & 1 & 2\\2 & \;3\; & \;4\; \end{pmatrix},\quad A_{2} := \begin{pmatrix} 1 & 2 & 4\\1 & 3 & 5\\\;2\; & \;1\; & -1 \end{pmatrix},\quad A_{3} := \begin{pmatrix} 3 & 0 & 0\\ 0 & -2 & 0\\\;0\; & \;0\; & \;4\; \end{pmatrix}, \end{gather*}
\begin{gather*} x_{1} := \begin{pmatrix} 3\\1\\2 \end{pmatrix},\quad x_{2} := \begin{pmatrix} -1\\2\\4 \end{pmatrix},\quad x_{3} := \begin{pmatrix} 0\\1\\0 \end{pmatrix}. \end{gather*}



\begin{gather*} A_1+A_1 = \begin{pmatrix}2&2&2\\0&2&4\\4&6&8\end{pmatrix},\quad A_1+A_2 = \begin{pmatrix}2&3&5\\1&4&7\\4&4&3\end{pmatrix},\quad A_1+A_3 = \begin{pmatrix}4&1&1\\0&-1&2\\2&3&8\end{pmatrix},\\ A_2+A_2 = \begin{pmatrix}2&4&8\\2&6&10\\4&2&-2\end{pmatrix},\quad A_2+A_3 = \begin{pmatrix}4&2&4\\1&1&5\\2&1&3\end{pmatrix},\quad A_3+A_3 = \begin{pmatrix}6&0&0\\0&-4&0\\0&0&8\end{pmatrix},\\ A_1A_1 = \begin{pmatrix}3&5&7\\4&7&10\\10&17&24\end{pmatrix},\quad A_1A_2 = \begin{pmatrix}4&6&8\\5&5&3\\13&17&19\end{pmatrix},\quad A_1A_3 = \begin{pmatrix}3&-2&4\\0&-2&8\\6&-6&16\end{pmatrix},\\ A_2A_1 = \begin{pmatrix}9&15&21\\11&19&27\\0&0&0\end{pmatrix},\quad A_2A_2 = \begin{pmatrix}11&12&10\\14&16&14\\1&6&14\end{pmatrix},\quad A_2A_3 = \begin{pmatrix}3&-4&16\\3&-6&20\\6&-2&-4\end{pmatrix},\\ A_3A_1 = \begin{pmatrix}3&-4&16\\3&-6&20\\6&-2&-4\end{pmatrix},\quad A_3A_2 = \begin{pmatrix}3&6&12\\-2&-6&-10\\8&4&-4\end{pmatrix},\quad A_3A_3 = \begin{pmatrix}9&0&0\\0&4&0\\0&0&16\end{pmatrix},\\ A_1x_1 = \begin{pmatrix}6\\5\\17\end{pmatrix},\quad A_1x_2 = \begin{pmatrix}5\\10\\20\end{pmatrix},\quad A_1x_3 = \begin{pmatrix}1\\1\\3\end{pmatrix},\\ A_2x_1 = \begin{pmatrix}13\\16\\5\end{pmatrix},\quad A_2x_2 = \begin{pmatrix}19\\25\\-4\end{pmatrix},\quad A_2x_3 = \begin{pmatrix}2\\3\\1\end{pmatrix},\\ A_3x_1 = \begin{pmatrix}9\\-2\\8\end{pmatrix},\quad A_3x_2 = \begin{pmatrix}-3\\-4\\16\end{pmatrix},\quad A_3x_3 = \begin{pmatrix}0\\-2\\0\end{pmatrix}. \end{gather*}