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Motivation 1: The problem of antiplane shear
Take Ω ⊂ R2. Consider a cylinder Ω× R ⊂ R3 made of perfectly plastic
material. It is subject to an external surface traction g in the z-direction
and independent on z . The functions

σxx , σyy , σzz , σxy , σxz , σyz

model stress inside the material. For such g , it is enough to consider

σ1 := σxz(x , y) and σ2 := σyz(x , y)

and letting σ = (σ1, σ2) ∈ L∞(Ω;R2), the equilibrium equation becomes

div(σ) =
∂σ1
∂x

+
∂σ2
∂y

= 0 in Ω; σ · νΩ = g on ∂Ω

with the plasticity constraint

|σ| = (σ21 + σ
2
2)
1/2 ¬ 1 in Ω.

R.V. Kohn, G. Strang, Optimal design of cylinders in shear (1982).
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Motivation 1: The problem of antiplane shear

We aim to minimise the amount of material used to withstand this
external force. No material needs to be used where |σ| = 0; thus,
a lower bound is given by ∫

Ω
|σ| dx dy .

(In practice, usually |σ| = 1 on the solid part of the material,
and 0 < |σ| < 1 on one-dimensional fibers).

We thus aim to solve the minimisation problem

min

{∫
Ω
|σ| dx dy : div(σ) = 0, |σ| ¬ 1, σ · νΩ = g

}
.
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Motivation 1: The problem of antiplane shear
We need to reformulate this problem. Whenever div(σ) = 0, there exists
a scalar potential u : Ω→ R such that

σ = R−π2∇u = (uy ,−ux).

Then, we automatically have

|∇u| ¬ 1 in Ω

and

g = σ · νΩ = (uy ,−ux) · (ν1, ν2) = (ux , uy ) · (−ν2, ν1) = ∇u · τ =
∂u

∂τ
,

so integrating this over ∂Ω transforms the boundary condition for σ to a
Dirichlet boundary condition for u:

u|∂Ω(x) = f (x) =

∫ x

x0
g(s) ds.
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Motivation 1: The problem of antiplane shear

Therefore, the minimisation problem

min

{∫
Ω
|σ| dx dy : div(σ) = 0, |σ| ¬ 1, σ · νΩ = g

}
is transformed into

min

{∫
Ω
|∇u| dx dy : u ∈ C 0,1(Ω), |∇u| ¬ 1, u|∂Ω = f

}
with g = ∂τ f . This is the constrained least gradient problem.

P. Sternberg, G. Williams, W.P. Ziemer, Trans. AMS 339 (1993).
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Least gradient problem
This led the same authors to consider the following unconstrained
minimisation problem

min

{∫
Ω
|∇u| : u ∈W 1,1(Ω), u|∂Ω = f

}
called the least gradient problem. Here, f ∈ L1(∂Ω). and

u ∈ BV (Ω)⇔ u ∈ L1(Ω) and Du is a finite Radon measure.

The main trouble is that the subspace{
u ∈ BV (Ω) : u|∂Ω = f

}
is not weakly* closed and it is difficult to enforce the boundary condition.

P. Sternberg, G. Williams, W.P. Ziemer, J. Reine Angew. Math. 430
(1992).

Wojciech Górny (U. Vienna, U. Warsaw) Riemannian least gradient problem 18.06.2024 6 / 23



Least gradient problem
This led the same authors to consider the following unconstrained
minimisation problem

min

{∫
Ω
|Du| : u ∈ BV (Ω), u|∂Ω = f

}
called the least gradient problem. Here, f ∈ L1(∂Ω) and

u ∈ BV (Ω)⇔ u ∈ L1(Ω) and Du is a finite Radon measure.

The main trouble is that the subspace{
u ∈ BV (Ω) : u|∂Ω = f

}
is not weakly* closed and it is difficult to enforce the boundary condition.

P. Sternberg, G. Williams, W.P. Ziemer, J. Reine Angew. Math. 430
(1992).

Wojciech Górny (U. Vienna, U. Warsaw) Riemannian least gradient problem 18.06.2024 7 / 23



Comment: linear growth functionals
More generally, the same phenomenon appears in minimisation problems
for functionals of linear growth

min

{∫
Ω
g(x ,Du) : u ∈ BV (Ω), u|∂Ω = f

}
,

where
|g(x , ξ)| ¬ M(1+ |ξ|).

A classical example is the area functional, i.e. g(x , ξ) =
√
1+ |ξ|2.

The corresponding Euler-Lagrange equation is

−div
(

Du√
1+ |Du|2

)
= 0.

Then, the natural space for solutions is again BV (Ω) and the boundary
condition needs to be treated separately.
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Least gradient problem

The Euler-Lagrange equation corresponding to the least gradient problem

min

{∫
Ω
|Du| : u ∈ BV (Ω), u|∂Ω = f

}
is formally the 1-Laplace equation −div

(
Du

|Du|

)
= 0 in Ω

u = f on ∂Ω.

It appears in relation to the study of minimal surfaces: for u = χE ,
where ∂E is smooth, the expression on the left-hand side is the
(minus) mean curvature of ∂E .
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The level set formulation

The following result is due to Bombieri, de Giorgi and Giusti (1969).

u is a solution of the least gradient problem

⇒ for every t ∈ R the function χ{u>t} solves
the least gradient problem for its own boundary data

Since div( DχE
|DχE |) is the mean curvature of E if its boundary is smooth,

this result and the regularity theory for area-minimising surfaces imply
that in 2D every superlevel set {u > t} of a solution u has a boundary
which is a locally finite union of line segments.

E. Bombieri, E. De Giorgi, E. Giusti, Invent. Math. 7 (1969).
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Geometric meaning of the problem

min

{∫
Ω
|Du| : u ∈ BV (Ω), u|∂Ω = f

}
If u = χE and f = χF , the problem has a simple geometric meaning:

Existence and properties of solutions depend on the shape of the domain!
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Classical results

min

{∫
Ω
|Du| : u ∈ BV (Ω), u|∂Ω = f

}
In 1992, Sternberg, Williams and Ziemer proved that for strictly convex Ω:

• f ∈ C (∂Ω) ⇒ there exists a unique solution u;

• f ∈ C (∂Ω) ⇒ u ∈ C (Ω);

If Ω is uniformly convex, then

• f ∈ C 0,α(∂Ω)⇒ u ∈ C 0,α/2(Ω).

For discontinuous boundary data, we have e.g. [G. 2018]

• Ω ⊂ R2: f ∈ BV (∂Ω)⇒ there exists a (possibly nonunique) solution u.

Out of range of classical methods:

• Weak differentiability of solutions.
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Monge-Kantorovich problem
The Monge mass transportation problem

min

{∫
Ω
|x − T (x)| dµ : T : Ω→ Ω, T#µ = ν

}
.

consists of finding an optimal map T which transports the measure µ onto
the measure ν with minimal cost (induced by a distance).
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Monge-Kantorovich problem
The Monge problem may have no solutions if µ is not absolutely
continuous; its relaxation is the Monge-Kantorovich problem

min

{∫
Ω×Ω
|x − y | dγ : γ ∈M+(Ω× Ω), (Πx)#γ = µ, (Πy )#γ = ν

}
.

One can define a measure σγ , called the transport density, which encodes
how much of the transport takes place in a given subset of Ω.
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Motivation 2: Related problems in mechanics

The least gradient problem is not suitable as an elastic counterpart to
plastic optimal design - let us highlight two other models.

→ One may consider vector-valued functions and minimise the elastic
compliance which depends on the whole tensor σ.

G. Bouchitté, G. Buttazzo, P. Seppecher, C. R. Acad. Sci. Paris Sér I.
Math 324 (1997).

G. Bouchitté, G. Buttazzo, J. Eur. Math. Soc. 3 (2001).

→ One may consider Michell trusses which are limits of finite structures
consisting of one-dimensional elastic bars.

G. Bouchitté, W. Gangbo, P. Seppecher, Math. Models Meth. Appl.
Sci. 18 (2008).

Each problem is equivalent to a suitable optimal transport problem.
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Optimal transport interpretation

Suppose that Ω ⊂ R2 is strictly convex. Then, the least gradient problem
is equivalent to the Beckmann problem:

min

{∫
Ω
|v | : v ∈M(Ω;R2), div v = 0, v · ν|∂Ω = g

}
,

where g = ∂f
∂τ .

The equivalence is formally given by v = R−π2 Du.

W. Górny, P. Rybka, A. Sabra, Nonlinear Anal. 151 (2017).

S. Dweik, F. Santambrogio, Calc. Var. PDE 58 (2019).

W. Górny and J.M. Mazón, Functions of Least Gradient,
Monographs in Mathematics 110 (2024).
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Optimal transport interpretation

Again on convex domains, the Beckmann problem is equivalent to the
Monge-Kantorovich optimal transport problem with source and target
measures on ∂Ω:

min

{∫
Ω×Ω
|x − y | dγ : γ ∈M+(Ω× Ω), (Πx)#γ = g+, (Πy )#γ = g−

}
.

From every solution v to the Beckmann problem we can construct a
solution to the OTP with transport density σγ (and vice versa) and

σγ = |v |.
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Optimal transport interpretation

Least gradient problem Monge-Kantorovich problem

f ∈ BV (∂Ω) (∂τ f )
± ∈M+(∂Ω)

level lines transport rays
u|∂Ω = f σγ(∂Ω) = 0
f ∈ C (∂Ω) (∂τ f )

± is atomless
f ∈W 1,p(∂Ω) (∂τ f )

± ∈ Lp(∂Ω)

u ∈W 1,p(Ω) σγ ∈ Lp(Ω)
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Main result

S. Dweik, W. Górny, SIAM J. Math. Anal. 55 (2023).

Theorem 1

For geodesically convex Ω ⊂ R2, the weighted least gradient problem

min

{∫
Ω
k(x)|Du| : u ∈ BV (Ω), u|∂Ω = f

}
with k ∈ C 1,1(Ω) is equivalent to the Monge-Kantorovich optimal
transport problem with Riemannian cost, i.e.,

min

{∫
Ω×Ω

dk(x , y) dγ : γ ∈M+(Ω×Ω), (Πx)#γ = g+, (Πy )#γ = g−
}
.

→ Sobolev regularity of solutions!
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Proof strategy

Take (∂τ f )+ ∈ Lp(∂Ω). Let (∂τ f )− be finitely atomic. Then:

• γ is induced by a map;

• D−: set of atoms of (∂τ f )−. ∆x : set of points of transport rays passing
through x . The sets {∆qn : qn ∈ D−} are (almost) disjoint;

• Only behaviour of σγ near D− matters for its Lp regularity;

• In the neighbourhood of each point qn ∈ D−, one can explicitly give the
formula for the transport density, and each contribution depends only on
the Lp norm of f + on ∆qn ∩ ∂Ω;

• We sum up these estimates and get

∥σγ∥Lp(Ω) ¬ C∥(∂τ f )+∥Lp(∂Ω).

If (∂τ f )− is not finitely atomic, we use approximations.
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Remarks

• C 1,1 regularity of the weight plays a crucial role - for the blue estimate,
we need uniqueness of a geodesic in a given direction. Namely, if α(s)
is a parametrisation of ∂Ω and y = γs(t), we have

σ(y) =
α′(s) dk(α(s), xi )

det[D(s,t)γs(t)]
· g+(α(s)).

Moreover, the Riemannian structure strongly factors in the estimate
of the denominator from below.

• The result is false for k ∈ C 1,α(Ω) with α < 1 (the solutions may be
discontinuous and nonunique).

• Also the proof of the equivalence requires uniqueness of the geodesics.
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Results

Using this approach, and exploiting the explicit formula for the transport
density if the measure is finitely atomic, we get the following results:

• f ∈W 1,p(∂Ω) ⇒ u ∈W 1,p(Ω) for p ¬ 2.

This is optimal in terms of the exponent. For p > 2, we need

• f ∈ C 1,α(∂Ω)⇒ u ∈W 1,
2
1−α (Ω) for α ∈ (0, 1].

For less regular boundary data, we get

• f ∈ SBV (∂Ω) ⇒ u ∈ SBV (Ω).
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