PS Advanced probability, SS 2015, sheet 5

28. Lebesgue's density theorem is a classical (and very useful) result in real analysis. A point $x \in (0, 1]$ is said to be a *density point of* $A \in \mathcal{B}_{(0,1]}$ if $\lim_{\delta \searrow 0} \lambda((x - \delta/2, x + \delta/2] \cap A)/\delta = 1$. Let D(A) denote the set of all such points. Lebesgue's theorem asserts that up to a set of measure zero, D(A) coincides with A, so that $1_A = 1_{D(A)}$ a.s.

a) Prove Lebesgue's theorem using the "Fundamental Theorem of Calculus" for the Lebesgue integral (take an F which has derivative 1_A). b) For $n \ge 1$ let Π_n be a (finite or) countable partition of (0, 1] into subintervals. Assume that Π_{n+1} refines Π_n . Show that $\sigma(\Pi_1, \Pi_2, \ldots) = \mathcal{B}_{(0,1]}$. c) For $(\Pi_n)_{n\ge 1}$ as in b) let $\Pi_n(x)$ be the element of Π_n containing the point x. Use the upward convergence theorem for conditional expectations to prove the following variant of the density theorem: For a.e. x, $\lim_{n\to\infty} \lambda(\Pi_n(x) \cap A)/\lambda(\Pi_n(x)) = 1_A(x)$.

29. Ergodicity of irrational rotations. Let $(\Omega, \mathcal{A}, \mathbf{P}) = ((0, 1], \mathcal{B}_{(0,1]}, \lambda)$, fix some $\alpha \in (0, 1]$ and consider the map $T : (0, 1] \to (0, 1]$ with $Tx := x + \alpha$ (mod 1). If Ω is identified with the circle \mathbb{S}^1 ($x \leftrightarrow e^{2\pi i x}$), then T simply rotates \mathbb{S}^1 by an angle $2\pi\alpha$ (so that $e^{2\pi i x} \mapsto e^{2\pi i (x+\alpha)}$). Therefore Tpreserves the measure, $\lambda = \lambda \circ T^{-1}$.

Assume now that α is irrational. We claim that in this case T is ergodic: If $A \in \mathcal{B}_{(0,1]}$ is T-invariant, $A = T^{-1}A$, and nontrivial, $\lambda(A) > 0$, then it has to be almost all of (0,1] in that $\lambda(A) = 1$.

a) Recall Kronecker's theorem which ensures that for every x the orbit $(T^n x)_{n>0} = (x + n\alpha \pmod{1})_{n>0}$ is dense in (0, 1].

b) Fix some *T*-invariant set $A \in \mathcal{B}_{(0,1]}$ with $\lambda(A) > 0$, and any $\varepsilon > 0$. Since *A* has density points and we can find an interval *B* such that $\lambda(B) = 1/m$ (some $m \ge 1$) and $\lambda(B \cap A)/\lambda(B) > 1 - \varepsilon$ (see Exercise 28). The proportion of *A* in any image $T^n B$, that is $\lambda(T^n B \cap A)/\lambda(T^n B)$, coincides with $\lambda(B \cap A)/\lambda(B)$.

c) Partition (0,1] into subintervals $I_j = (j/m, (j+1)/m]$. Take any of them, $I = I_j$. By Kronecker's theorem, there is some *n* such that $T^n B$ is almost the same as I, $\lambda(I \cap T^n B)/\lambda(I) > 1 - \varepsilon$. Conclude that $\lambda(I \cap A)/\lambda(I)$ is large, and hence that $\lambda(A)$ is large.

d) Formulate the strong law of large numbers for irrational rotations.

30. Independence and conditional expectations. Let \mathcal{F}, \mathcal{G} be sub- σ -algebras in the proba space $(\Omega, \mathcal{A}, \mathbf{P})$, and X an integrable random variable. If \mathcal{F} is independent of $\sigma(\mathcal{G}, \sigma(X))$, then

$$\mathbb{E}[X \mid \sigma(\mathcal{F}, \mathcal{G})] = \mathbb{E}[X \mid \mathcal{G}].$$

(This was used in the martingale proof of the strong law.)

31. A warning. Let \mathcal{F} and \mathcal{G}_n , $n \geq 0$, be sub- σ -algebras in the proba space $(\Omega, \mathcal{A}, \mathbf{P})$, with $(\mathcal{G}_n)_{n>0}$ non-increasing. Then

$$\bigcap_{n\geq 0} \sigma(\mathcal{F},\mathcal{G}_n) = \sigma\left(\mathcal{F},\bigcap_{n\geq 0}\mathcal{G}_n\right)$$

need not be true! Scary, isn't it?

Hint: Let $(Y_n)_{n\geq 0}$ be iid coins, $\mathbb{P}[Y_n = \pm 1] = 1/2$, and $X_n := Y_0Y_1 \cdots Y_n$, $n \geq 1$. Set $F := \sigma(Y_1, Y_2, \ldots)$ and $\mathcal{G}_n := \sigma(X_{n+1}, X_{n+2}, \ldots)$ for $n \geq 0$. Check that $(X_n)_{n\geq 1}$ is an independent sequence, and show that Y_0 is measurable for $\bigcap_{n>0} \sigma(\mathcal{F}, \mathcal{G}_n)$, but not for $\sigma(\mathcal{F}, \bigcap_{n>0} \mathcal{G}_n)$.

32. More martingales? Let $(Y_n)_{n\geq 1}$ be iid variables with $\mathbb{E}[Y_1] = 0$, set $X_0 := 0$ and $X_n := Y_1 + \ldots + Y_n$. We know that $(X_n)_{n\geq 0}$ is a martingale for the filtration with $\mathcal{F}_n := \sigma(Y_1, \ldots, Y_n)$.

Assume now that $\mathbb{E}[Y_1^2] :=: \sigma^2 < \infty$, and let $M_n := X_n^2 - n\sigma^2$, $n \ge 0$. Is $(M_n)_{n>0}$ a martingale for (\mathcal{F}_n) ? What can be said about $(X_n^2)_{n>0}$?

- 33. Doob's decomposition theorem states that a sequence (X_n) of integrable random variables is a submartingale (for some (\mathcal{F}_n)) iff it can be represented as $X_n = M_n + A_n$ where (M_n) is a martingale and (A_n) is previsible with $0 = A_0 \leq A_1 \leq \ldots$ Check this by trying (A_n) with $A_{n+1} A_n = \mathbb{E}[X_{n+1} X_n | \mathcal{F}_n]$. What about uniqueness?
- 34. Lévy's distance. For probability distribution functions F, G define

$$d(F,G) := \inf\{\varepsilon > 0 : G(t-\varepsilon) - \varepsilon \le F(t) \le G(t+\varepsilon) + \varepsilon\}.$$

Does this define a metric? Show that $F_n \Rightarrow F$ iff $d(F_n, F) \to 0$.