Weak convergence to stable Lévy processes for nonuniformly hyperbolic dynamical systems

Ian Melbournea,1 and Roland Zweimüllerb

aMathematics Institute, University of Warwick, Coventry, CV4 7AL, UK. E-mail: i.melbourne@warwick.ac.uk
bFaculty of Mathematics, University of Vienna, Vienna, Austria. E-mail: roland.zweimueller@univie.ac.at

Received 28 February 2013; revised 20 September 2013; accepted 22 September 2013

Abstract. We consider weak invariance principles (functional limit theorems) in the domain of a stable law. A general result is obtained on lifting such limit laws from an induced dynamical system to the original system. An important class of examples covered by our result are Pomeau–Manneville intermittency maps, where convergence for the induced system is in the standard Skorohod \mathcal{J}_1 topology. For the full system, convergence in the \mathcal{J}_1 topology fails, but we prove convergence in the \mathcal{M}_1 topology.

Résumé. Nous considérons des principes d’invariance faibles (théorèmes limites fonctionnels) dans le domaine d’une loi stable. Un résultat général est obtenu en relevant de telles lois limites depuis un système dynamique induit vers le système original. Une classe importante d’exemples couverte par notre résultat est donnée par les transformations intermittentes à la Pomeau–Manneville, où la convergence pour le système induit est dans la topologie \mathcal{J}_1 de Skorohod standard. Pour le système complet, il n’y a pas de convergence dans la topologie \mathcal{J}_1, mais nous prouvons la convergence dans la topologie \mathcal{M}_1.

MSC: Primary 37D25; secondary 28D05; 37A50; 60F17

Keywords: Nonuniformly hyperbolic systems; Functional limit theorems; Lévy processes; Induced dynamical systems

1. Introduction

For large classes of dynamical systems with good mixing properties, it is possible to obtain strong statistical limit laws such as the central limit theorems and its refinements including the almost sure invariance principle (ASIP) \cite{5,10,12,15,20,21,25–27}. An immediate consequence of the ASIP is the weak invariance principle (WIP) which is the focus of this paper.

Thus the standard WIP (weak convergence to Brownian motion) holds for general Axiom A diffeomorphisms and flows, and also for nonuniformly hyperbolic maps and flows modelled by Young towers \cite{35,36} with square integrable return time function (including Hénon-like attractors \cite{7}, finite horizon Lorentz gases \cite{25}, and the Lorenz attractor \cite{22}).

Recently, there has been interest in statistical limit laws for dynamical systems with weaker mixing properties such as those modelled by a Young tower where the return time function is not square integrable. In the borderline case where the return time lies in L^p for all $p < 2$, it is often possible to prove a central limit theorem with nonstandard norming (nonstandard domain of attraction of the normal distribution). This includes important examples such as the infinite horizon Lorentz gas \cite{32}, the Bunimovich stadium \cite{4} and billiards with cusps \cite{3}. In such cases, it is also possible to obtain the corresponding WIP (see, for example, \cite{3,11}).

1The research of Ian Melbourne was supported in part by EPSRC Grant EP/F031807/1 held at the University of Surrey.
For Young towers with return time function that is not square-integrable, the central limit theorem generally fails. Gouëzel [18] (see also Zweimüller [37]) obtained definitive results on convergence in distribution to stable laws. The only available results on the corresponding WIP are due to Tyran-Kamińska [33] who gives necessary and sufficient conditions for weak convergence to the appropriate stable Lévy process in the standard Skorohod J_1 topology [31]. However in the situations we are interested in, the J_1 topology is too strong and the results in [33] prove that weak convergence fails in this topology.

In this paper, we repair the situation by working with the M_1 topology (also introduced by Skorohod [31]). In particular, we give general conditions for systems modelled by a Young tower, whereby convergence in distribution to a stable law can be improved to weak convergence in the M_1 topology to the corresponding Lévy process.

The proof is by inducting (see [19,28,30] for proofs by inducting of convergence in distribution). Young towers by definition have a good inducing system, namely a Gibbs–Markov map (a Markov map with bounded distortion and big images [1]). The results of Tyran-Kamińska [33] often apply positively for such induced maps (see for example the proof of Theorem 4.1 below) and yield weak convergence in the J_1 topology, and hence the M_1 topology, for the induced system. The main theoretical result of the present paper discusses how M_1 convergence in an induced system lifts to the original system (even when convergence in the J_1 topology does not lift).

As a special case, we recover the aforementioned results [3,11] on the WIP in the nonstandard domain of attraction of the normal distribution.

In the remainder of this Introduction, we describe how our results apply to Pomeau–Manneville intermittency maps [29]. In particular, we consider the family of maps $f : X \to X$, $X = [0, 1]$, studied by [23], given by

$$f(x) = \begin{cases} x(1 + 2^\gamma x^\gamma), & x \in [0, \frac{1}{2}], \\ 2x - 1, & x \in (\frac{1}{2}, 1]. \end{cases} \tag{1.1}$$

For $\gamma \in [0, 1)$, there is a unique absolutely continuous ergodic invariant probability measure μ. Suppose that $\phi : X \to \mathbb{R}$ is a Hölder observable with $\int_X \phi \, d\mu = 0$. Let $\phi_n = \sum_{j=0}^{n-1} \phi \circ f^j$. For the map in (1.1), our main result implies the following:

Theorem 1.1. Let $f : [0, 1] \to [0, 1]$ be the map (1.1) with $\gamma \in (\frac{1}{2}, 1)$ and set $\alpha = 1/\gamma$. Let $\phi : [0, 1] \to \mathbb{R}$ be a mean zero Hölder observable and suppose that $\phi(0) \neq 0$. Define $W_n(t) = n^{-1/\alpha} \phi_{[nt]}$. Then W_n converges weakly in the Skorohod M_1 topology to an α-stable Lévy process. (The specific Lévy process is described below.)

Remark 1.2. The J_1 and M_1 topologies are reviewed in Section 2.1. Roughly speaking, the difference is that the M_1 topology allows numerous small jumps for W_n to accumulate into a large jump for W, whereas the J_1 topology would require a large jump for W to be approximated by a single large jump for W_n. Since the jumps in W_n are bounded by $n^{-1/\alpha} |\phi|_{\infty}$, it is evident that in Theorem 1.1 convergence cannot hold in the J_1 topology.

Situations in the probability theory literature where convergence holds in the M_1 topology but not the J_1 topology include [2,6].

Theorem 1.1 completes the study of weak convergence for the intermittency map (1.1) with $\gamma \in [0, 1)$ and typical Hölder observables. We recall the previous results in this direction. If $\gamma \in [0, \frac{1}{2})$ then it is well known that ϕ satisfies a central limit theorem, so $n^{-1/2} \phi_n$ converges in distribution to a normal distribution with mean zero and variance σ^2, where σ^2 is typically positive. Moreover, [25] proved the ASIP. An immediate consequence is the WIP: $W_n(t) = n^{-1/2} \phi_{[nt]}$ converges weakly to Brownian motion.

If $\gamma = \frac{1}{2}$ and $\phi(0) \neq 0$, then Gouëzel [18] proved that ϕ is in the nonstandard domain of attraction of the normal distribution: $(n \log n)^{-1/2} \phi_n$ converges in distribution to a normal distribution with mean zero and variance $\sigma^2 > 0$. Dedekker and Merlevede [11] obtained the corresponding WIP in this situation (with $W_n(t) = (n \log n)^{-1/2} \phi_{[nt]}$).

Finally, if $\gamma \in (\frac{1}{2}, 1)$ and $\phi(0) \neq 0$, then Gouëzel [18] proved that $n^{-1/\alpha} \phi_n$ converges in distribution to a one-sided stable law G with exponent $\alpha = \gamma^{-1}$. The stable law in question has characteristic function

$$E(e^{itG}) = \exp\left\{ -c|t|^\alpha (1 - i \text{sgn}(\phi(0) t) \tan(\alpha \pi/2)) \right\},$$

where $c = \frac{1}{2} (\alpha |\phi(0)|)^{1/2} \Gamma(1 - \alpha) \cos(\alpha \pi/2)$ and $h = \frac{du}{dx}$ is the invariant density. Let \{W(t); t \geq 0\} denote the corresponding α-stable Lévy process (so \{W(t)\} has independent and stationary increments with cadlag sample paths
and $W(t) = d t^{1/\alpha} G$. Tyran-Kamińska [33] verified that $W_n(t) = n^{-1/\alpha} \phi(t(n))$ does not converge weakly to W in the J_1 topology. In contrast, Theorem 1.1 shows that W_n converges weakly to W in the M_1 topology.

The remainder of this paper is organised as follows. In Section 2 we state our main abstract result, Theorem 2.2, on inducing the WIP. In Section 3 we prove Theorem 2.2. In Section 4 we consider some examples which include Theorem 1.1 as a special case.

2. Inducing a weak invariance principle

In this section, we formulate our main abstract result Theorem 2.2. The result is stated in Section 2.2 after some preliminaries in Section 2.1.

2.1. Preliminaries

Distributional convergence. To fix notations, let (X, P) be a probability space and $(R_n)_{n \geq 1}$ a sequence of Borel measurable maps $R_n : X \to S$, where (S, d) is a separable metric space. Then distributional convergence of $(R_n)_{n \geq 1}$ w.r.t. P to some random element R of S will be denoted by $R_n \xrightarrow{P} R$. Strong distributional convergence $R_n \xrightarrow{L(\mu)} R$ on a measure space (X, μ) means that $R_n \xrightarrow{P} R$ for all probability measures $P \ll \mu$.

Skorohod spaces. We briefly review the required background material on the Skorohod J_1 and M_1 topologies [31] on the linear spaces $D[0, T], D[1, T_2]$, and $D[0, \infty)$ of real-valued càdlàg functions (right-continuous with left-hand limits $g(t^+) = g(t)$) on the respective interval, referring to [34] for proofs and further information. Both topologies are Polish, with J_1 stronger than M_1.

It is customary to first deal with bounded time intervals. We thus fix some $T > 0$ and focus on $D = D[0, T]$. (Everything carries over to $D[1, T_2]$ in an obvious fashion.) Throughout, $\| \cdot \|$ will denote the uniform norm. Two functions $g_1, g_2 \in D$ are close in the J_1-topology if they are uniformly close after a small distortion of the domain. Formally, let A be the set of increasing homeomorphisms $\lambda : [0, T] \to [0, T]$, and let $\lambda_{id} \in A$ denote the identity. Then $d_{J_1}(g_1, g_2) = \inf_{\lambda \in A} \{ \| g_1 \circ \lambda - g_2 \| \}$ defines a metric on D which induces the J_1-topology. While its restriction to $C = C[0, T]$ coincides with the uniform topology, discontinuous functions are J_1-close to each other if they have jumps of similar size at similar positions.

In contrast, the M_1-topology allows a function g_1 with a jump at t to be approximated arbitrarily well by some continuous g_2 (with large slope near t). For convenience, we let $[a, b]$ denote the (possibly degenerate) closed interval with endpoints $a, b \in \mathbb{R}$, irrespective of their order. Let $\Gamma(g) := \{(t, x) \in [0, T] \times \mathbb{R} : x \in [g(t^-), g(t))\}$ denote the completed graph of g, and let $A^*(g)$ be the set of all its parametrizations, that is, all continuous $G = (\lambda, \gamma) : [0, T] \to \Gamma(g)$ such that $t' < t$ implies either $\lambda(t') < \lambda(t)$ or $\lambda(t') = \lambda(t)$ plus $|\gamma(t) - g(\lambda(t))| \leq |\gamma(t') - g(\lambda(t'))|$. Then $d_{M_1}(g_1, g_2) = \inf_{(\lambda, \gamma) \in A^*(g)} \{ \| \lambda_1 - \lambda_2 \| \}$ gives a metric inducing M_1.

On the space $D[0, \infty)$ the τ-topology, $\tau \in \{ J_1, M_1 \}$, is defined by the metric $d_{\tau, \infty}(g_1, g_2) := \int_0^\infty e^{-t} (1 \wedge d_{\tau, t}(g_1, g_2)) dt$. Convergence $g_n \to g$ in $(D[0, \infty), \tau)$ means that $d_{\tau, t}(g_n, g) \to 0$ for every continuity point t of g.

For either topology, the corresponding Borel σ-field $B_{D, \tau}$ on D, generated by the τ-open sets, coincides with the usual σ-field B_D generated by the canonical projections $\pi_t(g) := g(t)$. Therefore, any family $W = (W_t)_{t \in [0, T]}$ or $(W_t)_{t \in [0, \infty)}$ of real random variables W_t such that each path $t \mapsto W_t$ is càdlàg, can be regarded as a random element of D, equipped with $\tau = J_1$ or M_1.

2.2. Statement of the main result

Recall that for any ergodic measure preserving transformation (m.p.t.) f on a probability space (X, μ), and any $Y \subset X$ with $\mu(Y) > 0$, the return time function $r : Y \to \mathbb{N} \cup \{\infty\}$ given by $r(y) := \inf\{k \geq 1 : f^k(y) \in Y\}$ is integrable with mean $\int_Y r \, d\mu_Y = \mu(Y)^{-1}$ (Kac’ formula), where $\mu_Y(A) := \mu(Y \cap A) / \mu(Y)$. Moreover, the first return map or induced map $F := f^* : Y \to Y$ is an ergodic m.p.t. on the probability space (Y, μ_Y). This is widely used as a tool in the study of complicated systems, where Y is chosen in such a way that F is more convenient than f. In particular, given an observable (i.e., a measurable function) $\phi : X \to \mathbb{R}$, it may be easier to first consider its induced version $\Phi : Y \to \mathbb{R}$ on Y, given by $\Phi := \sum_{\ell=0}^{r-1} \phi \circ f^\ell$. By standard arguments, if $\phi \in L^1(X, \mu)$ then $\Phi \in L^1(Y, \mu_Y)$ and
\[\int_Y \Phi \, d\mu_Y = \mu(Y)^{-1} \int_X \Phi \, d\mu. \]
In this setup, we will denote the corresponding ergodic sums by \(\phi_k := \sum_{\ell=0}^{k-1} f \circ f^\ell \) and \(\Phi_n := \sum_{j=1}^{n-1} \Phi \circ F^j \), respectively.

Our core result allows us to pass from a weak invariance principle for the induced version to one for the original observable. Such a step requires some a priori control of the behaviour of ergodic sums \(\phi_k \) during an excursion from \(Y \). We shall express this in terms of the function \(\Phi^* : Y \to [0, \infty] \) given by

\[\Phi^*(y) := \left(\max_{0 \leq t' \leq \ell(y)} (\phi_{t'}(y) - \phi(t)) \right) \wedge \left(\max_{0 \leq t' \leq \ell(y)} (\phi(t) - \phi_{t'}(y)) \right). \]

Note that \(\Phi^* \) vanishes if and only if the ergodic sums \(\phi_k \) grow monotonically (nonincreasing or nondecreasing) during each excursion. Hence bounding \(\Phi^* \) means limiting the growth of \(\phi_k \) until the first return to \(Y \) in at least one direction. The expression \(\Phi^* \) can be understood also in terms of the maximal and minimal processes \(\phi^\uparrow_k, \phi^\downarrow_k \) defined during each excursion \(0 \leq \ell \leq r(y) \) by

\[\phi^\uparrow_k(y) = \max_{0 \leq t' \leq \ell(y)} \phi_{t'}(y), \quad \phi^\downarrow_k(y) = \min_{0 \leq t' \leq \ell(y)} \phi_{t'}(y). \]

Proposition 2.1.

(i) In the “predominantly increasing” case \(\Phi^*(y) = \max_{0 \leq t' \leq \ell(y)} (\phi_{t'}(y) - \phi(t)) \), we have \(\Phi^*(y) = \max_{0 \leq t' \leq \ell(y)} (\phi^\uparrow_k(y) - \phi(t)) \).

(ii) In the “predominantly decreasing” case \(\Phi^*(y) = \max_{0 \leq t' \leq \ell(y)} (\phi(t) - \phi_{t'}(y)) \), we have \(\Phi^*(y) = \max_{0 \leq t' \leq \ell(y)} (\phi(t) - \phi^\downarrow_k(y)) \).

Proof. This is immediate from the definition of \(\phi^\uparrow_k \) and \(\phi^\downarrow_k \). \(\square \)

We use \(\Phi^* \) to impose a weak monotonicity condition for \(\phi_k \) during excursions.

Theorem 2.2 (Inducing a weak invariance principle). Let \(f \) be an ergodic m.p.t. on the probability space \((X, \mu)\), and let \(Y \subset X \) be a subset of positive measure with return time \(r \) and first return map \(F \). Suppose that the observable \(\phi : X \to \mathbb{R} \) is such that its induced version \(\Phi \) satisfies a WIP on \((Y, \mu_Y)\) in that

\[(P_n(t))_{t \geq 0} := \left(\frac{\Phi_{\lfloor tn \rfloor}}{B(n)} \right)_{t \geq 0} \xrightarrow{L(\mu_Y)} (W(t))_{t \geq 0} \quad \text{in} \ (D[0, \infty), \mathcal{M}_1), \]

where \(B \) is regularly varying of index \(\gamma > 0 \), and \((W(t))_{t \geq 0} \) is a process with cadlag paths. Moreover, assume that

\[\frac{1}{B(n)} \left(\max_{0 \leq j \leq n} \Phi^* \circ F^j \right) \xrightarrow{\mu_Y} 0. \]

Then \(\phi \) satisfies a WIP on \((X, \mu)\) in that

\[(W_n(s))_{s \geq 0} := \left(\frac{\phi_{\lfloor sn \rfloor}}{B(n)} \right)_{s \geq 0} \xrightarrow{L(\mu)} (W(s \mu(Y)))_{s \geq 0} \quad \text{in} \ (D[0, \infty), \mathcal{M}_1). \]

Remark 2.3 (\(\alpha \)-stable processes). If the process \(W \) in \((2.1)\) for the induced system is an \(\alpha \)-stable Lévy process, then the limiting process in \((2.3)\) is \((\int_Y r \, d\mu_Y)^{-1/\alpha} W \).

Remark 2.4. In general, the convergence from \((2.3)\) fails in \((D[0, \infty), \mathcal{J}_1)\), even if \((2.1)\) holds in the \(\mathcal{J}_1 \)-topology. That this is the case for the intermittent maps \((1.1)\) was pointed out in [33], Example 2.1.

Remark 2.5 (Continuous sample paths). If the process \(W \) in \((2.1)\) for the induced system has continuous sample paths, then the statement and proof of Theorem 2.2 is greatly simplified and the uniform topology (corresponding to the
uniform norm \(\| \cdot \| \) can be used throughout. In particular, the function \(\Phi^\ast \) is replaced by \(\Phi^\ast(y) = \max_{0 \leq \ell < r(y)} |\phi_\ell(y)| \). In the case of normal diffusion \(B(n) = n^{1/2} \), condition (2.2) is then satisfied if \(\Phi^\ast \in L^2 \).

A simplified proof based on the one presented here is written out in [17], Appendix.

Remark 2.6 (Centering). In the applications that we principally have in mind (including the maps (1.1)), the observable \(\phi : X \to \mathbb{R} \) is integrable, and hence so is its induced version \(\Phi : Y \to \mathbb{R} \). In particular, if \(\phi \) has mean zero, then \(\Phi \) has mean zero and we are in a situation to apply Theorem 2.2. From this, it follows easily that if condition (2.1) holds with

\[
P_n(t) = \Phi_{[tn]} - tA(n)B(n),
\]

and condition (2.2) holds with \(\phi \) replaced throughout by \(\phi - \int_X \phi \, d\mu \) in the definition of \(\Phi^\ast \), then conclusion (2.3) is valid with

\[
W_n(s) = \frac{\Phi_{[sn]} - sn \int X \phi \, d\mu}{B(n)}.
\]

With a little more effort it is also possible to handle more general centering sequences where the process \((P_n) \) in condition (2.1) takes the form

\[
P_n(t) = \Phi_{[tn]} - tA(n)B(n),
\]

for real sequences \(A(n) \), \(B(n) \) with \(B(n) \to \infty \).

The monotonicity condition (2.2) will be shown to hold, for example, if we have sufficiently good pointwise control for single excursions:

Proposition 2.7 (Pointwise weak monotonicity). Let \(f \) be an ergodic m.p.t. on the probability space \((X, \mu) \), and let \(Y \subset X \) be a subset of positive measure with return time \(r \). Let \(B \) be regularly varying of index \(\gamma > 0 \). Suppose that for the observable \(\phi : X \to \mathbb{R} \) there is some \(\eta \in (0, \infty) \) such that for a.e. \(y \in Y \),

\[
\Phi^\ast(y) \leq \eta B(r(y)). \tag{2.4}
\]

Then the weak monotonicity condition (2.2) holds.

The proofs of Theorem 2.2 and Proposition 2.7 are given in Section 3.

Assuming strong distributional convergence \(\Rightarrow \) in (2.1), rather than \(\mu \Rightarrow \), is not a restriction, as an application of the following result to the induced system \((Y, \mu_Y, F) \) shows.

Proposition 2.8 (Automatic strong distributional convergence). Let \(f \) be an ergodic m.p.t. on a \(\sigma \)-finite space \((X, \mu) \). Let \(\tau = J_1 \) or \(M_1 \) and let \(A(n) \), \(B(n) \) be real sequences with \(B(n) \to \infty \). Assume that \(\phi : X \to \mathbb{R} \) is measurable, and that there is some probability measure \(P \ll \mu \) and some random element \(R \) of \(D[0, \infty) \) such that

\[
R_n := \left(\frac{\Phi_{[tn]} - tA(n)}{B(n)} \right)_{t \geq 0} \Rightarrow R \text{ in } (D[0, \infty), \tau).
\]

Then, \(R_n \Rightarrow R \) in \((D[0, \infty), \tau) \).

Proof. This is based on ideas in [14]. According to Zweimüller [38], Theorem 1, it suffices to check that \(d_{r, \infty}(R_n \circ f, R_n) \to 0 \). The proof of [38], Corollary 3, shows that \(B(n) \to \infty \) alone (that is, even without (2.5)) implies

\[
d_{J_1, \infty}(R_n \circ f, R_n) \to 0.
\]

Since \(d_{M_1, \infty} \leq d_{J_1, \infty} \) (see [34], Theorem 12.3.2), the case \(\tau = M_1 \) then is a trivial consequence. \(\square \)
Remark 2.9. There is a systematic typographical error in [38] in that the factor t in the centering process $t A(n)/B(n)$ is missing, but the arguments there work, without any change, for the correct centering.

3. Proof of Theorem 2.2

In this section, we give the proof of Theorem 2.2 and also Proposition 2.7. Throughout, we assume the setting of Theorem 2.2. In particular, we suppose that f is an ergodic m.p.t. on the probability space (X, μ), and that $Y \subset X$ is a subset of positive measure with return time r and first return map F.

3.1. Decomposing the processes

When Y is chosen appropriately, many features of f are reflected in the behaviour of the ergodic sums $r_n = \sum_{j=0}^{n-1} r \circ F^j$, i.e., the times at which orbits return to Y. These are intimately related to the occupation times or lap numbers $N_k := \sum_{\ell=1}^{k} 1_{Y \circ f^\ell} = \max\{n \geq 0: r_n \leq k\} \leq k$, $k \geq 0$.

The visits to Y counted by the N_k separate the consecutive excursions from Y, that is, the intervals $[r_j, r_{j+1}-1]$, $j \geq 0$. Decomposing the f-orbit of y into these excursions, we can represent the ergodic sums of ϕ as

$$\phi_k = \Phi_{N_k} + R_k$$

on Y with remainder term $R_k = \sum_{t=r_{N_k}}^{k-1} \phi \circ f^\ell = \phi_{k-r_{N_k}} \circ F^{N_k}$ encoding the contribution of the incomplete last excursion (if any). Next, decompose the rescaled processes accordingly, writing

$$W_k(s) = U_k(s) + V_k(s),$$

with $U_k(s) := B(k)^{-1} \Phi_{N[sk]}$, and $V_k(s) := B(k)^{-1} R[sk]$. On the time scale of U_n, the excursions correspond to the intervals $[t_{n,j}, t_{n,j+1}]$, $j \geq 0$, where $t_{n,j} : Y \to [0, \infty)$ is given by $t_{n,j} := r_j / n$. Note that the interval containing a given point $t > 0$ is that with $j = N[tn]$. Hence

$$t \in [t_{n,N[tn]}, t_{n,N[tn]+1}) \quad \text{for } t > 0 \text{ and } n \geq 1.$$ \hfill (3.1)

3.2. Some almost sure results

In this subsection, we record some consequences of the ergodic theorem which we will use below. But first an elementary observation, the proof of which we omit.

Lemma 3.1. Let $(c_n)_{n \geq 0}$ be a sequence in \mathbb{R} such that $n^{-1} c_n \to c \in \mathbb{R}$. Define a sequence of functions $C_n : [0, \infty) \to \mathbb{R}$ by letting $C_n(t) := n^{-1} c_{[tn]} - tc$. Then, for any $T > 0$, $(C_n)_{n \geq 1}$ converges to 0 uniformly on $[0, T]$.

For the occupation times of Y, we then obtain:

Lemma 3.2 (Strong law of large numbers for occupation times). The occupation times N_k satisfy

(a) $k^{-1} N_k \to \mu(Y)$ a.e. on X as $k \to \infty$.

(b) Moreover, for any $T > 0$,

$$\sup_{t \in [0, T]} \left| k^{-1} N_{[tk]} - t \mu(Y) \right| \to 0 \quad \text{a.e. on } X \text{ as } k \to \infty.$$ \hfill (3.1)

Proof. The first statement is immediate from the ergodic theorem. The second then follows by the preceding lemma.
Lemma 3.3. For any $T > 0$, \(\lim_{n \to \infty} n^{-1} \max_{0 \leq j \leq [Tn] + 1} (r \circ F^j) = 0 \) a.e. on Y.

Proof. Applying the ergodic theorem to F and the integrable function r, we get $n^{-1} \sum_{j=0}^{n-1} r \circ F^j \to \mu(Y)^{-1}$, and hence also $n^{-1} (r \circ F^n) \to 0$ a.e. on Y. The result follows from Lemma 3.1.

Pointwise control of monotonicity behaviour. We conclude this subsection by establishing Proposition 2.7.

Proof of Proposition 2.7. We may suppose without loss that the sequence $B(n)$ is nondecreasing. Since this sequence is regularly varying, $B(\delta n)/B(n) \to \delta^\gamma$ for all $\delta > 0$. Hence for $\delta > 0$ fixed, there are $\delta \geq 0$ and $\tilde{n} \geq 1$ s.t. $\eta B(h)/B(n) < \delta$ whenever $n \geq \tilde{n}$ and $h \leq \delta n$.

As a consequence of Lemma 3.3, there is some $\tilde{n} \geq 1$ such that $Y_n := \{n^{-1} \max_{0 \leq j \leq n} (r \circ F^j) < \delta\}$ satisfies $\mu_Y(Y_n^c) < \delta$ for $n \geq \tilde{n}$. In view of (2.4) we then see (using monotonicity of B again) that

$$\frac{1}{B(n)} \left(\max_{0 \leq j \leq n} \Phi^* \circ F^j \right) \leq \frac{1}{B(n)} \left(\max_{0 \leq j \leq n} \eta B(r \circ F^j) \right) \leq \frac{\eta B(\max_{0 \leq j \leq n} (r \circ F^j))}{B(n)} < \delta$$

on Y_n for $n \geq \tilde{n}$, which proves (2.2).

3.3. Convergence of (U_n)

As a first step towards Theorem 2.2, we prove that switching from $\Phi_{[tn]}$ to $\Phi_{N[t]}$ preserves convergence in the Skorohod space.

Lemma 3.4 (Convergence of (U_n)). Under the assumptions of Theorem 2.2,

$$(U_n(s))_{s \geq 0} \overset{\mu_Y}{\to} \left(W(s \mu(Y))\right)_{s \geq 0} \text{ in } (\mathcal{D}[0, \infty), \mathcal{M}_1).$$

Proof. For $n \geq 1$ and $s \in [0, \infty)$, we let $u_n(s) := n^{-1} N_{\lfloor sn \rfloor}$. Since $[u_n(s)n] = N_{\lfloor sn \rfloor}$, we have

$$U_n(s) = P_n(u_n(s)) \quad \text{on } Y \text{ for } n \geq 1 \text{ and } s \geq 0.$$ \(3.2\)

We regard U_n, P_n, W, and u_n as random elements of $(\mathcal{D}, \mathcal{M}_1) = (\mathcal{D}[0, \infty), \mathcal{M}_1)$. Note that $u_n \in \mathcal{D}_+ := \{g \in \mathcal{D}: g(0) \geq 0 \text{ and } g \text{ nondecreasing}\}$. Let u denote the constant random element of \mathcal{D} given by $u(s)(y) := s \mu(Y)$, $s \geq 0$.

Recalling Lemma 3.2(b), we see that for μ_Y-a.e. $y \in Y$ we have $u_n(\cdot)(y) \to u(\cdot)(y)$ uniformly on compact subsets of $[0, \infty)$. Hence, $u_n \to u$ in $(\mathcal{D}, \mathcal{M}_1)$ holds μ_Y-a.e. In particular,

$$u_n \overset{\mu_Y}{\to} u \quad \text{in } (\mathcal{D}, \mathcal{M}_1).$$

By assumption (2.1) we also have $P_n \overset{L(\mu_Y)}{\to} W$ in $(\mathcal{D}, \mathcal{M}_1)$. But then we automatically get

$$\left(P_n, u_n\right) \overset{\mu_Y}{\to} (W, u) \quad \text{in } (\mathcal{D}, \mathcal{M}_1)^2,$$

since the limit u of the second component is deterministic.

The composition map $(\mathcal{D}, \mathcal{M}_1) \times (\mathcal{D}_+, \mathcal{M}_1) \to (\mathcal{D}, \mathcal{M}_1)$, $(g, v) \mapsto g \circ v$, is continuous at every pair (g, v) with $v \in \mathcal{C}_+ := \{g \in \mathcal{D}: g(0) \geq 0 \text{ and } g \text{ strictly increasing and continuous}\}$, cf. [34], Theorem 13.2.3. As the limit (W, u) in (3.3) satisfies $\Pr((W, u) \in \mathcal{D} \times \mathcal{C}_+^\uparrow) = 1$, the standard mapping theorem for distributional convergence (cf. [34], Theorem 3.4.3) applies to (P_n, u_n), showing that

$$P_n \circ u_n \overset{\mu_Y}{\to} W \circ u \quad \text{in } (\mathcal{D}, \mathcal{M}_1).$$

In view of (3.2), this is what was to be proved.
3.4. Control of excursions

Passing from convergence of \((U_n)\) to convergence of \((W_n)\) requires a little preparation.

Lemma 3.5. (i) Let \(g, g' \in \mathcal{D}[0, T]\) and \(0 = T_0 < \cdots < T_m = T\). Then
\[
d_{\mathcal{M}_1,T}(g, g') \leq \max_{1 \leq j \leq m} d_{\mathcal{M}_1,[T_{j-1},T_j]}(g|_{[T_{j-1},T_j]}, g'|_{[T_{j-1},T_j]}).
\]
(ii) Let \(g_j \in \mathcal{D}[T_{j-1}, T_j]\) and \(g_j : = 1_{[T_{j-1},T_j]}g_j(T_{j-1}) + 1_{[T_j]}'g_j(T_j)\). Then
\[
d_{\mathcal{M}_1,[T_{j-1},T_j]}(g_j, g_j^\ast) \leq 2 g_j^\ast + (T_j - T_{j-1}),
\]
where \(g_j^\ast : = \sup_{T_{j-1} \leq s \leq T_j} (g_j(s) - g_j(t))) \wedge \sup_{T_{j-1} \leq s \leq T_j} (g_j(t) - g_j(s))).

Proof. The first assertion is obvious. To validate the second, assume without loss that \(j = 1\) and that \(g_1\) is predominantly increasing in that \(g_1^\ast = \sup_{T_0 \leq s \leq T_1} (g_1(s) - g_1(t))\). In this case, \(g_1^\ast = \sup_{T_0 \leq s \leq T_1} (g_1(t) - g_1(t))\) for the nondecreasing function \(g_1^\ast(t) : = \sup_{T_0 \leq s \leq T_1} g_1(s)\). Therefore,
\[
d_{\mathcal{M}_1,[T_0,T_1]}(g_1, g_1^\ast) \leq \|g_1 - g_1^\ast\| = g_1^\ast.
\]
Letting \(g_1^\ast : = 1_{[T_0,T_1]}g_1^\ast(T_0) + 1_{[T_1]}g_1^\ast(T_1)\), it is clear that
\[
d_{\mathcal{M}_1,[T_0,T_1]}(g_1^\ast, g_1) \leq \|g_1^\ast - g_1\| = |g_1^\ast(T_1) - g_1(T_1)| \leq g_1^\ast.
\]
Finally, we check that
\[
d_{\mathcal{M}_1,[T_0,T_1]}(g_1^\ast, g_1^\ast) \leq T_1 - T_0.
\]

To this end, we refer to Fig. 1 where \(\Gamma_1 = \Gamma(g_1^\ast)\) and \(\Gamma_2 = \Gamma(g_1^\ast)\) represent the completed graphs of \(g_1^\ast\) and \(g_1^\ast\) respectively. Here \(\Gamma_2\) consists of one horizontal line segment followed by one vertical segment. The picture of \(\Gamma_1\) is schematic, it may also contain horizontal and vertical line segments.

Choose \(C\) on the graph of \(\Gamma_1\) that is equidistant from \(AD\) and \(DB\) and let \(E\) be the point on \(DB\) that is the same height as \(C\). Choose parametrizations \(G_i = (\lambda_i, \gamma_i)\) of \(\Gamma_i\), \(i = 1, 2\), satisfying

(i) \(G_1(0) = G_2(0) = A, G_1(1) = G_2(1) = B\),

(ii) \(G_1(\frac{1}{2}) = C, G_2(\frac{1}{2}) = E\),

(iii) \(\gamma_1(t) = \gamma_2(t)\) for all \(t \in [\frac{1}{2}, 1]\).

Automatically \(\|\lambda_1 - \lambda_2\| \leq |AD| = T_1 - T_0\) and by construction \(\|\gamma_1 - \gamma_2\| \leq |DE| \leq |AD|\), as required. \(\square\)

![Fig. 1. A monotone excursion.](image)
As a consequence, we obtain:

Lemma 3.6. \(d_{M_1,T}(W_n, U_n) \leq \max_{0 \leq j \leq \lfloor Tn \rfloor + 1} (n^{-1} r + 2B(n)^{-1} \Phi^*) \circ F^j.\)

Proof. Let \(y \in Y\) and decompose \([0, T]\) according to the consecutive excursions, letting \(T_j := t_{n,j}(y) \wedge T\), \(j \leq m := \lfloor Tn \rfloor + 1\). Consider \(g(t) := W_n(t)(y)\), \(t \in [0, T]\). If we set \(g_j := g|_{[T_{j-1}, T_j]}\), then \(g_j\) as defined in Lemma 3.5 coincides with \(U_n(y)|_{[T_{j-1}, T_j]}\), so that

\[
d_{M_1,T}(W_n(y), U_n(y)) \leq \max_{0 \leq j \leq m} d_{M_1,[T_{j-1}, T_j]}(g_j, \tilde{g}_j).
\]

But \(T_j - T_{j-1} = n^{-1} r \circ F^j\), and since \(g_j(s) - g_j(t) = B(n)^{-1} (\phi_\ell - \phi_\ell) \circ F^j(y)\), for suitable \(0 \leq \ell' \leq \ell \leq r\), we see that Lemma 3.5 gives

\[
d_{M_1,[T_{j-1}, T_j]}(g_j, \tilde{g}_j) \leq (n^{-1} r + 2B(n)^{-1} \Phi^*) \circ F^j,
\]

as required. \(\square\)

Proof of Theorem 2.2. Fix any \(T > 0\). By Lemma 3.3, \(n^{-1} \max_{0 \leq j \leq \lfloor Tn \rfloor + 1} (r \circ F^j) \to 0\) a.e. and by assumption (2.2) \(B(n)^{-1} \max_{0 \leq j \leq \lfloor Tn \rfloor + 1} (\Phi^* \circ F^j) \xrightarrow{\text{H})} 0\). Hence Lemma 3.6 guarantees that

\[
d_{M_1,T}(W_n, U_n) \xrightarrow{\text{H)} 0. \tag{3.4}
\]

Recall also from Lemma 3.4 that

\[
(U_n(s))_{0 \leq s \leq T} \xrightarrow{\text{H}) (W(s \mu(Y)))_{0 \leq s \leq T} \text{ in } (D[0, T], \mathcal{M}_1). \tag{3.5}
\]

It follows (see [8], Theorem 3.1) from (3.4) and (3.5) that

\[
(W_n(s))_{0 \leq s \leq T} \xrightarrow{\text{H}) (W(s \mu(Y)))_{0 \leq s \leq T} \text{ in } (D[0, T], \mathcal{M}_1).
\]

This immediately gives \((W_n(s))_{s \geq 0} \xrightarrow{\text{H}) (W(s \mu(Y)))_{s \geq 0} \text{ in } (D[0, \infty), \mathcal{M}_1)\). Strong distributional convergence as asserted in (2.3) follows via Proposition 2.8. \(\square\)

4. Examples

We continue to suppose that \(f\) is an ergodic m.p.t. on a probability space \((X, \mu)\) with first return map \(F = f^\ell : Y \to Y\) where \(\mu(Y) > 0\). Suppose further that the induced map \(F : Y \to Y\) is Gibbs–Markov with ergodic invariant probability measure \(\mu_Y\) and partition \(\beta\), and that \(r|_a\) is constant for each \(a \in \beta\). Let \(\phi : X \to \mathbb{R}\) be an \(L^\infty\) mean zero observable, with induced observable \(\Phi : Y \to \mathbb{R}\).

Theorem 4.1. Suppose that \(\phi\) is constant on \(f^\ell a\) for every \(a \in \beta\) and \(\ell \in \{0, \ldots, r|_a - 1\}\). If \(\Phi\) lies in the domain of an \(\alpha\)-stable law, then \(\Phi\) satisfies the WIP in \((D, J_1)\) with \(B(n) = n^{1/\alpha}\). If in addition condition (2.2) holds, then \(\phi\) satisfies the WIP in \((D, J_1)\).

Proof. By [1], \(n^{-1/\alpha} \Phi_n\) converges in distribution to the given stable law. The assumptions guarantee that the induced observable \(\Phi\) is constant on each \(Y_j\). Hence we can apply Tyran-Kamińska [33], Corollary 4.1, to deduce that \(\Phi\) satisfies the corresponding \(\alpha\)-stable WIP in \((D, J_1)\). In particular, condition (2.1) is satisfied. The final statement follows from Theorem 2.2. \(\square\)

For certain examples, including Pomeau–Manneville intermittency maps, we can work with general Hölder observables, thus improving upon [33], Example 4.1. The idea is to decompose the observable \(\phi\) into a piecewise constant observable \(\phi_0\) and a Hölder observable \(\hat{\phi}\) in such a way that only \(\phi_0\) “sees” the source of the anomalous behaviour.
In the remainder of this section, we carry out this procedure for the maps \((1.1)\) and thereby prove Theorem 1.1. (Lemma 4.2 and Proposition 4.3 below hold in the general context of induced Gibbs–Markov maps.)

Fix \(\theta \in (0, 1)\) and let \(d_\theta\) denote the symbolic metric on \(Y\), so \(d_\theta(x, y) = \theta^{s(x, y)}\) where \(s(x, y)\) is the least integer \(n \geq 0\) such that \(F^n x, F^n y\) lie in distinct elements of \(\beta\). An observable \(\Phi : Y \to \mathbb{R}\) is piecewise Lipschitz if \(D_a(\Phi) := \sup_{x, y \in a, x \neq y} |\Phi(x) - \Phi(y)|/d_\theta(x, y) < \infty\) for each \(a \in \beta\), and Lipschitz if \(|\Phi|_\infty + \sup_{a \in \beta} D_a(\Phi) < \infty\). The space Lip of Lipschitz observables \(\Phi : Y \to \mathbb{R}\) is a Banach space. Note that \(\Phi\) is integrable with \(\sum_{a \in \beta} \mu_Y(a) D_a(\Phi) < \infty\) if and only if \(\sum_{a \in \beta} \mu_Y(a) \|1_a \Phi\|_\theta < \infty\).

Let \(L\) denote the transfer operator for \(F : Y \to Y\).

Lemma 4.2. (a) The essential spectral radius of \(L : \text{Lip} \to \text{Lip}\) is at most \(\theta\). (b) Suppose that \(\Phi : Y \to \mathbb{R}\) is a piecewise Lipschitz mean zero observable satisfying \(\sum_{a \in \beta} \mu_Y(a) \|1_a \Phi\|_\theta < \infty\). Then \(L \Phi \in \text{Lip}\).

Proof. This is standard. See, for example, [1], Theorem 1.6, for part (a) and [25], Lemma 2.2, for part (b).

Proposition 4.3. Let \(\Phi : Y \to \mathbb{R}\) be a piecewise Lipschitz mean zero observable lying in \(L^p\), for some \(p \in (1, 2)\). Assume that \(\sum_{a \in \beta} \mu_Y(a) \|1_a \Phi\|_\theta < \infty\). Then \(\max_{j=0, \ldots, n-1} n^{-\gamma} \Phi_j \to_d 0\) for all \(\gamma > 1/p\).

Proof. Suppose first that \(F\) is weak mixing (this assumption is removed below). Then \(L : \text{Lip} \to \text{Lip}\) has no eigenvalues on the unit circle except for the simple eigenvalue at 1 (corresponding to constant functions). By Lemma 4.2(a), there exists \(\tau < 1\) such that the remainder of the spectrum of \(L\) lies strictly inside the ball of radius \(\tau\). In particular, there is a constant \(C > 0\) such that \(|L^p v - \int v d\mu_Y| \leq C \tau^n \|v\|\) for all \(v \in \text{Lip}\), \(n \geq 1\).

By Lemma 4.2(b), \(L \Phi \in \text{Lip}\). Hence \(\chi = \sum_{j=1}^\infty L^j \Phi \in \text{Lip}\). Following Gordin [16], write \(\Phi = \hat{\Phi} + \chi \circ F - \chi\). Then \(\hat{\Phi} \in L^p\) (since \(\chi \in \text{Lip}\) and \(\Phi \in L^p\)). Applying \(L\) to both sides and noting that \(L(\chi \circ F) = \chi\), we obtain that \(L \hat{\Phi} = 0\). It follows that the sequence \(\{\hat{\Phi}_n ; n \geq 1\}\) defines a reverse martingale sequence.

By Burkholder’s inequality [9], Theorem 3.2,

\[
|\hat{\Phi}_n|_p \leq \left(\sum_{j=1}^n |\hat{\Phi} \circ F^j|^2 \right)^{1/2} \leq \left(\int \left(\sum_{j=1}^n |\hat{\Phi} \circ F^j|^2 \right)^{p/2} \right)^{1/p} \leq \left(\int \sum_{j=1}^n |\hat{\Phi} \circ F^j|^p \right)^{1/p} = |\hat{\Phi}|_p n^{1/p}.
\]

By Doob’s inequality [13] (see also [9], Equation (1.4), p. 20), \(\max_{j=0, \ldots, n-1} |\hat{\Phi}|_p \ll |\hat{\Phi}_n|_p \ll n^{1/p}\). By Markov’s inequality, for \(\varepsilon > 0\) fixed, \(\mu_Y(|\max_{j=0, \ldots, n-1} |\hat{\Phi}_j|_p - \varepsilon n^{1/p}| < n^{-p(y-1)} \to 0\) as \(n \to \infty\). Hence \(\max_{j=0, \ldots, n-1} n^{-\gamma} \Phi_j \to_d 0\). Since \(\Phi\) and \(\hat{\Phi}\) differ by a bounded coboundary, \(\max_{j=0, \ldots, n-1} n^{-\gamma} \Phi_j \to_d 0\) as required.

It remains to remove the assumption about eigenvalues (other than 1) for \(L\) on the unit circle. Suppose that there are \(k\) such eigenvalues \(e^{i\omega_{\ell}}\), \(\omega_{\ell} \in (0, 2\pi]\), \(\ell = 1, \ldots, k\) (including multiplicities). Then we can write \(\Phi = \Psi_0 + \sum_{\ell=1}^k \Psi_{\ell}\) where \(|L^p \Psi_0|_\theta \leq C \tau^n \|\Psi_0\|_\theta\) and \(L \Psi_\ell = e^{i\omega_{\ell}} \Psi_\ell\). In particular, the above argument applies to \(\Psi_0\), while \(L \Psi_\ell = e^{i\omega_{\ell}} \Psi_\ell\), \(\ell = 1, \ldots, k\).

A simple argument [see [24]] shows that \(\Psi_\ell \circ F = e^{-i\omega_{\ell}} \Psi_\ell\) for \(\ell = 1, \ldots, k\), so that \(\sum_{j=1}^n \Psi_\ell \circ F^j = 2|e^{i\omega_{\ell}} - 1|^{-1}\|\Psi_\ell\|_\infty\) which is bounded in \(n\). Hence the estimate for \(\Phi\) follows from the one for \(\Psi_0\).

Proof of Theorem 1.1. We verify the hypotheses of Theorem 2.2. A convenient inducing set for the maps \((1.1)\) is \(Y = \{1, 2\}\). Let \(\phi_0 = \theta(Y)^{-1} \phi(0) 1_y\). (The first term is the important one, and the second term is simply an arbitrary choice that ensures that \(\phi_0\) has mean zero while preserving the piecewise constant requirement in Theorem 4.1.) Write \(\phi = \phi_0 + \phi_1\) and note that \(\phi\) is a mean zero piecewise Hölder observable vanishing at 0. We have the corresponding decomposition \(\Phi = \Phi_0 + \Phi_1\) for the induced observables. By Theorem 4.1, \(\Phi_0\) satisfies the WIP (in the \(f_1\) topology).

Let \(\eta\) denote the Hölder exponent of \(\phi\). By the proof of [18], Theorem 1.3, \(\hat{\Phi}\) induces to a piecewise Lipschitz mean zero observable \(\hat{\Phi}\) satisfying \(\sum_{a \in \beta} \mu_Y(a) \|1_a \hat{\Phi}\|_\theta < \infty\) for suitably chosen \(\theta\). Moreover [18] shows that \(\hat{\Phi}\) lies in \(L^2\)
providing that \(\eta > \gamma - \frac{1}{p} \). Exactly the same argument shows that \(\tilde{\Phi} \) lies in \(L^p \) provided \(\eta > \gamma - \frac{1}{p} \). In particular, for any \(\eta > 0 \), there exists \(p > 1/\gamma \) such that \(\tilde{\Phi} \in L^p \). Since we are normalising by \(B(n) = n^{1/\alpha} = n^\gamma \), it follows from Proposition 4.3 that \(\Phi \) does not contribute to the WIP.

Combining the results for \(\Phi_0 \) and \(\Phi \), we deduce that \(\Phi \) satisfies the WIP (in the \(J_1 \) topology). In particular, condition (2.1) is satisfied.

It remains to verify condition (2.4). In fact, we show that \(\Phi^* \) is bounded. Suppose that \(\phi(0) > 0 \) (the case \(\phi(0) < 0 \) is treated similarly). Choose \(\epsilon > 0 \) such that \(\phi > 0 \) on \([0, \epsilon]\). Define the decreasing sequence \(x_n \in (0, \frac{1}{2}) \) where \(f(x_n) = x_{n-1} \), and let \(k \) be such that \(x_n \leq (0, \epsilon) \) for all \(n \geq k \). Then for \(y \in Y \), \(f^\ell y \in [0, \epsilon] \) for \(0 \leq \ell \leq r(y) - k \).

Now observe that

(i) \(\phi_{\ell'}(y) - \phi_\ell(y) \leq 0 \) for \(1 \leq \ell' \leq \ell \leq r(y) - k \),
(ii) \(\phi_{\ell'}(y) - \phi_\ell(y) \leq k|\phi|_{\infty} \) for \(r(y) - k \leq \ell' \leq \ell \leq r(y) \),
(iii) \(\phi_{\ell'}(y) - \phi_\ell(y) \leq \phi_{r(y)-k}(y) - \phi_\ell(y) \leq k|\phi|_{\infty} \) for \(1 \leq \ell' \leq r(y) - k \leq \ell \leq r(y) \).

Hence

\[
\Phi^*(y) \leq \max_{0 \leq \ell' \leq \ell \leq r(y)} (\phi_{\ell'}(y) - \phi_\ell(y)) \leq |\phi|_{\infty} + \max_{1 \leq \ell' \leq r(y)} (\phi_{\ell'}(y) - \phi_\ell(y)) \leq (k + 1)|\phi|_{\infty},
\]

as required. \(\square \)

Remark 4.4. The arguments in the proof of Theorem 1.1 apply to a much wider class of examples, including intermittent maps with neutral periodic points or with multiple neutral fixed/periodic points. In such cases, condition (2.2) is again automatically satisfied.

Acknowledgement

We are very grateful to the referee for very helpful suggestions that led to a significantly simplified proof of the main result in this paper.

References
