Wolfgang Pauli Institute (WPI) Vienna |
|||||
---|---|---|---|---|---|
Home | WPI in a nutshell | Practical Information | Events | People | WPI Projects |
Login | Thematic Programs | Pauli Fellows | Talks | Research Groups |
| ||
| ||
|
Friedrich Kupka | WPI, OMP 1, Seminar Room 08.135 | Wed, 30. Aug 23, 9:30 |
A turbulent context | ||
In intention of this talk is to show how research on a rather specific topics from stellar astrophysics, the study of atmospheres of A-type stars, has led myself to numerous collaborations with researchers working in other fields such as meteorology, oceanography, numerical mathematics, and high preformance computing. To explain "turbulence" in the context of solar and stellar astrophysics, a short introduction into simulations of solar granulation will be given (much more details will follow in Herbert Muthsam's talk) followed by how turbulent convection is detected and modelled in A-type stars. Various modelling approaches have been used in this context: mixing lenth theory, two-point closure models, Reynolds stress models, and numerical simulations. The latter lead to the necessity to develop improved time integration methods which have first been probed in studies of semi-convection (diffusive convection). Studies in meteorology inspired new models for higher order moments required for Reynolds stress models. Finally, some result on the modelling of convective overshooting is presented which has been inspired by work that will be discussed in detail in other talks during the workshop (by Felix Ahlborn, Teresa Braun, Petri Käpylä). | ||
|
Herbert Muthsam | WPI, OMP 1, Seminar Room 08.135 | Wed, 30. Aug 23, 10:10 |
From turbulent to laminar: multidimensional simulations of solar granulation and pulsating stars | ||
We speak about numerical issues and results regarding the simulation of solar granulation flows and the pulsation-convection interaction in Cepheids in 3D and 2D, respectively. | ||
|
Gábor Kovács | WPI, OMP 1, Seminar Room 08.135 | Wed, 30. Aug 23, 11:20 |
Convection and turbulence in classical variable stars: achievements and recent progress | ||
While all of the stars change their brightness during their lifetimes, there are many among them that do this on a human timescale (from less than a day to years) due to external or internal reasons. We call those stars classical variables, which exhibit a strong, stable radial pulsation with periods from 0.3-100 days. In these cases, the outer envelope of the star periodically expands and shrinks due to an effect tied to hydrogen and helium ionisations called the kappa mechanism. They are important to astronomers because their period is proportional to their average brightness, making them perfect distance indicators. Since the first electronic computers became available, astronomers have applied them to model the structure and dynamics of these (and every other) types of stars. The first attempts neglected convection and turbulence, considering only radiative energy transport. However, it soon turned out that we could not adequately describe pulsation without convection. Moreover, the different improved forms of static mixing length theory were also inadequate. Hence, massive research was started to create a time-dependent theory that can describe convection correctly in a one-dimensional approximation. These efforts revealed some hidden features of the phenomena but could not answer all of the questions raised. Since convection and non-radial pulsation are genuinely multi-dimensional phenomena, multi-D models seem inevitable, but this approach requires high computational performance, which was not available decades ago. Today, though we have better equipment, numerical modelling of turbulent convection in stars is still a great challenge due to the many magnitudes of scale it involves, especially in classical pulsators. In this talk, I highlight some of the achievements of this journey and show the recent developments and future aspects of turbulent RHD modelling in classical pulsating stars. | ||
|
Günter Houdek | WPI, OMP 1, Seminar Room 08.135 | Wed, 30. Aug 23, 14:00 |
Stellar convection and pulsation mode physics | ||
In this presentation I shall provide an overview of our current understanding of modelling energy exchange between stellar convection and oscillations in stars supporting solar-type oscillations. Stellar calculations, adopting a 1D, non-local, time-dependent convection model, are calibrated against seismic observations and 3D-simulation results. These stellar models are tested against data from the Sun and from Kepler main-sequence stars. This provides insight into the physical processes that determine energy transport in the outer stellar layers and to a better understanding of the so-called surface effects of pulsation frequencies. | ||
|
Felix Ahlborn | WPI, OMP 1, Seminar Room 08.135 | Wed, 30. Aug 23, 14:40 |
Non-local convection models in stellar evolution | ||
Observations of stars with convectively burning cores have shown that the size of these cores is substantially underestimated. The increase of the convective core size, known as overshooting, has profound effects on the stellar structure and evolution, e.g. affecting age estimates, luminosities or nucleosynthetic yields of stars. Here, we applied a turbulent convection theory to model the evolution of intermediate and high-mass stars. We predict the emergence of an overshooting zone and modifications to the thermal stratification. The application of a turbulent convection theory is a crucial step towards a more realistic description of convection in stellar models. The predictions of the turbulent convection model may be tested against a variety of different observations, e.g. spectroscopic observations of massive stars, asteroseismic observations or observations of detached binary systems. Finally, the predictions of the turbulent convection model can be compared to hydrodynamic simulations of turbulent convection. | ||
|
Teresa Braun | WPI, OMP 1, Seminar Room 08.135 | Wed, 30. Aug 23, 15:50 |
Applying the Kuhfuss Convection Theory to Convective Envelopes | ||
In 1D stellar evolution models, the process of convection is often described using the mixing length theory (MLT). However, MLT does not account for the non-locality of convection, and an ad hoc implementation of overshooting is needed. The Kuhfuss theory is one of the theories that attempts to derive a more complete picture of turbulent convection. In this theory, non-locality is not implemented artificially, but is included in the theory. Both versions of the Kuhfuss theory, the 1-equation model as well as the 3-equation model, are implemented in the stellar evolution code GARSTEC and have already been tested on convective cores on the main sequence before (Ahlborn et al. 2022). Following these promising results for convection in stellar cores, we tested the Kuhfuss theory for convective envelopes. We applied the 1-equation model of the Kuhfuss convection theory to a stellar model calibrated to the Sun. Using helioseismic measurements of quantities of the convective envelope and interior structure, we quantified the differences and improvements from the Kuhfuss theory compared to MLT. We furthermore followed the evolution of stars to the red giant branch to study the influence of the Kuhfuss theory on the location of the red giant branch bump, which is known to be sensitive to the description and depth of convective overshooting. In the future, these cases will also be studied using the full 3-equation Kuhfuss model. | ||
|
Petri Käpylä | WPI, OMP 1, Seminar Room 08.135 | Thu, 31. Aug 23, 9:30 |
Convective scale, overshooting, and subadiabatic layers in deep stellar convection zones - Insights from 3D LES | ||
The overall understanding of solar and stellar convection has been questioned during the last decade or so with helioseismic results suggesting that the convective amplitudes at large horizontal scales in the Sun might be much lower than indicated by current simulations or mixing length estimates. A manifestation of this ``convective conundrum'' is that global simulations struggle to reproduce a solar-like differential rotation with a fast equator and slow poles with nominally solar parameters. A major contributor to this is that giant cell convection, with characteristic length scale comparable to the depth of the convection zone, is excited in simulations but appears to be much weaker in the Sun. A possible solution to this conundrum is that a large fraction of the solar convection zone is in fact stably stratified due to plumes originating near the surface and piercing the whole convection zone, such that giant cells are not excited. Non-rotating numerical simulations lend support to such non-local scenario of convection and lead to sizeable Schwarzschild-stable, yet convecting, layers in deep convection zones. Another possibility is that convection is rotationally constrained such that horizontal extent of convection cells is significantly reduced. New results from hydrodynamic rotating Cartesian convection simulations are presented that seek to capture the rotationally constrained convection near the base of the solar convection zone. The current results indicate that in models corresponding to the deep parts of the solar convection zone, the subadiabatic and overshoot layers are somewhat shallower than in the non-rotating case. Furthermore, these simulations suggest that deep convection in the Sun is not strongly rotationally constrained and that rotational suppression of large scale flows is weak. | ||
|
Damian Fabbian | WPI, OMP 1, Seminar Room 08.135 | Thu, 31. Aug 23, 10:10 |
Stellar Atmospheres & Activity | ||
The atmospheres of most stars have at least some level of magnetic activity. This is modulated by variability, which manifests itself as varying magnetic strength across the stellar surface and in time as well as in the form of different magnetic behaviour of different stars. This is moreover intertwined with all the other physical effects occurring in the atmospheres of stars, in particular convection, radiative transfer and turbulence. In the case of the Sun, magnetic fields are known to be ubiquitous, at an average level of roughly 1 hG across its surface, which - inter alia - has an impact on its inferred temperature stratification and chemical abundance. It is especially interesting to understand solar magnetism, for example its main magnetic cycle, also in comparison to other stars, given the Sun's driving influence on life on Earth and as the base energy input for terrestrial climate. Knowledge of stellar activity is also crucial for improved exoplanet detection and characterisation. Our team is focussing on different aspects of stellar atmosphere physics, from the viewpoint of numerical (magneto-)hydrodynamic simulations. Recent examples include the production of models for stars of spectral type F to A, and the study of hard turbulence as possible driver of synchronised swaying atmospheric motions akin to the still unexplained effect of solar supergranulation. | ||
|
Vittorio Canuto | HS11, 2nd floor, Oskar-Morgenstern-Platz 1, 1090 Wien | Thu, 31. Aug 23, 15:00 |
My Life as a Scientist: 50+ Years at NASA-GISS | ||
I take the audience on a scientific journey from the physics of neutron stars to cosmology and further on to turbulence and its role for oceaongraphy and climate modeling. Scientific highlights on this journey include an exact equation of state for neutron stars, results on cosmology, and a general turbulence model which has guided the modeling of transport processes in oceanography which is needed in climatology. From short encounters to longterm collaborations famous physicists are part of this story, including P.A.M. Dirac, W. Heisenberg, I. Rabi, J.A. Wheeler and many others. | ||
|
Impressum | webmaster [Printable version] |