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28. Lebesgue�s density theorem is a classical (and very useful) result in
real analysis. A point x 2 (0; 1] is said to be a density point of A 2 B(0;1]
if lim�&0 �((x� �=2; x+ �=2] \ A)=� = 1. Let D(A) denote the set of all
such points. Lebesgue�s theorem asserts that up to a set of measure zero,
D(A) coincides with A, so that 1A = 1D(A) a.s.

a) Prove Lebesgue�s theorem using the �Fundamental Theorem of Cal-
culus� for the Lebesgue integral (take an F which has derivative 1A).
b) For n � 1 let �n be a (�nite or) countable partition of (0; 1] into subin-
tervals. Assume that �n+1 re�nes �n. Show that �(�1;�2; : : :) = B(0;1].
c) For (�n)n�1 as in b) let �n(x) be the element of �n containing the
point x. Use the upward convergence theorem for conditional expecta-
tions to prove the following variant of the density theorem: For a.e. x,
limn!1 �(�n(x) \A)=�(�n(x)) = 1A(x).

29. Ergodicity of irrational rotations. Let (
;A;P) = ((0; 1];B(0;1]; �), �x
some � 2 (0; 1] and consider the map T : (0; 1]! (0; 1] with Tx := x+ �
(mod 1). If 
 is identi�ed with the circle S1 (x $ e2�ix), then T simply
rotates S1 by an angle 2�� (so that e2�ix 7! e2�i(x+�)). Therefore T
preserves the measure, � = � � T�1.
Assume now that � is irrational. We claim that in this case T is ergodic:
If A 2 B(0;1] is T -invariant, A = T�1A, and nontrivial, �(A) > 0, then it
has to be almost all of (0; 1] in that �(A) = 1.

a) Recall Kronecker�s theorem which ensures that for every x the orbit
(Tnx)n�0 = (x+ n� (mod 1))n�0 is dense in (0; 1].
b) Fix some T -invariant set A 2 B(0;1] with �(A) > 0, and any " > 0. Since
A has density points and we can �nd an interval B such that �(B) = 1=m
(some m � 1) and �(B \A)=�(B) > 1� " (see Exercise 28). The propor-
tion of A in any image TnB, that is �(TnB \A)=�(TnB), coincides with
�(B \A)=�(B).
c) Partition (0; 1] into subintervals Ij = (j=m; (j + 1)=m]. Take any
of them, I = Ij . By Kronecker�s theorem, there is some n such that
TnB is almost the same as I, �(I \ TnB)=�(I) > 1 � ". Conclude that
�(I \A)=�(I) is large, and hence that �(A) is large.
d) Formulate the strong law of large numbers for irrational rotations.

30. Independence and conditional expectations. Let F ;G be sub-�-
algebras in the proba space (
;A;P), and X an integrable random vari-
able. If F is independent of �(G; �(X)), then

E[X j �(F ;G)] = E[X j G].

(This was used in the martingale proof of the strong law.)
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31. A warning. Let F and Gn, n � 0, be sub-�-algebras in the proba space
(
;A;P), with (Gn)n�0 non-increasing. ThenT

n�0 �(F ;Gn) = �
�
F ;
T
n�0 Gn

�
need not be true! Scary, isn�t it?

Hint: Let (Yn)n�0 be iid coins, P[Yn = �1] = 1=2, and Xn := Y0Y1 � � �Yn,
n � 1. Set F := �(Y1; Y2; : : :) and Gn := �(Xn+1; Xn+2; : : :) for n � 0.
Check that (Xn)n�1 is an independent sequence, and show that Y0 is
measurable for

T
n�0 �(F ;Gn), but not for �(F ;

T
n�0 Gn).

32. More martingales? Let (Yn)n�1 be iid variables with E[Y1] = 0, set
X0 := 0 and Xn := Y1 + : : :+ Yn. We know that (Xn)n�0 is a martingale
for the �ltration with Fn := �(Y1; : : : ; Yn).
Assume now that E[Y 21 ] =: �2 < 1, and let Mn := X

2
n � n�2, n � 0. Is

(Mn)n�0 a martingale for (Fn)? What can be said about (X2
n)n�0?

33. Doob�s decomposition theorem states that a sequence (Xn) of in-
tegrable random variables is a submartingale (for some (Fn)) i¤ it can
be represented as Xn = Mn + An where (Mn) is a martingale and (An)
is previsible with 0 = A0 � A1 � : : : Check this by trying (An) with
An+1 �An = E[Xn+1 �Xn j Fn]. What about uniqueness?

34. Lévy�s distance. For probability distribution functions F;G de�ne

d(F;G) := inff" > 0 : G(t� ")� " � F (t) � G(t+ ") + "g.

Does this de�ne a metric? Show that Fn ) F i¤ d(Fn; F )! 0.
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