Johanna Michor

Department of Mathematics


FWF Erwin Schrödinger Fellowship J2655

Here you can find information on the research project FWF J2655 on "Scattering theory for CMV operators and applications to completely integrable systems",
funded by the Austrian Science Fund (FWF).
The project started in March 2007 and finished in December 2008.

Project member

Cooperation partners

Host Institutions

Publications

  1. J. Michor and G. Teschl, On the equivalence of different Lax pairs for the Kac-van Moerbeke hierarchy, in Modern Analysis and Applications, V. Adamyan (ed.) et al., 437-445, Oper. Theory Adv. Appl. 191, Birkhäuser, Basel, 2009
  2. F. Gesztesy, H. Holden, J. Michor, and G. Teschl, The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy, Discrete Contin. Dyn. Syst. 26:1, 151-196 (2010).
  3. F. Gesztesy, H. Holden, J. Michor, and G. Teschl, Soliton Equations and Their Algebro-Geometric Solutions. Volume II: (1+1)-Dimensional Discrete Models, Cambridge Studies in Advanced Mathematics, Volume 114, Cambridge University Press, Cambridge, 2008. (ISBN-13: 9780521753081)
  4. F. Gesztesy, H. Holden, J. Michor, and G. Teschl, Local conservation laws and the Hamiltonian formalism for the Ablowitz-Ladik hierarchy, Stud. Appl. Math. 120:4, 361-423 (2008).
  5. I. Egorova, J. Michor, and G. Teschl, Scattering theory for Jacobi operators with general steplike quasi-periodic background, Zh. Mat. Fiz. Anal. Geom. 4:1, 33-62 (2008).