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Motivation 1: The problem of antiplane shear

Take Q C R?. Consider a cylinder Q x R C R3 made of perfectly plastic

material. It is subject to an external surface traction g in the z-direction
and independent on z. The functions

Oxx; Oyys Ozzy Oxy, Oxzy Oyz

model stress inside the material. For such g, it is enough to consider
01:=0x(Xx,y) and o2 :=0y,(x,y)

and letting 0 = (01, 02) € L>(; R?), the equilibrium equation becomes

div(g):%‘xl—i-éj;;:O in €2; o-v=g ondQ

with the plasticity constraint

lo| = (62 +03)"2<1 in Q.
[§ R.V. Kohn, G. Strang, Optimal design of cylinders in shear (1982).
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Motivation 1: The problem of antiplane shear

We aim to minimise the amount of material used to withstand this
external force. No material needs to be used where |o| = 0; thus,
a lower bound is given by

/ |o| dx dy.
Q

(In practice, usually |o| =1 on the solid part of the material,
and 0 < |o| < 1 on one-dimensional fibers).

We thus aim to solve the minimisation problem

min{/|a\dxdy: div(e) =0, |o| <1, o'-yQ:g}_
Q
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Motivation 1: The problem of antiplane shear

We need to reformulate this problem. Whenever div(c) = 0, there exists
a scalar potential v : Q — R such that

o =R_zVu=(uy, —ux).
Then, we automatically have
[Vul <1 inQ
and

ou
or’
so integrating this over 9Q transforms the boundary condition for o to a
Dirichlet boundary condition for u:

g=o- = (uy, —uy) - (v1,12) = (ux, uy) - (—12,11) =Vu -7 =

ulpa(x) = f(x) = /XX g(s)ds.
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Motivation 1: The problem of antiplane shear

Therefore, the minimisation problem

min {/ lo|dxdy : div(e) =0, |o|<1, o-72= g}
Q
is transformed into
min {/ |Vuldxdy: we C™(Q), |Vul<1, ulpg= f}
Q

with g = 0, f. This is the constrained least gradient problem.

[ P. Sternberg, G. Williams, W.P. Ziemer, Trans. AMS 339 (1993).
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Least gradient problem

This led the same authors to consider the following unconstrained
minimisation problem

min {/ Vul: we Wl’l(Q), uloq = f}
Q

called the least gradient problem. Here, f € [1(09).

ﬁ P. Sternberg, G. Williams, W.P. Ziemer, J. Reine Angew. Math. 430
(1992).
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Least gradient problem

This led the same authors to consider the following unconstrained
minimisation problem

min{/ |Dul: ue BV(Q), ulgg= f}
Q
called the least gradient problem. Here, f € [1(0) and

u€ BV(Q) < ue l}(Q)and Du is a finite Radon measure.

The main trouble is that the subspace

{u €BV(Q): ulpa= f}

is not weakly* closed and it is difficult to enforce the boundary condition.

[4 P. Sternberg, G. Williams, W.P. Ziemer, J. Reine Angew. Math. 430
(1992).
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Comment: linear growth functionals

More generally, the same phenomenon appears in minimisation problems
for functionals of linear growth

min { /Qg(x, Du): wueBV(Q), ulspa= f},

where
lg(x, ) < M(1+ [¢]).

A classical example is the area functional, i.e. g(x,&) = /1 + |£|2.
The corresponding Euler-Lagrange equation is

—div(Du) —0.
\/1+ |Dul?

Then, the natural space for solutions is again BV/(Q2) and the boundary
condition needs to be treated separately.
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Least gradient problem

The Euler-Lagrange equation corresponding to the least gradient problem

min{/ |Dul: ue BV(Q), ulgg= f}
Q

is formally the 1-Laplace equation

D
—div(‘DZ|> -0 inQ
u=1f on 0f2.

It appears in relation to the study of minimal surfaces: for u = xE,
where OE is smooth, the expression on the left-hand side is the
(minus) mean curvature of JE.
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The level set formulation

The following result is due to Bombieri, de Giorgi and Giusti (1969).

u is a solution of the least gradient problem
= for every t € R the function .~ solves

the least gradient problem for its own boundary data

Since div(lgigil) is the mean curvature of E if its boundary is smooth,
this result and the regularity theory for area-minimising surfaces imply
that in 2D every superlevel set {u > t} of a solution u has a boundary
which is a locally finite union of line segments.

[ E. Bombieri, E. De Giorgi, E. Giusti, Invent. Math. 7 (1969).
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Geometric meaning of the problem

min{/ |Dul: ue BV(Q), ulgg= f}
Q

If u = xg and f = xF, the problem has a simple geometric meaning:

F

F

Existence and properties of solutions depend on the shape of the domain!
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Classical results

min {/ |Du|: wue BV(Q), ulgg= f}
Q

In 1992, Sternberg, Williams and Ziemer proved that for strictly convex Q:

o f € C(0Q) = there exists a unique solution u;
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Classical results

min {/ |Du|: wue BV(Q), ulgg= f}
Q

In 1992, Sternberg, Williams and Ziemer proved that for strictly convex :

o f € C(0Q) = there exists a unique solution u;
o fc C(0Q) = ue C(Q);
If Q is uniformly convex, then

o f € CO0Q) = u e CO3(Q).
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Classical results

min {/ Dul: weBV(Q), ulog— f}
Q

In 1992, Sternberg, Williams and Ziemer proved that for strictly convex :
o f € C(0Q) = there exists a unique solution u;

o f e C(00) = ue C(Q);

If Q is uniformly convex, then

o f € CO0Q) = u e CO3(Q).

For discontinuous boundary data, we have e.g. [G. 2018]

e Q C R2 f € BV(09) = there exists a (possibly nonunique) solution u.
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Classical results

min {/ Dul: weBV(Q), ulog— f}
Q

In 1992, Sternberg, Williams and Ziemer proved that for strictly convex :
o f € C(0Q) = there exists a unique solution u;

o f e C(00) = ue C(Q);

If Q is uniformly convex, then

o f € CO0Q) = u e CO3(Q).

For discontinuous boundary data, we have e.g. [G. 2018]

e Q C R2 f € BV(09) = there exists a (possibly nonunique) solution u.

Out of range of classical methods:

e Weak differentiability of solutions.
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Monge-Kantorovich problem

The Monge mass transportation problem

min{/_]x—T(x)\du: T:Q—Q, T#,uzz/}.
Q

consists of finding an optimal map T which transports the measure p onto
the measure v with minimal cost (induced by a distance).
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Monge-Kantorovich problem

The Monge problem may have no solutions if 1 is not absolutely
continuous; its relaxation is the Monge-Kantorovich problem

min{ [ x—yldr: o e MA@ ) (Mg = (M) = v},

One can define a measure o, called the transport density, which encodes
how much of the transport takes place in a given subset of 2.
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Motivation 2: Related problems in mechanics

The least gradient problem is not suitable as an elastic counterpart to
plastic optimal design - let us highlight two other models.

— One may consider vector-valued functions and minimise the elastic
compliance which depends on the whole tensor o.

3] G. Bouchitté, G. Buttazzo, P. Seppecher, C. R. Acad. Sci. Paris Sér .
Math 324 (1997).

[d G. Bouchitté, G. Buttazzo, J. Eur. Math. Soc. 3 (2001).

— One may consider Michell trusses which are limits of finite structures
consisting of one-dimensional elastic bars.

[§] G. Bouchitté, W. Gangbo, P. Seppecher, Math. Models Meth. Appl.
Sci. 18 (2008).

Each problem is equivalent to a suitable optimal transport problem.
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Optimal transport interpretation

Suppose that Q C R? is strictly convex. Then, the least gradient problem
is equivalent to the Beckmann problem:

min{/_|v|: veEM(QR?), divv=0, V'V|aQ:g}7
Q

where g = %.
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Optimal transport interpretation

Suppose that Q C R? is strictly convex. Then, the least gradient problem
is equivalent to the Beckmann problem:

min{/_|v|: veEM(QR?), divv=0, V'V|aQ:g}7
Q

where g = 9

E.

The equivalence is formally given by v = R,g Du.

[@ W. Gérny, P. Rybka, A. Sabra, Nonlinear Anal. 151 (2017).
[§ S. Dweik, F. Santambrogio, Calc. Var. PDE 58 (2019).

ﬁ W. Gérny and J.M. Mazén, Functions of Least Gradient,
Monographs in Mathematics 110 (2024).
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Optimal transport interpretation

Again on convex domains, the Beckmann problem is equivalent to the

Monge-Kantorovich optimal transport problem with source and target
measures on Jf:

min { /ﬁxﬁ |x —y|dy: ~ve€ /\/l+(§ X ﬁ), (M)gy = g, (Ny)py = g_}.
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Optimal transport interpretation

Again on convex domains, the Beckmann problem is equivalent to the

Monge-Kantorovich optimal transport problem with source and target
measures on 0€2:

min { /ﬁxﬁ |x —y|dy: ~ve€ /\/l+(§ x Q), (M)gy = g, (Ny)py = g_}.

From every solution v to the Beckmann problem we can construct a
solution to the OTP with transport density o, (and vice versa) and

oy = |v|.

Wojciech Gérny (U. Vienna, U. Warsaw) Riemannian least gradient problem 18.06.2024 17/23



Optimal transport interpretation

Least gradient problem Monge-Kantorovich problem
f e BV(09Q) (0,F)F € MT(0Q)

level lines transport rays

ulog = f 0,(09) =0

fe C(o) (0-f)* is atomless

f e Whr(0Q) (0.F)* € LP(0Q)

ue WhHP(Q) oy € LP(Q)

Wojciech Gérny (U. Vienna, U. Warsaw) Riemannian least gradient problem 18.06.2024 18/23



Main result

[§ S. Dweik, W. Gérny, SIAM J. Math. Anal. 55 (2023).

Theorem 1

For geodesically convex Q C R?, the weighted least gradient problem
min {/ k(x)|Du|: ue BV(Q), ulsg= f}
Q

with k € CY1(Q) is equivalent to the Monge-Kantorovich optimal
transport problem with Riemannian cost, i.e.,

min { /ﬁxﬁ di(x,y)dy: v € MT(QxQ), (M)gy=2g",(Ny)py = g_}~

v

— Sobolev regularity of solutions!
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Proof strategy

Take (0-f)T € LP(9Q). Let (0,f)~ be finitely atomic. Then:
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Proof strategy

Take (0-f)T € LP(9Q). Let (0,f)~ be finitely atomic. Then:

e v is induced by a map;
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Proof strategy

Take (0,f)" € LP(0RQ). Let (O-f)~ be finitely atomic. Then:
e 7 is induced by a map;

e D~ set of atoms of (9,7)~. A,: set of points of transport rays passing
through x. The sets {Ag, : g, € D™} are (almost) disjoint;
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e D~ set of atoms of (9,7)~. A,: set of points of transport rays passing
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e Only behaviour of 0, near D™ matters for its LP regularity;
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Proof strategy

Take (0,f)" € LP(0RQ). Let (O-f)~ be finitely atomic. Then:
e 7 is induced by a map;

e D~ set of atoms of (9,7)~. A,: set of points of transport rays passing
through x. The sets {Ag, : g, € D™} are (almost) disjoint;

e Only behaviour of 0, near D™ matters for its LP regularity;

e In the neighbourhood of each point g, € D™, one can explicitly give the
formula for the transport density, and each contribution depends only on
the LP norm of £ on Ay, N IQ;
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Proof strategy

Take (0,f)" € LP(0RQ). Let (O-f)~ be finitely atomic. Then:
e 7 is induced by a map;

e D~ set of atoms of (9,7)~. A,: set of points of transport rays passing
through x. The sets {Ag, : g, € D™} are (almost) disjoint;

e Only behaviour of 0, near D™ matters for its LP regularity;

e In the neighbourhood of each point g, € D™, one can explicitly give the
formula for the transport density, and each contribution depends only on
the LP norm of £ on Ay, N IQ;

e We sum up these estimates and get

loy | e() < ClI(O-F) " [lLe(a0)-

If (O-f)~ is not finitely atomic, we use approximations.
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Proof strategy

Take (0,f)" € LP(0RQ). Let (O-f)~ be finitely atomic. Then:
e v is induced by a map;

e D~ set of atoms of (0,7)~. A,: set of points of transport rays passing
through x. The sets {Ag, : g, € D™} are (almost) disjoint;

e Only behaviour of 0, near D™ matters for its LP regularity;

e In the neighbourhood of each point g, € D™, one can explicitly give the
formula for the transport density, and each contribution depends only on
the LP norm of £ on A4, N OQ;

e We sum up these estimates and get

lloy | e() < ClI(O-F)  [lLe(a0)-

If (O-f)~ is not finitely atomic, we use approximations.
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Remarks

o CU1 regularity of the weight plays a crucial role - for the blue estimate,
we need uniqueness of a geodesic in a given direction. Namely, if a(s)
is a parametrisation of 9Q and y = 7s(t), we have

=D

Moreover, the Riemannian structure strongly factors in the estimate
of the denominator from below.
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Remarks

o CU1 regularity of the weight plays a crucial role - for the blue estimate,
we need uniqueness of a geodesic in a given direction. Namely, if a(s)
is a parametrisation of 9Q and y = 7s(t), we have

o (s) di(a(s).x5)
det[Dps, 0 s(2)]

Moreover, the Riemannian structure strongly factors in the estimate
of the denominator from below.

oly) = g (a(s))-

e The result is false for k € C»*(Q) with a < 1 (the solutions may be
discontinuous and nonunique).
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Remarks

o CU1 regularity of the weight plays a crucial role - for the blue estimate,
we need uniqueness of a geodesic in a given direction. Namely, if a(s)
is a parametrisation of 9Q and y = 7s(t), we have

o (s) di(a(s).x5)
det[Dps, 0 s(2)]

Moreover, the Riemannian structure strongly factors in the estimate
of the denominator from below.

oly) = g (a(s))-

e The result is false for k € C»*(Q) with a < 1 (the solutions may be
discontinuous and nonunique).

e Also the proof of the equivalence requires uniqueness of the geodesics.
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Results

Using this approach, and exploiting the explicit formula for the transport
density if the measure is finitely atomic, we get the following results:
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o fc WHP(0Q) = u e WLP(Q) for p < 2.
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Results

Using this approach, and exploiting the explicit formula for the transport
density if the measure is finitely atomic, we get the following results:

o fc WHP(0Q) = u e WLP(Q) for p < 2.

This is optimal in terms of the exponent. For p > 2, we need

o f e CLo(0Q) = ue Whis(Q) for a € (0,1].
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Results

Using this approach, and exploiting the explicit formula for the transport
density if the measure is finitely atomic, we get the following results:

o fc WHP(0Q) = u e WLP(Q) for p < 2.
This is optimal in terms of the exponent. For p > 2, we need

o f e CLo(0Q) = ue Whis(Q) for a € (0,1].

For less regular boundary data, we get

o f € SBV(0Q) = ue SBV(Q).
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