Typos in the paper "Stable limits for probability preserving maps with indifferent fixed points" by R. Zweimüller, Stochastics and Dynamics 3 (2003), 83-99.

There is a (rather obvious) typo that appears twice in the printed version of this paper: On p.89, at the beginning of section 3, we are interested in bounded regularity of the derivatives \(v' \) of the inverse branches \(v \), not of the \(v \) themselves. The correct version reads:

... Recall that the regularity of a positive differentiable function \(v \) on an interval \(J \) is given by \(R_J(v) := \sup_J | v' | / v \), cf. [23]. It is straightforward that a piecewise \(C^2 \)-map \(T \) on the interval satisfies the classical Adler folklore condition \(\sup_{v' \in \mathbb{V}} | T'' | / (T')^2 < \infty \) iff the derivatives \(v' \) of its inverse branches \(v \) have uniformly bounded regularity.

Lemma 1 (Inducing Adler’s condition) Let \(v \in C^1([0, \varepsilon_0]) \cap C^2((0, \varepsilon_0]) \) be a concave function satisfying \(0 < v(x) < x \) for \(x \in (0, \varepsilon_0] \), \(v'(0) = 1 \), and \(v' > 0 \). Assume that there is some decreasing function \(H \) on \((0, \varepsilon_0] \) with \(\int H \, d\lambda < \infty \) such that \(|v''| \leq H \). Then the sequence \(((v^n)')_{n \geq 1} \) has uniformly bounded regularity on compact subsets of \((0, \varepsilon_0] \), i.e. \(\sup_{n \geq 1} R_{[\varepsilon, \varepsilon_0]}((v^n)') < \infty \) for any \(\varepsilon \in (0, \varepsilon_0) \).

...