Universität Wien
Fakultät für Mathematik
Dr.techn. Marco Zank
Kontaktdaten
Anschrift Universität Wien
Fakultät für Mathematik
Oskar-Morgenstern-Platz 1
A-1090 Wien
Telefon (01) 42 77-50423
Telefax (01) 42 77-850423
Zimmer 09.128
E-Mail

Profile
Wissenschaftliche Interessen
  • Randelementmethoden
  • Finite-Elemente-Methoden
  • Wärmeleitungsgleichung
  • Wellengleichung
  • Steklov-Eigenwertproblem
Veröffentlichungen
Eingereichte Arbeiten
  • U. Langer, M. Zank (2020): Efficient Direct Space-Time Finite Element Solvers for Parabolic Initial-Boundary Value Problems in Anisotropic Sobolev Spaces. arXiv.org, RICAM Report. Eingereicht 2020.
  • M. Zank (2020): An exact realization of a modified Hilbert transformation for space--time methods for parabolic evolution equations. Eingereicht 2020.
Abschlussarbeiten
  • M. Zank,
    Inf-Sup Stable Space-Time Methods for Time-Dependent Partial Differential Equations, Dissertation, TU Graz, Jänner 2019, Buch. (Betreuer und Gutachter: Prof. Olaf Steinbach, TU Graz; Externer Gutachter: Prof. Christoph Schwab, ETH Zürich)
  • M. Zank,
    Analysis und Numerik eines verallgemeinerten Steklov-Eigenwertproblems, Masterarbeit, TU Graz, 2014, Inhaltsverzeichnis.
  • M. Zank,
    Numerische Betrachtung des Schrödinger-Steklov-Eigenwertproblems, Bak­ka­lau­re­ats­ar­beit (Projekt), TU Graz, 2013, Inhaltsverzeichnis.
  • M. Zank,
    Analytische Betrachtung des Schrödinger-Steklov-Eigenwertproblems, Bak­ka­lau­re­ats­ar­beit (Seminar), TU Graz, 2013, Inhaltsverzeichnis.
Konferenzen und Vorträge
  • The Modified Hilbert Transformation and the Discrete inf-sup Condition, Institutsklausur des Instituts für Angewandte Mathematik der TU Graz, Graz, 13.-14. Juli 2020.
  • Parabolic and Hyperbolic PDEs: Space-Time Variational Formulations and Their Discretisations, Forschungsseminar des Instituts für Numerische Mathematik der JKU Linz, Linz, 21. November 2019.
  • Space-Time Finite Element Methods for the Heat Equation in Anisotropic Sobolev Spaces, EnuMath 2019, Egmond aan Zee, 30. September-4. Oktober 2019.
  • Realisation of a Space-Time Continuous Galerkin Finite Element Method for the Heat Equation in Anisotropic Sobolev Spaces, RMMM 2019, Wien, 9.-13. September 2019.
  • Space-Time Continuous Galerkin Finite Element Methods for the Second-Order Wave Equation, 5th ECCOMAS Young Investigators Conference, Krakau, 1.-6. September 2019.
  • An Inf-Sup Stable Space-Time Variational Formulation for the Scalar Second-Order Wave Equation, WAVES 2019, Wien, 25.-30. August 2019.
  • Numerical Integration for the Modified Hilbert Transformation, Miniworkshop on Space-Time Methods, Graz, 21. August 2019.
  • 3rd NGSolve User Meeting, Wien, 1.-3. Juli 2019.
  • Space-time FEM with local mesh refinement for the second-order wave equation, Brunel MAFELAP 2019, London, 18.-21. Juni 2019.
  • A Stabilised Space-Time Finite Element Method with Piecewise Quadratic Functions for the Wave Equation, 17th European Finite Element Fair, Nikosia, 17.-18. Mai 2019.
  • Realisation of a Galerkin-Bubnov FEM for the Heat Equation, Austrian Numerical Analysis Day, Graz, 9.-10. Mai 2019.
  • Inf-Sup Stable Space-Time Variational Formulations for the Second Order Wave Equation, GAMM Jahrestagung, Wien, 18.-22. Feber 2019.
  • Space-Time Methods for the Wave Equation, Seminář aplikované matematiky, Ostrava, 17.-21. Dezember 2018.
  • Inf-Sup Stable Variational Formulations for the Wave Equation, 16. Söllerhaus: Workshop Fast Boundary Element Methods in Industrial Applications, Kleinwalsertal, 04.-07. Oktober 2018.
  • Error Estimates for a Stabilised Space-Time Finite Element Method for the Wave Equation, Chemnitz Finite Element Symposium 2018, Chemnitz, 24.-26. September 2018.
  • Workshop 3: Interplay of geometric processing, modelling, and adaptivity in Galerkin methods, Erwin Schrödinger Institut, Wien, 16.-20. Juli 2018.
  • Space-Time Variational Formulations for the Wave Equation, IABEM 2018, Paris, 26.-28. Juni 2018.
  • Generalisation of Variational Formulations in H¹(Q) for the Wave Equation, Institutsklausur des Instituts für Angewandte Mathematik der TU Graz, Sankt Lambrecht, 7.-10. Juni 2018.
  • A Stabilised Space-Time Finite Element Method for the Wave Equation, Austrian Numerical Analysis Day, Klagenfurt, 3.-4. Mai 2018.
  • Space-Time Finite Element Methods for the Wave Equation, GAMM Jahrestagung, München, 19.-23. März 2018.
  • Space-Time Methods for the Wave Equation, 15. Söllerhaus: Workshop Fast Boundary Element Methods in Industrial Applications, Kleinwalsertal, 12.-15. Oktober 2017.
  • Space-Time Methods for the Wave Equation, 30th Chemnitz FEM Symposium 2017, Strobl am Wolfgangsee, 25.-27. September 2017.
  • A Space-Time Finite Element Method for the Wave Equation, Miniworkshop on Space-Time Discretization Methods, Graz, 11. Juli 2017.
  • Space-Time Boundary Integral Equations for the Wave Equation, BEM on the Saar 2017, Saarbrücken, 29.-31. Mai 2017.
  • Boundary Integral Equations for the Wave Equation for Flat Objects, Institutsklausur des Instituts für Numerische Mathematik der TU Graz, Sankt Lambrecht, 11.-14. Mai 2017.
  • Space-Time Boundary Element Method for the Wave Equation, Austrian Numerical Analysis Day, Salzburg, 4.-5. Mai 2017.
  • Space-Time Boundary Integral Equations and an Adaptive Boundary Element Method for the Wave Equation, GAMM Jahrestagung, Weimar, 6.-10. März 2017.
  • A Space-Time Boundary Element Method for the Wave Equation, International Conference on Multigrid and Multiscale Methods in Computational Sciences, Bruchsal, 5.-9. Dezember 2016.
  • A Space-Time Boundary Element Method for the Wave Equation, Workshop 2: Space-Time Methods for PDEs, Linz, 7.-11. November 2016.
  • Space-Time Boundary Integral Equations for the Wave Equation, 14. Söllerhaus: Workshop Fast Boundary Element Methods in Industrial Applications, Kleinwalsertal, 13.-16. Oktober 2016.
  • Zurich Summer School 2016: Numerical Methods for Wave Propagation, Zürich, 22.-26. August 2016.
  • An Adaptive Space-Time Boundary Element Method for the Wave Equation, AANMPDE(JS)-9-16, Strobl am Wolfgangsee, 4.-7. Juli 2016.
  • An Energy Approach to Time-Domain Boundary Integral Equations for the Wave Equation, Brunel MAFELAP 2016, London, 14.-17. Juni 2016.
  • Time-Space Boundary Element Methods for the Wave Equation, DissertantInnenseminar, Graz, 20. Mai 2016.
  • Time-Domain Boundary Integral Equations for the Wave Equation, Jahrestagung von DMV und GAMM, Braunschweig, 7.-11. März 2016.
  • An Energy Approach to Time-Domain Boundary Integral Equations for the Wave Equation, Institutsklausur des Instituts für Numerische Mathematik der TU Graz, Sankt Lambrecht, 26.-28. Feber 2016.
  • Time-Domain Boundary Integral Equations for the Wave Equation, 13. Söllerhaus: Workshop Fast Boundary Element Methods in Industrial Applications, Kleinwalsertal, 23.-26. Oktober 2015.
  • Analysis and numerics of a generalised Steklov eigenvalue problem, 28th Chemnitz FEM Symposium 2015, Burgstädt, 28.-30. September 2015.
  • Time-Domain Boundary Integral Equations for the Wave Equation, Institutsklausur des Instituts für Numerische Mathematik der TU Graz, Sankt Lambrecht, 25.-28. Juni 2015.
  • Analysis and numerics of a generalised Steklov eigenvalue problem, Austrian Numerical Analysis Day, Linz, 6.-8. Mai 2015.
Lehrveranstaltungen im Wintersemester 2019
Frühere Lehrveranstaltungen