4.2.3 Reflections/Mirroring

Now we want to describe the reflection $ S_w$ on a plane orthogonal to some (unit) vector $ w$. Since any vector $ v$ can be written as

$\displaystyle v=\langle v\vert w\rangle w+(v-\langle v\vert w\rangle w),
$

where $ v-\langle v\vert w\rangle w$ is orthogonal to $ w$ (use $ \langle v-\langle v\vert w\rangle w,w\rangle=\langle v\vert w\rangle(1-\Vert w\Vert^2)=0$), we get

$\displaystyle S_w(v)$ $\displaystyle = S_w\Bigl(\langle v\vert w\rangle w\Bigr)+S_w\Bigl(v-\langle v\vert w\rangle w\Bigr)$    
  $\displaystyle = -\langle v\vert w\rangle w + \Bigl(v-\langle v\vert w\rangle w\Bigr) = v - 2\,\langle v\vert w\rangle w.$    

Figure: Reflection
\begin{figure}\begin{picture}(6,5)(0,1)
\put(3,3){\makebox(0,0){$\bullet$}\makeb...
...t(6,1){\line(-3,2){6}}
\put(6,1){\makebox(0,0.5){$w$}}
\end{picture}\end{figure}

In coordinates:

$\displaystyle (v_1,v_2,v_3)$ $\displaystyle \mapsto \Bigl(v_1 -2\Bigl(\sum_k v_k\,w_k\Bigr)\,w_1,v_2 -2\Bigl(\sum_k v_k\,w_k\Bigr)\,w_2, v_3 -2\Bigl(\sum_k v_k\,w_k\Bigr)\,w_3\Bigr)$    
  $\displaystyle = \begin{pmatrix}1-2w_1^2 & -2w_1\,w_2 & -2w_1\,w_3 \\ -2w_2\,w_1...
...2 & 1-2w_3^2 \end{pmatrix} \cdot \begin{pmatrix}v_1 \\ v_2 \\ v_3 \end{pmatrix}$    
  $\displaystyle = (\operatorname{id}- 2\,w\cdot w^t)\cdot v = v - 2\,w\,\langle w\vert v\rangle$    

These reflections are length preserving:

$\displaystyle (\operatorname{id}- 2\,w\cdot w^t)^t\cdot (\operatorname{id}- 2\,w\cdot w^t)$ $\displaystyle = (\operatorname{id}- 2\,w\cdot w^t)\cdot (\operatorname{id}- 2\,w\cdot w^t)$    
  $\displaystyle = \operatorname{id}- 2\,w\cdot w^t - 2\,w\cdot w^t + 4\,w\cdot w^t\cdot w\cdot w^t = \operatorname{id},$    

or, because of Pythagoras,

$\displaystyle \Vert v-2\,\langle v\vert w\rangle w\Vert^2$ $\displaystyle =\Vert v-\langle v\vert w\rangle w\Vert^2+\Vert\pm\langle v,w\rangle w\Vert^2$    
  $\displaystyle =\Vert v-\langle v\vert w\rangle w+\langle v\vert w\rangle w\Vert^2 =\Vert v\Vert^2.$    

Note here, that a linear mapping given by multiplication with the matrix $ A$ is length preserving, iff

$\displaystyle v^t\cdot w=\langle v\vert w\rangle=\langle Av\vert Aw\rangle =(Av)^t\cdot Aw=v^t\,A^t\,A\,w
$

for all $ v$ and $ w$, i.e. iff $ A^t\cdot A=\operatorname{id}$.

The composition of the two 2-dimensional reflections $ \langle a,b\rangle\mapsto \langle -a,b\rangle$ and $ \langle a,b\rangle\mapsto \langle a,-b\rangle$ amounts to mirroring $ v\mapsto -v$ at the center $ O$. The composition of two general reflections is a rotation:

$\displaystyle (S_{w_2}\o S_{w_1})(v)$ $\displaystyle = S_{w_1}(v) - \langle S_{w_1}(v)\vert w_2\rangle w_2$    
  $\displaystyle = v - \langle v\vert w_1\rangle w_1 - \langle v - \langle v\vert w_1\rangle w_1 \vert w_2\rangle w_2$    
  $\displaystyle = v - \langle v\vert w_1\rangle w_1 - \langle v\vert w_2\rangle w_2 + \langle v\vert w_1\rangle \langle w_1 \vert w_2\rangle w_2$    

This is a rotation around $ w_1\times w_2$ by twice the angle between $ w_1$ und $ w_2$.
Figure: Rotation as two-fold reflection
\includegraphics[width=0.7\textwidth]{rot-comp.eps}

Andreas Kriegl 2003-07-23