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1 Introduction

The discontinuous Galerkin (dG) methods are a class of finite element methods, which
use piecewise polynomial but discontinuous approximations. In general, dG methods are
nonconforming, i.e., the discrete spaces are not subspaces of the continuous ones. The
dG methods are very flexible:

e high-order schemes,

e hp-variants of adaptive techniques,

e non-matching and non-uniform grids,

e local conservativity (e.g., local conservation of mass),

e use of numerical flux densities to approximate the flux densities of the continuous
problem,

e stability for convection-dominated problems (e.g., —eu” + v = f with small ¢ > 0),
e parts can easily be parallelised, as the degrees of freedom have a very local character.
Compared with conforming finite element methods, in dG methods,

e the numerical analysis, i.e., the stability and error analysis, is more involved,

the errors are often measured in discrete norms only,

parameters have to be chosen, e.g., penalty parameters must be sufficiently large,

e the number of degrees of freedom could be much higher.

In particular, dG methods are widely used for hyperbolic problems or convection-dominated
problems since dG methods have the potential for constructing efficient, accurate and
robust methods in these fields. For more details, see, e.g., [1, 2, 3, 5, 6, 7, 8, 10| and
references therein.

1.1 First Example in 1D

In this subsection, a first example for a dG method in 1D is given. This example is based
on [1, Subsection 7.4.2|, |2, Subsection 4.2.1], [3, Subsection 2.4] and shows the basic
ideas, where notations are kept as simple as possible. For this purpose, consider Poisson’s
equation

—u"(z) = f(z) for x € (a,b), wu(a)=u(b) =0, (1)

where a,b € R, a < b and f € L*(a,b) is a given function.



1.1.1 Continuous Setting

First, we recall the Sobolev spaces

H'(a,b) :={w € L*(a,b) : w' € L*(a,b)},
Hy(a,b) :={w € H'(a,b) : w(a) =w(b) =0} C H'(a,b)

with the Hilbertian norms
9 9 1/2
ol oy = (10lFen + 10 e0n)

HwHHg(a,b) = ’w’Hl(a,b) = Hw/HL2(a,b)7

where
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(W, 2) 12(ap) ::/ w(z)z(x)dz  for w,z € L*(a,b),

1/2 b ) 1/2 ,
il = (10 0)e) = ([ ot@fas)  forwe e

In H}(a,b), the Poincaré inequality

b—a
Vu € Ha,b): ] <

10l L2 a0 (2)

holds true, i.e., the norms ||| 1, ;) and ||, are equivalent in H}(a,b). For k € N, the
Sobolev space H*(a,b) is defined recursively, i.e.,

H*(a,b) := {v € H'(a,b) : v' € H* *(a,b)}

with the Hilbertian norm

i 1/2
A2
HUHHk(a,b) = (Z HU( )||L2(a,b)) ’
=0

where v denotes the weak i-th derivative of v and v(® := v. Note that functions in
H'(a,b) are continuous, i.e., H'(a,b) C C[a, b], and more general, H*(a,b) C C*[a, b] for
k € N with C°[a,b] := Cla, b].

Next, the variational formulation of Poisson’s equation (1) is motivated. Assume that
the solution u of Poisson’s equation (1) is smooth. Then, multiply (1) by a sufficiently
smooth test function v with v(a) = v(b) = 0, integrate via (a,b) and use integration by
parts to get

b b b
/ f(x)v(z)de = —/ u'(z)v(z)dr = / o' (z)v(x)de — o' (b) v(b) +u'(a) v(a) .



Thus, for a given function f € L?(a,b), the variational formulation of Poisson’s equation (1)
is to find a function u € H{(a,b) such that

Vv € H[}(aa b) . a(u,’u) = <f7 U>L2(a,b)7 (3)

where the bilinear form a(-, ) is defined by
b
a(-,-): Hy(a,b) x Hy(a,b) = R, a(w,z):= / w'(x)2 (z)dz.

The bilinear form a(-,-) is continuous by the Cauchy—Schwarz inequality, i.e.,
Yw,z € Hy(a,0):  la(w, 2)| < ’w|H1(a,b) \Z’Hl(a,bw
and coercive (or elliptic), i.e.,

Vo € Hi(a,b): la(w,w)| > |wp -

Note that the bilinear form a(w, z) = fab w'(z)2' (x)dx is also well-defined and continuous
for functions w, z € H'(a, b), but is not coercive for functions w € H'(a,b).

The Lax-Milgram lemma [5, Lemma 25.2] yields the unique solvability of the variational
formulation (3), i.e., a unique element u € Hg(a,b) exists such that (3) is satisfied and the
stability estimate

‘<f’ Z>L2(a,b))
|u‘H1(a,b) < Hf||[H&(a75)}/ = sup L
0#£2€H{ (a,b) ‘Z‘Hl(a,b)

< Hf||L2(a,b)HZHL2(a,b)

b—a
< 11| 220y
0#£2€HE (a,b) 2] g1 (a,b) T

holds true, where the Cauchy-Schwarz inequality and the Poincaré inequality (2) are used.

1.1.2 Conforming Discretisation

For a discretisation parameter N € N, N > 3, we consider decompositions

N
[CL, b] = U Kg,
/=1

where the elements K, := [xy_1,2¢] C R with mesh sizes hy = xy — x,_; are defined via the
decomposition
Aa=Tg< T <Xy < - <Ty_1<IN=0Db

of the interval (a,b). The number of elements is N and the number of vertices is N + 1.
The maximal and the minimal mesh sizes are denoted by h := hy. := maxyh, and
Pmin := ming hy, respectively. Furthermore, we introduce the mesh

TN = {Kl,KQ,...,KN}.
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Next, for a fixed polynomial degree p € N,
SE(Tw) = {vn € Cla,b] : VL € {1,...,N}: vp, € PY(K,)}

denotes the space of piecewise polynomial, continuous functions on intervals, where P{(A)
is the space of polynomials on a subset A C R of global degree at most p. The subspace

Si(Tw) N Hy(a,b) € Hy(a,b)

of H}(a,b) is conforming. Thus, we consider the conforming discretisation of the varia-
tional formulation (3) to find u§ € SY(Tx) N Hy(a,b) such that

Yoy, € Sﬁ(TN) n H&(CL, b) : a(“’%v Uh) = <f7 Uh>L2(a7b)'

The discrete variational formulation is uniquely solvable with the stability estimate

b—a

™

|U2|H1(a,b) < ||f||L2(a,b)>

due to the Lax—Milgram lemma |5, Lemma 25.2] and the quasi-optimal error estimate

c .
]u —Uu < inf \u — v |

h|H1 = RIHY(ab

(@.b) vp €SV (Tw)NHE (a,b) (a.b)

holds true, which follows from Céa’s lemma [5, Lemma 26.13]. Standard error estimates
yield
[ =ty 1) < OB

and by a duality argument (Aubin—Nitsche trick),
Ju— U%HL?(a,b) < Ch
with a constant C' > 0, provided that u € HP™(a,b). The number of degrees of freedom is
dim S} (Ty) N Hy(a,b) = N —1+ N(p—1) = pN — 1.

1.1.3 Nonconforming Discretisation: dG Method

In this subsection, a heuristic derivation of a dG method for Poisson’s equation (1) is given.
Using the notations of Subsection 1.1.1 and Subsection 1.1.2, for k¥ € N, we introduce the
broken Sobolev space

H*(Ty) ={v € L*a,b): V0 e {1,... N} : vy, € H (K}

1/2
2
H’“(f(e)> '

with norm

N
ol = (Z [
/=1
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Here, Uk, is the restriction of v to the interior IOQ of the set K,. Further, we denote the
traces of Uk, by

U|Ke($f*1> = x{g? 1U|K ( )7 U\K/z<xf) = xh/‘nl}é Yk, ( )

which exist due to H*(K,;) € C(K,). Note that
H'(a,b) ¢ H'(Ty).
Next, we motivate a dG method. For this purpose, assume that the solution u of

Poisson’s equation (1) is smooth, e.g., u € H*(a,b). Then, multiply Poisson’s equation (1)
by a function v € H'(Ty) and integrate via one element K, which gives

/;i Flz)v(z)de = — /:1 u"(z)v(z)dz

= [ et (ke = oo o) + g oo o)

Tpq
where integration by parts is used. Summing via the elements yields
b N

f(x)v(x)dx$2/w '(x) lee dx—l—z U\Ke T ACT) +U‘KZ(1‘@ 1)k, (@ 1))
f;l x;
-y / ()0, ()2 + e, (T0)vyss (30) — ey (@3 )iz ()
= N—-1
+ (U‘Kg+1 .ZU[ /U‘KZ-Q—I (xe> U‘,KZ(.T[)'UU{Z(IK)> °
=1

Due to the assumption u € H?(a,b), we have

Vee{l,...,N =1} wg,, (T = ug,(xe) = {u'}4,,
where the average of a function w € H'(Ty) on x4, £ € {0,..., N}, is defined as

wik, (%), (=0,
{w},, = %w‘KHI(w) + %w‘[(E(Qfg), te{l,...,N—1},
U}|KN(ZL‘N), KZN

Thus, it follows that

b N Ty
/ ; Z/ U\K,( z)dz + UTKl(ﬂUO)WKl(ZUo) - UTKN (ﬂfN)U\KN (xN)

Te—1

+ Z{u/}w (UlKeH (:Cg) — VK, (xf))

Z/wé (), (z)dz— Z{Ul}w [v]a.,
=1 7%=

=0



where for ¢ € {0,..., N},

_'U}|Kl (ZL'())1 ( — ()
I]:’LU:H.’I‘( = U]‘]Q («T/) - U,"A"Ml(l’[)? g e {1 ey N — 1} (4)
Wk (TN), (=N,

denotes the jump of the function w € H'(Ty) across x,. To obtain a symmetric bilinear
form, we use the property

Vw € Hy(a,b) : V€ {0,...,N}: [w],, =0

for w = u to add the vanishing term

= e lul,

to conclude that

Z / 2ol (x >dx§{w}w Z{v}w o= [ 6

for all v € H*(Ty). Note that we require v € H?(Ty) since traces of v’ are not defined for
all v € HY(Ty).

Next, we motivate to add additional terms on the left side of (5). Replacing on the left
side of (5) the function u by v, we get

e QZ{U bedl]

for all v € H*(Ty), where the sign of the second term is not clear, i.e., coercivity of
the related bilinear cannot be expected. Hence, this and to mimic the continuity of the
approximate solution, the penalty term

> walule [v]a

with penalty parameters w,, > 0, { = 0,..., N, is added to the left side of (5). Thus,
the solution u of the weak formulation (3), when satisfying u € H{(a,b) N H*(a,b), fulfils

S / "l e Y (' ol S0 Y il + Dl Bl
~ [ @i ©)



for all v € H*(Ty). The dG method is the discretisation of (6) by discontinuous, piecewise
polynomial functions

S Tw) = {on € L3(a,0) : VL € {1, N}: v, € PH(KY) }

for a polynomial degree p € Ny. Thus, the symmetric interior penalty discontinuous
Galerkin method (STP) is to find u, € S7'(7y) such that

Z/ uh|K£ Uhuq z)dz— Z{uh}xz Vh]a Z{Uh}w up] x +szz up] xy [vn]s

~
cons1stency term symmetry term penalty term

/f x)vp(x)de  (7)

for all vy, € Sﬁ’dG(TN) with penalty parameters w,, > 0, { = 0,..., N, which have to
be chosen sufficiently large. Note that the solution wu of the SIP method (7) fulfils
the homogeneous Dirichlet conditions only in a weak sense. The number of degrees of
freedom is
dim SP(Ty) = N(p + 1) = pN + N.
In the next sections, the STP method (7) is generalised to problems in higher dimension
and is analysed with the help of an abstract nonconforming error analysis.

2 Abstract Nonconforming Error Analysis

In this section, we present key ingredients for the stability and error analysis of noncon-
forming discretisation methods, which are investigated in [2, Section 1.3] or [5, Chapter 27|.
These ingredients are coercivity, consistency and boundedness. For simplicity, con-
sider the real Hilbert spaces V' C L*(Q), W C L?(2) with the Hilbertian norms |||y, |||l
where Q C RY, d € N, is a fixed domain and (-, ) 12(q 18 the usual inner product in L*(Q).

Further, the bilinear form
a(,-): VxW =R

is assumed to be continuous, i.e., a constant C, > 0 exists such that
YoeV:iVweW: |a(v,w) < Cllvly|lwlly-

For a given right-hand side f € L?(Q), we assume that the variational formulation to find
u € V such that
Vwe W a(u,w) = (f,w) 2 (8)

is uniquely solvable with the stability estimate

lully < Coxact | fll 120

where Cixact is a positive constant. In other words, the exact problem (8) is well-posed.
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Remark 2.1. Here are some comments on the setting of the exact problem (8):

1. Note that the ansatz space V and the test space W could be different.

2. We do not assume that the bilinear form a(-,-) in (8) fulfils the inf-sup theorem
(Banach—Necas theorem, see [5, Theorem 25.9]), or the Laz—Milgram lemma [5,
Lemma 25.2] in the case V =W.

3. We restrict the right-hand side to L*(Q). In many applications, more general right-
hand sides can be treated, e.q., f € W', where W' is the dual space of W.

Next, we introduce a finite-dimensional space V;, C L*(Q) with (discrete) Hilbertian
norm |[-[|;. , and a discrete bilinear form

ap(+,+): Vi x V, = R.
The discrete problem is to find u, € V) such that
Vwp € Vit ap(up, wi) = Cr(wy), 9)
where the given right-hand side ¢;: V;, — R is linear.

Remark 2.2. Note that the ansatz and test spaces in the discrete problem (9) are equal,
i.€., coercivity is possible.

The unique solvability and the stability of the discrete problem (9) is stated in the next
theorem.

Theorem 2.3 (Discrete Lax—Milgram lemma). Assume that the bilinear form ay(-,-) of
the discrete problem (9) is coercive, i.e., there exists a constant Ceoe > 0 such that

Vo, € Vi, o ap(vp,vp) > CCOeHUhH%/h' (10)

Then, for any linear right-hand side £, Vi, — R, a unique solution u, € Vj, of the discrete
problem (9) exists and the stability estimate

1
Junlly, < Nl
holds true with HEhHVh’, = SUPgty, cv, \Hfiilﬁl;})ll

Proof. The proof is based on |3, Corollary 1.7].

The bilinear form ay(-,-) and the linear form ¢, are continuous, as V}, is finite di-
mensional. Note that all norms on finite dimensional spaces are equivalent. Thus, all
assumptions of the Lax-Milgram lemma |5, Lemma 25.2| are satisfied, which states the
unique solvability of the discrete problem (9).

Next, we prove the stability estimate. For u, = 0, the assertion is trivial. For wu, # 0,
the stability follows from

1 tw)
C’coe ||uh||vh

[0n ()|
U < — sup ———||u
|| hHVh Ocoe 0wy eV, ||whHVh H h||Vh7

lunll, < an(up, up) =

1
Ocoe

i.e., the assertion is proven. O]



Next, we address abstract error estimates of the type of Céa’s lemma [5, Lemma 26.13|.
In dG methods, we have V;, ¢ V in general. Thus, Céa’s lemma [5, Lemma 26.13] is not
applicable, i.e., we need a more involved error analysis. We introduce a subspace

Vamo C V.

We assume that the discrete bilinear form ay(-, ) can be extended to Vi, X Vj,, and the
norm ||-|ly, can be extended to Vi, where the extensions are denoted again by ay (-, -)
and |-y, , respectively. With this notation, the consistency is formulated.

Definition 2.4 (Consistency). The discrete problem (9) is consistent, if the exact solution
u of the variational formulation (8) satisfies u € Vyno such that

th € Vh : ah(u,wh) = ﬁh(wh).
In other words, the exact solution u satisfies the discrete problem (9).

Remark 2.5. For conforming methods with V), CV = W, consistency follows from the
Galerkin orthogonality

Vwp, € Vi alu — up,wy) = 0.

The last ingredient in the error analysis is the boundedness. For this purpose, we
introduce the subspace

‘/bnd = ‘/smo + Vh - {Us + Up @ Vs € ‘/smo» VUp € Vh} - LQ(Q)

with a norm [|-[|;. . We assume that u € Vino. Thus, the approximation error u —
belongs to the space Vinq, i-e., u — up € Ving.

Definition 2.6 (Boundedness). Assume that ay(-,-) can be extended to Vina X Vi, and |||,
can be extended to Ving. The discrete bilinear form ap(-,-) is bounded in Vinq X Vj, if

e the norm |-y, . satisfies

Vv € Vina @ [[vlly, < llvlly,

e a constant Cyhq > 0 exists such that

Yu € Vbnd : th S Vh : \ah(v,wh)] < CbndH’UHVbndehHVh.

With these ingredients, the abstract error estimate is stated in the next theorem, see
[2, Theorem 1.35].

Theorem 2.7 (Abstract nonconforming error estimate). Let uw € V' be the solution of the
ezact problem (8) for the right-hand side f € L*(Q), satisfying u € Vimo. Let uj, € Vj, be
the solution of the discrete problem (9) for the linear right-hand side Cy,: Vi, — R. Assume
that the norm ||-||y, can be extended to Vina, and the discrete bilinear form ap(-, )

10



e is coercive, i.e., (10),
e can be extended to Ving X Vi,
e is bounded, i.e., Definition 2.6,

and the discrete problem (9) is consistent, i.e., Definition 2.4.
Then, the error estimate

Chnd \ .
o=l < (14 52) inf ool

coe vp €Y
holds true.
Proof. Let v, € V}, be an arbitrary element. The triangle inequality yields

C'bnd

= wnlly, < llw=wnlly, +llon = unlly, < llw = villy,,, + = llw = vnlly,,

where the estimate

2 nd
H || h Ocoe N- ( ! ‘) OCOG

=ap (u—vh,up—vp)

lw—wnlly,, lun = vnlly,

i,e,7 HUh — Uh‘“Vh < Chna

< &2 lu —vplly, ,, is used.

Remark 2.8. Note that the norms of the error estimate of Theorem 2.7 are different.

3 Finite Element Spaces

]

In this section, we introduce the geometric setting, e.g., a mesh, its faces, and the discrete
spaces, which are used for the dG method. For this purpose, let the bounded Lipschitz
domain ©Q C R? be an interval Q = (0, L) for d = 1, or polygonal for d = 2, or polyhedral

for d = 3.

3.1 Mesh and its Properties

In this subsection, the notation for the mesh is introduced. The domain 2 is decomposed

as
N
O=JK
=1
with IV closed, mutually disjoint sets K, C R? with nonempty interior, i.e.,

T, = {Kﬁ}évzl

11



is an admissible decomposition or mesh of ) for an index v € N. Here, the sets K, are
called elements and are intervals for d = 1, triangles for d = 2 and tetrahedra for d = 3.
Recall that a decomposition is called admissible if two neighbouring elements join either
a vertex (d = 1,2,3), an edge (d = 2,3), or a triangle (d = 3). The local mesh sizes are
given as the diameter of the element K, i.e.,

hy:=hg, = sup |[x—y| forl=1... N.
z,yeKy

In addition,

h:= hmax(Ty) := max hy and Pmin := Amin(7,) := min_ hy
¢=1,...N ¢=1,...N
are the global mesh size and minimal local mesh size, respectively. In the following, a
sequence

(71‘/)1/€]N = {77/ IS N}

of decompositions of €2 is considered. The sequence (7,),en of decompositions of 2 is called
shape-regular, if a constant cg > 0 exists such that

VveN: VK € 7,: sup |z —y| < cprk, (11)
zyeK

where rx is the radius of the largest ball that can be inscribed in the element K € 7,.
The sequence (7,),en of decompositions of €2 is called globally quasi-uniform, if a constant
cq > 1 exists such that

hmax (7:/)
hmin (7;)

Remark 3.1. In the literature, a shape-reqular sequence of decomposition is also called
reqular or quasit-uniform. In that case, a globally quasi-uniform sequence 1s called uniform.

Vv € N: < cq.

Assumption 3.2. In the whole work, the sequence (T,),en of decompositions of Q is
assumed to be admissible and shape-regqular.

3.2 Faces, Broken Sobolev Space, Averages, Jumps

In this subsection, we introduce further notation, which is used for the dG methods. The
set F, is called faces of T, and consists of (d — 1)-dimensional sides of elements in 7,
i.e., endpoints of intervals for d = 1, edges of triangles for d = 2, or faces of tetrahedra
for d = 3. In greater detail, for any face F' € F,, one of the two following conditions is
satisfied:

1. There exist two distinct elements K,, K, € T, with K, # K, such that FF = 0K,N0K,.
Then, F is called an interface. The set of all interfaces, i.e., all inner faces, is denoted
by FL.

12



2. There exists an element K, € 7, such that F' = 0K, N 0f). Then, F is called a
boundary face. The set of all boundary faces is denoted by FP.

Thus, we have
F,=F,UF,.

Additionally, for an element K € 7,, we define the set
Fr = {F eF,:FC OK} (12)

Definition 3.3 (Local length scale hp). Let F' € F, be a given face. For d € {2,3}, we
set
hp = sup |z —y|.
z,yeF

For d =1, we distinguish two cases:

1. For an interface F € ]:5, there exist two distinct elements K,, K, € T, with K, # K,
such that F = 0K, N OK,. Then, we set

hp = min{her hK,,,}.

2. For a boundary face F' € f}?, there exists an element K, € T, such that ' = 0K,N0f).
Then, we set
hF = hKé.

Next, we introduce the normal vectors.

Definition 3.4 (Normals of elements). The outer unit normal of an element K, € T, is
denoted by ny, .

For every face F' € F,, we choose a unit normal n, called face normal, such that the
chosen normal n, of a boundary face has the same orientation as the outer normal of 0.

Assumption 3.5. The choice of the face normals is fized.

For example, the chosen face normal points from the element with the higher element
number into the one with the lower element number, see [4, Chapter 10| for more details
and other choices.

Next, we introduce the average and the jump of functions, which belong to the broken
Sobolev space. For this purpose, we use the usual Lebesgue space L?(Q2) and the (classical)
Sobolev spaces H*(Q) for k € N with the inner products (-, V2 () mr(o) and the

induced norms ||| 20y = /() 2y [y = /(s ) meq)» Tespectively. Moreover, the

subspace
Hy(Q) ={ve H' (Q): yv =0}

13



is endowed with the Hilbertian norm

[0l () = [0l ) = [Vl 20
Here, for a bounded Lipschitz domain D C R¢, the linear continuous mapping
Yo: HY(D) — L*(0D)

is the usual trace operator, see [9, Theorem 3.37|. For simpler notation, we write vj4 :=
(70v)ja for any set A C 9D. To be complete, we recall the formula for integration by
parts, i.e., for any bounded Lipschitz domain D C R?, the equation

Vv € H*(D) :Yw € H'(D) : / Vu-Vwdr = —/ A’dea;'—l—/ (Vv)jop -nwjppds, (13)
D D oD

holds true, where n is the outer unit normal of the domain D, see |9, Lemma 4.1| for a
proof.

Definition 3.6 (Broken Sobolev space). For k € N,
HN(T,) :={v e LQ): VL e {l,....N}: vy, € H*(K,)}

15 the broken Sobolev space with the norm

N ) 1/2
1Vl ey = (Z Vi, Hm)) |
(=1

The broken gradient V,: H'(T,) — [L?(Q)]? is defined by

th<x) = {v<v|f<e)($)’ S Kéa

0, otherwise

for any v € H'(T,).
With this notation, we introduce the average and the jump of functions in H'(7,).

Definition 3.7 (Average and jump). For M; € N, we consider a (possibly vector-valued)
Junction w = (wy,...,wy,)" € [H(T,)|M . The average and the jumyp are defined compo-
nentwise. We distinguish between interfaces and boundary faces.

1. Interfaces: Consider a face F € F. and elements K,, K, € T, with K, # K, such

14
that F = 0K, N 0K, and the face normal ny points from K, to K,, i.e.,
g, r = np = — g, |F-

Then, the average of the function w on the interface F is defined as function
{w}p : F— RMs by
1
{w}r = (W\K,>\F+ 2(%&)\%

and the jump of the function w across the interface F is given as function [w]p : F —
RMr by

[w]p == (U’|1"Q)\F - (w\kr)\F-

14



2. Boundary faces: Consider a face F' € FP and an element K, € 7T, such that F =

v

0K, N 0. Then, the average of the function w on the boundary face F is defined
as function {w}p: F — RMr by

{w}F = (w|f{e>|F7

and the gump of the function w across the boundary face F' is given as function
(w]p: F— RMs by
ol = (i)

Note that for any face F' € F,, the average and the jump satisfy {w}r € [L*(F)]Ms
and [w]p € [L*(F)Ms, where My € N and w € [H'(7,)]7.

Remark 3.8. We give some comments on the jumps.

e For d =1 and a function w € H*(T,), the jumps of Definition 3.7 and the jumps
given in (4) fulfil
Ve {0,....N}:  |wlyn,, = [w]s, (14)

Te—xp

with faces F, = {xo,...,xn} and chosen face normals

-1, =0,
n, = ,
o 1, otherwise.

e In the literature, for d € {1,2,3} and a function w € H'(T,), the vector-valued
quantity [w|pnp with F € F, is also commonly used as an alternative definition of
the jumps.

The next lemma states properties of H'(Q) in connection with jumps and the broken
gradient V.

Lemma 3.9 (Properties of H'(2)). The following statements are valid:

1. Forw € HY(T,), the equivalence
we H(Q) <= VFcF :[wr=0 almost everywhere on F

holds true.

2. For w € HY(Q), we have that

Viw=Vw in L*(Q).

Proof. The proof of the first statement is given in [4, Theorem 18.8], whereas the second
statement is proven in [4, Lemma 18.9]. O
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3.3 Polynomial Spaces

In this subsection, the discrete spaces of the dG methods are stated. For this purpose, we
fix a polynomial degree p € Ny. For a subset () # A C R?, the space P(A) is the space of
all polynomials on A of global degree at most p. The dimension of the vector space P4(A)

is
: _(p+d\ (p+d)
dimPf(A) = < ’ ) =T

see, e.g., [4, Section 7.3].

Definition 3.10. The broken polynomaal space is given by
SPAG(T) = {Uh € L(Q) VL€ {L,...,N}: vy, € Pg(fg)} .

Note that S7'“(7,) € H*(T,) for any k € N. The dimension of the space SP'%(7,) is

(p+d)!

] 7dG —
Next, we state the discrete trace inequality.

Lemma 3.11 (Discrete trace inequality). Let the mesh sequence (T,),en be shape-reqular
with constant cgp > 0, see (11), and let p € Ny be the polynomial degree. Then, a constant
Ciye > 0, only depending on cp, p, d, exrists such that

Vv e N:VK €7, :VF € Fi :Vq € PH(K) : h}(/2H(1HL2(F) < Cullall g2y
and

W ENVE €T Vg € BUE) W allagor < Cor - (d+ 1) all e
hold true.

Proof. For the first inequality, see the proof of Lemma 1.46 in [2] or Subsection 12.2 in [4].
The second inequality follows by

2 2 2 2
hK||(]HL2(aK) = Z hK||(J||L2(F) < Z CtZrH(JHL?(K) =Cq - (d+ 1)||q||L2(K)a

FeFk FeFk
where the frist inequality is used. ]

Remark 3.12 (p-dependency of Ci,). The constant C, scales like \/p(p + d) for p — oo,
see Remark 1.48 in [2] and references there.

As last ingredient, we need the discrete Poincaré inequality.
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Lemma 3.13 (Discrete Poincaré inequality). Let the mesh sequence (T,),en be shape-
reqular with constant cp > 0, see (11), and let p € Ny be the polynomial degree. Then, a
constant Caqp > 0, only depending on cg, p, 2, exists such that

1/2
. 1
,dG . . ; 2 : 2
Vv € N:Vuy, € Sp77(T)) HwhHLZ(Q) < Cap (‘Vhwh’LZ(Q) + Z hFHwh]F‘LQ(F)>
FE-F]/

holds lrue.

Proof. See the proof of Corollary 5.4 in [2] or Lemma 2.45 in [3| and references there. [

4 Poisson’s Equation

This section is based on |2, Subsection 4.2] and [5, Chapter 38|, where the notation and
the assumptions of Section 2 and Section 3 are used.

4.1 Model Problem

Let Q C R? be a bounded Lipschitz domain, which is an interval for d = 1, or polygonal
for d = 2, or polyhedral for d = 3. Further, let f € L*(Q2) be given. Poisson’s equation is
to find a function u such that

—Au = f in Q, upq = 0.

We set,
V= Hy(Q)

with the Hilbertian norm
[olly = vlgq) = [IVVllf2), veEV
The variational formulation to find u € V' such that
YweV: /QVU(CL’) -Vw(x)de = /Qf(x)w(x)dx (15)
is uniquely solvable with the stability estimate

||u||V < C’exactHfHL?(Q)’

where Cixacy > 0 i a constant, see |5, Chapter 31| for more details.
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4.2 Symmetric Interior Penalty Discontinuous Galerkin Method
(SIP)

Consider a shape-regular mesh sequence (7,),en of admissible meshes as considered in
Section 3 and a fixed polynomial degree p € Ny. With the notation of Section 3, we set

Vi = SPT,),

see Definition 3.10, with Hilbertian norm

lenlly, = \/IVhnlagay + lonl3, vn € Vi (16)
where
|onl;y = Z _H U FHL2 vy € Vi,
FE]—'I,

is the so-called jump seminorm. Here, the local length scale hp is defined in Defini-
tion 3.3. Note that |||y, in (16) is actually a norm. To prove this, assume that |vp ||, =0
for a function v, € Vj,. Then, vy, is piecewise constant in € and [v,|p = 0 for all F € F,,
due the definition of ||-||,,. Hence, zero jumps across interfaces yield that v, is constant
in €2 and zero on the boundary 0f2, since the jumps across boundary faces are also zero.
Thus, vy, = 0 and |[|-[|y, is a norm.

Next, we define the discrete bilinear form

ah(-, ) Vh X Vh — ]R,
by

h(vh,wh /thh Vhwhdx— Z /{thh}p nF[wh]Fdsx

FeF,

J/

TV
consistency term

— Z / Up, F{Vhwh}p an8x+ Z wp/ Uh wh Fde (17)

FeF, FeF,

~-
symmetry term penalty term

for v, wy, € V3, where wp > 0 are the penalty parameters, which have to be chosen.
Here, the jumps and averages for vector-valued functions are defined componentwise, see
Definition 3.7.

Additionally, we set the discrete linear form ¢,: V), — IR,

Cn(wy) = / f(@)wp(x)dz, w, € V. (18)
0
The SIP method is to find u; € V}, such that
Yw, € Vj, : ah(uh,wh) = €h(wh). (19)
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Note that the solution wy of the SIP method (19) fulfils the homogeneous Dirichlet condi-
tions only in a weak sense. Additionally, for d = 1, the SIP method (19) coincides with
the SIP method (7) when using the relation (14). In the following, we analyse the SIP
method (19) with the help of the abstract results in Section 2. For this purpose, properties
of the discrete bilinear form ay(-, ) in (17) and the discrete linear form ¢, in (18) are shown.

4.3 Coercivity and Well-Posedness

In this subsection, the coercivity of the discrete bilinear form ay(-,-) in (17) and thus, the
well-posedness of the SIP method (19) are shown. The following lemma is used to prove
coercivity and later, boundedness of the discrete bilinear form ay(-,-) in (17).

Lemma 4.1 (Bound on the consistency term). For all v, € V},+ H*(Q), wy, € Vi, + H%(Q),

the estimate
1/2
w
12 (F)> |whly

Z /{thh}p nplwy|pds,| <
Vi + H*(Q) = {vp, +vs € L*(Q) : v, €V}, vs € HA(Q)}.

< (3 5 wofvion-ne]

KeT, FeEFk

FeF,

holds true, where the set Fr is defined in (12) and

Proof. The proof is based on the proof of [5, Lemma 38.5].

Note that for v € H?((2), we have Vv € [H'(Q)]* and thus, traces (Vo) p for F' € F, are
well-defined as functions in L?(F). Hence, this and the properties of H'(Q) (Lemma 3.9)
ensure that all integrals in the asserted estimate exist.

First, for an interface F' € F! with elements Kry, Kr, € T, such that F = 0Kp, N
OKp,, we have

1 2
H{vhvh}F . EFHiQ(F) = Z—l/F <V(Uh|f<F72) . DF—Fv(UhIf(F,r) . ﬂF) dS:J:

-~

=a =b
1
< —/(a2 + b2)dsz
2 Jp

%HV(U}LI%”) ‘np

2 2

1
+ §HV(%|1%F,T) BF’

L2(F) L2(F)’

where we used the inequality
VYa, b€ R: (a+0b)* < 2a®+ 2%

Second, for a boundary face ' € F2 with element Kp € 7, such that F' = 0Kp NS,
the equality

{Vrontr - npllpory = HV(Uh\ffF) QF) L2(F)

19



holds true.
With these relations and the Cauchy-Schwarz inequality, we conclude that

Z /F{thh}p nplwp] pds,

FG-FI/

1/2, —1/2
< HVhonte - npll o 2k wnl ol oy
FeF,

1/2 1/2
1
< (Z H{thh}F'ﬂFHi%F)hF) (Z H[wh]FHiz(ME)

FeF, FeF,

TV
:lwh“]

2

hg 2
<| 2 2 (HV(UW(F,) oy * HV(U’I“%F»T) o LQ(F))
FeFl
1/2
2
3 he|| Vo) me | Ty
FeFB
5 1/2
(X 5 v nil,) ol
KeT, FEFK ( )

where in the last inequality, the sums are rewritten in the following way: Running via the
interfaces and summing up the two contributions of the related elements identically equals
to running via all elements and summing up the contribution on their interior faces. A
similar argument holds true for the boundary faces. ]

The next lemma is also needed to prove coercivity of the discrete bilinear form ay (-, -)
in (17).

Lemma 4.2. For all v, € V},, we have that

>3 he|| V) e, < CE @ DIVl

KeT, FeFk

where the set Fr is defined in (12) and Cy, > 0 is the constant of the discrete trace
inequality (Lemma 3.11).

Proof. For v, € V,, the Cauchy—Schwarz inequality and the discrete trace inequality

20



(Lemma 3.11) yield that

S 3 e |Vl nF\ D / ()0 - ()) .

KeT, FEFRk <p, KeT, FeFgk

<Zth/z O, (0y1i0) )f;( () ds,

KeT, FeFk =1

v~

=1

ZhKZ\

; vh|K
KeT, i=1 L2(9K)
2
S Z ZC& (Uh‘K) L2(K)
KeT, i=1
2
=Ch-(d+ DIIVionllz2)
i.e., the assertion. ]

The next theorem is the main result of this subsection.

Theorem 4.3. Let the mesh sequence (T,),en be shape-reqular with constant cg > 0, see

(11), and let p € Nq be the polynomial degree. Further, let the penalty parameters be such
that
Wo
Vve N:VFeF,: wp=-—
hp
with a fized wy > C% - (d+ 1), where Cy, > 0 is the constant of the discrete trace inequality
(Lemma 3.11), which only depends on cg, p, d. Then,

1. the coercivity estimate
Vop € Vit ap(vn,vn) > CcoeHUhH%/h
holds true with the coercivity constant

wO_Cth(d+1)

C’coe =
1+ Wo

> 0,
2. the SIP method (19) is uniquely solvable with the stability estimate
CdP

unlly, < Z—Ifllr2q)
Ceoe

where Cqp > 0 is the constant of the discrete Poincaré inequality (Lemma 3.13), which
only depends on cg, p, §2.
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Proof. First, for proving the coercivity, let v, € V}, be fixed. We have that

an(vn, vp) = ||thh||2Lz(Q) - Z Q/F{VhUh}F -nplvp]pds, + Z Wr ||[Uh]F||i2(F)

FEJTV FE.FV :wO/hF
= | Vivnll 2@ — D 2/{thh}F - npon] pdss + wo |onl] (20)
rer, ¥

For the second term, Lemma 4.1 and Lemma 4.2 give

Z Q/F{thh}F ‘nplvp]pds, <2 (Z Z hFHV<Uh|i<) EF‘

FeF, KeT, FEFK
< 20y - Vd + 1||Vpopl| 2y |vnly -

, 1/2
L2(F) |vnl

Using the last estimate in (20) yields

an(vn, vn) = [ Vavnll 72y = 2Cu - VA + 1|V aval| 20 [only + wo [val]

wo — C - (d+1) 2 2
> 2 (19l + o)

TV
=Ccoe :H'UhH%/h

In the last step, we use the quadratic inequality

_ 32

Ve,y e R: a? —2Bxy +ny* > %(ZEQ +3?) (21)
for any n, 8 € R with 7 > —1, which can be proven as follows: Let x,y € R be fixed. The
inequality (21) is equivalent to

I+n by 1+ny

>0,

where the left side defines a binary quadratic form. To verify the last inequality, we show
that the binary quadratic form is positive semidefinite, which is the case iff n > —1 and

1+n 1+n

—46% > 0.

Rearranging the last inequality gives 2132 < n? + 8%, which is true due to the trivial
relation 2ab < a® + b? for any a,b € R. Thus, the quadratic inequality (21) and hence, the
coercivity are proven.

22



Second, the discrete Lax—Milgram lemma (Theorem 2.3) yields the unique solvability
of the SIP method (19) and the stability estimate

x)dx
lunlly, < o fle |
Ccoc O#whEVh Hwh“Vh
1 1 2 @llwnll 2 )
— Cloe 0£wprL €V}, HwhHVh
1 11| 12y Car llwnlly, CdP
< = 1/ 22y
coe 0AwpEV), ||wh||Vh coe

where the Cauchy—Schwarz inequality and the discrete Poincaré inequality (Lemma 3.13)
are used. [

4.4 Error Analysis

In this subsection, we prove the consistency of the SIP method (19) and state an error
estimate in the norm |-, , where the abstract error analysis of Section 2 is used.

First, we set

Vimo := VN H?*(Q) = Hy(Q) N H*(Q) C V.

For v € Vyme, we have Vv € [H1(2)]¢ and thus, traces (Vo) p for F € F, are well-defined
as functions in L?(F). Hence, this and the properties of H*(2) (Lemma 3.9) ensure that
the discrete bilinear form ay(-,-) in (17) can be extended to Vi, X Vj, and the norm HHVh
in (16) can be extended to Vim,. As in Section 2, we keep the same notations ay(-,-) and
||y, also for the extensions.

To prove consistency, we assume that the exact solution u of the variational formula-
tion (15) satisfies the regularity

U € Vimo-

This regularity assumption is satisfied under conditions on the domain €2, e.g., convexity,
see |5, Section 31.4] for more details.

Lemma 4.4 (Consistency). Assume that the exact solution u of the variational formula-
tion (15) satisfies the regularity u € Vimo. Then, the SIP method (19) is consistent, i.e.,

th € Vh : ah(u,wh) = Eh(wh).
Proof. For wy, € Vj, properties of H'(Q) (Lemma 3.9) yield

ap(u, wy) — Lp(wy) :/ Vi -Vywpdr — Z / {Vwu}r nplwy|pds,
o>~ N——

=Vu FER T —(Vup
— Z / {Vhwh}p anSx + Z CLJF/ wh Fdsx — ﬁh(wh)
FeF, FeF,
= Z / Vu - V(wy, z)d Z / (Vu)p - nplws]pds, — £, (wh).
KeT, FeF,
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Integration by parts (13), applied elementwise for K, gives

an(u, wn) — bu(wi) = 3 (_/KAuwhdx—l—/a

K(VU)\aK : ﬂK(wh\f{)\@dex)
KeT,

- Z (Vu)ip - nplwp] pdsy — Ch(wp)

rer, ’F
= | —Auw dx—/ wpdx
/Q\"’ " Qf "
=
+ 3 [ (Ve nplunlrds, = 3 [ (Ve nplunlrds,
Fer, ' F Fer, /¥

=0.

Here, we use the equality

Z /F(VU)W'ﬂF[wh]Fdsw: Z Z /F(Vlt)lF‘ﬂK(wmf()leSm

FeF, KeT, FeFk

- Z LK(VU)IaK e (W ) o dSa,

KeT,

which follows from the following arguments: Running via the interfaces and summing up
the two contributions of the related elements identically equals to running via all elements
and summing up the contribution on their interior faces. A similar argument holds true
for the boundary faces. Additionally, recall the properties of H*(2) (Lemma 3.9), Defini-
tion 3.7 and that for all F € F. with elements K,, K, € 7, such that F' = 0K, N 0K, we
have np = ng, r = —ng, |p-

Further, the relation —Au = f in L?(Q) is proven by plugging a test function ¢ €
Cs°(Q) C H(Q) into the variational formulation (15), which leads with integration by
parts (13) to

| 1@ptats = [ Vula)- Votaidr = - [ u@aplaas,

i.e.,, —Au = f in L*(Q) in the sense of distributions. O

Next, we prove the boundedness of the discrete bilinear form ay(-,-) in (17). For this
purpose, we set

Vi)nd = ‘/smo + Vh = {Us +upt vs € ‘/smm Up € Vh} - L2(Q)
with the norm

) 1/2
) ) v E ‘/bnd-
L2(0K)

0]

Vina (HUHQV;L + 2 hKHV(U|f<) 'EK‘
Ke

v
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Note that ||-||y; s actually a norm, due to [|-[[;, is a already a norm on Vi,q. Further,
the discrete bilinear form ay(-,-) in (17) can be extended to Vi,q X V}, and the norm HHVh
in (16) can be extended to Viua. As in Section 2, we keep the same notations ay(-,-) and
[[ly; also for the extensions.

Lemma 4.5 (Boundedness). Let the assumptions of Theorem 4.3 be satisfied. The discrete
bilinear form ay(-,-) in (17) is bounded in Ving X Vi, with constant

Cond =2+C,Vd+1+wyg >0
independent of h, i.e.,
1' vv € Vbnd : ||v||Vh S ||U||Vbnd7

2. Yv e Vbnd . th S Vh : |ah(v,wh)\ S C’bnde\

wh]

Vbnd Vi~

Proof. The first statement is trivial.
For the second inequality, let v € Vi,,q and wy, € V), be fixed. We have

ap(v,wy) = / Vv - Vywpde — Z /{th}p - nplwp| pds,
Q ja

-~ . FeF, )
=:1 :\:}2
w
- Z /[U]F{Vhwh}F ‘npds, + Z i/[v]p[wh]pdsm.
F hp Jp
FeF, f‘e]-‘u
;?3 ;;4

For I;, the Cauchy—Schwarz inequality and the definitions of the norms ||-||y. , |-y, . give

L] < VRl 2oy [ Viwnll 2 ) < [10llv,,llwnlly,

For I, Lemma 4.1 and the definitions of the norms |-, , [|[|y; | state

/
s (3 5 el o) b

KeT, FeFk <hg

< ( Z hKHV(UIf() EK‘ 2
KeT,

1/2
L2(8K)> [wnl,

< [vlly,, o llwnlly,
For I3, Lemma 4.1, Lemma 4.2 and the definitions of the norms |||y, [|-[[y; | vield
2 1/2
I < (3032 he|| V) np| L)l
KeT, FeFk ( )

< CuVd+ U Vawp| 2oy 0]
S Ctr \% d+ 1||U||Vbnd
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For I, the Cauchy-Schwarz inequality and the definitions of the norms [|-[|y. , |||l . give

L] <wo Y 1/2H vlpll L2y 1/2H[wh]FHL2 < wo [v]y [wnly < wollvlly,,, llwnlly,
rer, hp
To sum up, we conclude that
lap (v, wy)| < El +1+Cyvd+1+ WUZ [vlly,  [wally, ,
:a;nd
i.e., the assertion. O

With the last result, all ingredients are given to state an error estimate in ||| .

Theorem 4.6 (Error estimate in the norm |[|-[|y. ). Let the assumptions of Theorem 4.3
and Lemma 4.4 be satisfied, i.e., we assume the following assumptions:

o The mesh sequence (T,),en is shape-reqular with constant cgp > 0, see (11), and let
p € Ng be the polynomial degree.
e The penalty parameters wr are such that

YVveN:VEF e F,: wF:ﬂ
hr

with a fivzed wy > C% - (d + 1), where Cy, > 0 is the constant of the discrete trace
inequality (Lemma 3.11), which only depends on cg, p, d.

e The exact solution u of the variational formulation (15) satisfies the reqularity u €

Vimo = HY(Q) N H2(Q).

Then, the discrete solution uy, € Vj, fulfils the error estimate

Chnd
uU—u 1+ inf ||lu—w , 22
o=l < (14 G2) inf, o= ol )
where the constant Cynq comes from Lemma 4.5 and the constant Ceoe comes from Theo-
rem 4.3.

Proof. Theorem 4.3 (coercivity), Lemma 4.4 (consistency) and Lemma 4.5 (boundedness)
ensure that the assumptions of Theorem 2.7 (abstract nonconforming error estimate) are
satisfied. Thus, the assertion is proven. ]

Note that the constant 1 + Cb“d of the error estimate (22) is independent of h.
Next, we state a convergence result which is optimal for the broken gradient and jump
seminorm.
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Corollary 4.7. Let the assumptions of Theorem 4.6 be satisfied. Additional, the polynomial
degree p fulfils p > 1, and assume that the exact solution u belongs to HP™(Q)). Then, the
error estimate

[ = unlly, < CP*[lull gpir(q)

holds true with a constant C > 0 independent of h.
Proof. First, for an element K € 7, we define the elementwise L2(}D()—projection
Qic: LP(K) — Ph(K)
by
v € B s [ @u)e)unta)de = [ steyuna)da

for a given function z € L2(K). ) )
Next, in the inequality (22), we use the elementwise L?(K)-projection Q on PH(K) as
Vh,, i.e.,
Ui = Qi ()

for K € T,, see |2, Corollary 4.18] for more details. O
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