Johanna Michor

Department of Mathematics


FWF Elise Richter grant V120

Here you can find information on the research project FWF V120 on "Long time asymptotics of Soliton equations",
funded by the Austrian Science Fund (FWF) at the University of Vienna.
The project started in May 2011 and finished in November 2018.

Project members

Cooperation partners

Publications

  1. J. Michor, A.L. Sakhnovich, Explicit solutions for nonlocal NLS: GBDT and algebro-geometric approaches, J. Phys. A: Math. Theor. 52, 025201 (2019).
  2. I. Egorova, J. Michor, and G. Teschl, Long-time asymptotics for the Toda shock problem: non-overlapping spectra, Zh. Mat. Fiz. Anal. Geom. 14:4, 406-451 (2018).
  3. I. Egorova, J. Michor, and G. Teschl, Rarefaction waves for the Toda equation via Nonlinear Steepest Descent, Discrete Contin. Dyn. Syst. 38:44 (2018).
  4. K. Andreiev, I. Egorova, T.L. Lange, and G. Teschl, Rarefaction waves of the Korteweg-de Vries equation via nonlinear steepest descent, J. Differential Equations 261, 5371-5410 (2016).
  5. I. Egorova, Z. Gladka, and G. Teschl, On the form of dispersive shock waves of the Korteweg-de Vries equation, Zh. Mat. Fiz. Anal. Geom. 12, 3-16 (2016).
  6. I. Egorova, M. Holzleitner, and G. Teschl, Properties of the scattering matrix and dispersion estimates for Jacobi operators, J. Math. Anal. Appl. 434, 956-966 (2016).
  7. J. Michor, Wave phenomena of the Toda lattice with steplike initial data, Phys. Lett. A 380, 1110-1116 (2016).
  8. I. Egorova, Z. Gladka, T.-L. Lange, and G. Teschl, Inverse scattering theory for Schrödinger operators with steplike potentials, Zh. Mat. Fiz. Anal. Geom. 11, 123-158 (2015).
  9. I. Egorova, J. Michor, and G. Teschl, Scattering theory with finite-gap backgrounds: transformation operators and characteristic properties of scattering data, Math. Phys. Anal. Geom. 16, 111-136 (2013).
  10. J. Michor, On the spatial asymptotics of solutions of the Ablowitz-Ladik hierarchy, Proc. Amer. Math. Soc. 138, 4249-4258 (2010).
  11. I. Egorova, J. Michor, and G. Teschl, Inverse scattering transform for the Toda hierarchy with steplike finite-gap backgrounds, J. Math. Physics 50, 103522 (2009).

Thesis