-
R. Löscher, O. Steinbach, M. Zank (2024): On a modified Hilbert transformation, the discrete inf-sup condition, and error estimates. Comput. Math. Appl..
-
L. Foltyn, D. Lukáš, M. Zank (2024): Robust PRESB Preconditioning of a 3-Dimensional Space-Time Finite Element Method for Parabolic Problems. Comput. Methods Appl. Math., vol. 24, no. 2, 2024, pp. 439-451, DOI: 10.1515/cmam-2023-0085.
-
J. I. M. Hauser, M. Zank (2024): Numerical study of conforming space-time methods for Maxwell’s equations. Numer. Methods Partial Differ. Eq. 40, e23070, DOI: 10.1002/num.23070.
-
M. Zank (2023): Integral Representations and Quadrature Schemes for the Modified Hilbert Transformation. Comput. Methods Appl. Math., vol. 23, no. 2, 2023, pp. 473-489, DOI: 10.1515/cmam-2022-0150.
-
I. Perugia, Ch. Schwab, M. Zank (2023): Exponential convergence of hp-time-stepping in space-time discretizations of parabolic PDES.
ESAIM Math. Model. Numer. Anal. 57.1, 29–67, DOI: 10.1051/m2an/2022081.
-
M. Zank (2023): High-Order Discretisations and Efficient Direct Space-Time Finite Element Solvers for Parabolic Initial-Boundary Value Problems. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1. Lecture Notes in Computational Science and Engineering, vol 137. Springer, Cham. DOI: 10.1007/978-3-031-20432-6_37.
-
R. Löscher, O. Steinbach, M. Zank (2022): Numerical results for an unconditionally stable space-time finite element method for the wave equation. arXiv.org. Bericht 2021/3 aus dem Institut für Angewandte Mathematik, TU Graz. Domain Decomposition Methods in Science and Engineering XXVI. Vol. 145. Lect. Notes Comput. Sci. Eng. Springer, Cham, 625-632, DOI: 10.1007/978-3-030-95025-5_68.
-
O. Steinbach, C. Urzúa-Torres, M. Zank (2022): Towards coercive boundary element methods for the wave equation. arXiv.org. Bericht 2021/10 aus dem Institut für Angewandte Mathematik, TU Graz. J. Integral Equations Appl. 34.4, 501–515, DOI: 10.1216/jie.2022.34.501.
-
U. Langer, M. Zank (2021): Efficient Direct Space-Time Finite Element Solvers for Parabolic Initial-Boundary Value Problems in Anisotropic Sobolev Spaces. SIAM J. Sci. Comput., 43(4), A2714–A2736, DOI: 10.1137/20M1358128.
-
O. Steinbach, M. Zank (2021): A generalized inf-sup stable variational formulation for the wave equation. J. Math. Anal. Appl. 505.1 (2022), Paper No. 125457, 24, DOI: 10.1016/j.jmaa.2021.125457.
-
M. Zank (2021): Higher-Order Space-Time Continuous Galerkin Methods for the Wave Equation. arXiv.org. Proceeding in the 14th WCCM-ECCOMAS Congress 2020, DOI: 10.23967/wccm-eccomas.2020.167.
-
M. Zank (2021): An Exact Realization of a Modified Hilbert Transformation for Space-Time Methods for Parabolic Evolution Equations. Comput. Methods Appl. Math. 21.2, 479–496, DOI: 10.1515/cmam-2020-0026.
-
O. Steinbach, M. Zank (2021): A note on the efficient evaluation of a modified Hilbert transformation. Bericht 2019/8 aus dem Institut für Angewandte Mathematik, TU Graz. J. Numer. Math. 29.1, 47–61, DOI: 10.1515/jnma-2019-0099.
-
M. Zank (2021): The Newmark Method and a Space–Time FEM for the Second–Order Wave Equation. Numerical mathematics and advanced applications. ENUMATH 2019. Vol. 139. Lect. Notes Comput. Sci. Eng. Springer, Cham, 1225–1233, DOI: 10.1007/978-3-030-55874-1_122.
-
O. Steinbach, M. Zank (2020): Coercive space-time finite element methods for initial boundary value problems. Electron. Trans. Numer. Anal. 52, 154–194, DOI: 10.1553/etna_vol52s154.
-
O. Steinbach, M. Zank (2019): A Stabilized Space–Time Finite Element Method for the Wave Equation. In: Apel T., Langer U., Meyer A., Steinbach O. (eds) Advanced Finite Element Methods with Applications. FEM 2017. Lecture Notes in Computational Science and Engineering, vol 128. Springer, Cham.
-
M. Zank, O. Steinbach (2016): Adaptive space-time boundary element methods for the wave equation. Proc. Appl. Math. Mech., 16: 777-778, DOI: 10.1002/pamm.201610377.
|
- M. Zank,
Inf-Sup Stable Space-Time Methods for Time-Dependent Partial Differential Equations, Dissertation, TU Graz, Jänner 2019, Buch, Errata des Buchs. (Betreuer und Gutachter: Prof. Olaf Steinbach, TU Graz; Externer Gutachter: Prof. Christoph Schwab, ETH Zürich)
- M. Zank,
Analysis und Numerik eines verallgemeinerten Steklov-Eigenwertproblems, Masterarbeit, TU Graz, 2014, Inhaltsverzeichnis.
- M. Zank,
Numerische Betrachtung des Schrödinger-Steklov-Eigenwertproblems, Bakkalaureatsarbeit (Projekt), TU Graz, 2013, Inhaltsverzeichnis.
- M. Zank,
Analytische Betrachtung des Schrödinger-Steklov-Eigenwertproblems, Bakkalaureatsarbeit (Seminar), TU Graz, 2013, Inhaltsverzeichnis.
|