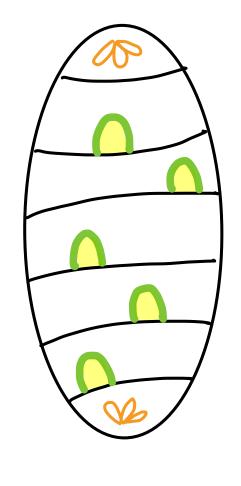
SRNI - LECTURE 2

DESCRIBING CONTACT STRUCTURES

- CONTACT CELL DECOMPOSITIONS
- CONVEX SURFACE THEORY BYPASSES
- CONTACT HEEGAARD SPLITTINGS (PROOF OF EXISTENCE)
- OPEN BOOK DECOMPOSITIONS
- OPEN BOOK DECOMPOSITIONS & CONTACT HEEGAARD SPLITTINGS

1HF GIROUX CORRESPONDENCE VIA CONVEX SURFACES VERA VÉRTESI



JOINT WORK WITH JOAN LICATA

UNIVERSITY OF VIENNA

DESCRIBING CONTACT STRUCTURES

- CONTACT CELL DECOMPOSITIONS
- CONVEX SURFACE THEORY BYPASSES
- CONTACT HEEGAARD SPLITTINGS (PROOF OF EXISTENCE)
- OPEN BOOK DECOMPOSITIONS
- OPEN BOOK DECOMPOSITIONS & CONTACT HEEGAARD SPLITTINGS

LAST TIME (GIROUX)

• Z → M IS CONVEX IF & CONTACT VECTORFIELD X : Z + X

- → GENERIC Z -> H IS CONVEX
- →3 N(E) IS DETERHINED BY PCZ
- (N,3) OVERTWISTED \iff \exists $Z \Leftrightarrow$ \forall CONVEX \forall \forall \forall \forall \forall \forall \forall CONTAINING A DISC

TIGHT + OVERTWISTED

. 3! TIGHT CONTACT STRUCTURE ON D3 WITH CONVEX BORY:

-DECOMPOSITIONS

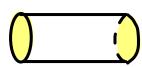
O-HANDLE 1-HANDLE

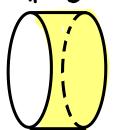
2-HANDLE 3-HANDLE

 $h^{\circ} = D^{\circ} \times D^{3}$

 $h^4 = D^4 \times D^2$

 $h^2 = D^2 \times D^4$ $h^3 = D^3 \times D^9$



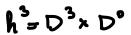


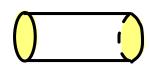
THM (MORSE): ANY 3-MANIFOLD CAN BE OBTAINED VIA SUCCESIVELY ATTACHING HANDLES ONTO EACH OTHER ALONG DECOMPOSITION

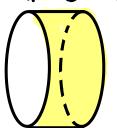
O-HANDLE 1-HANDLE 2-HANDLE 3-HANDLE

$$h^{\circ} = D^{\circ} \times D^{3}$$

$$h^4 = D^4 \times D^2$$





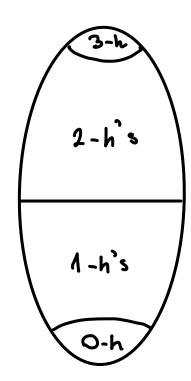


THM (MORSE): ANY 3-MANIFOLD CAN BE OBTAINED VIA

SUCCESIVELY ATTACHING HANDLES ONTO EACH OTHER

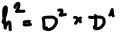
ALONG DECOMPOSITION

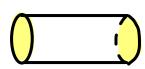
MOREOVER THE INDICES OF HANDLES CAN BE ASSUMED TO BE IN INCREASING ORDER

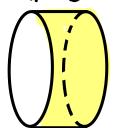


O-HANDLE 1-HANDLE 2-HANDLE 3-HANDLE

$$h^{\circ} = D^{\circ} \times D^{3}$$







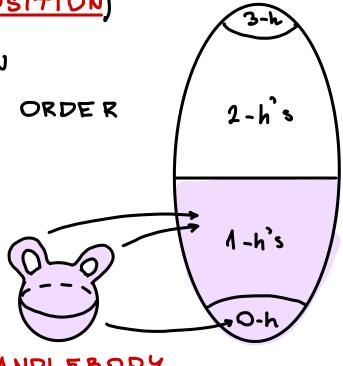
THM (MORSE): ANY 3-MANIFOLD CAN BE OBTAINED VIA

SUCCESIVELY ATTACHING HANDLES ONTO EACH OTHER

ALONG 30" × 03-0 (HANDLE DECOMPOSITION)

MOREOVER THE INDICES OF HANDLES CAN

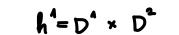
BE ASSUMED TO BE IN INCREASING ORDER

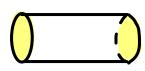


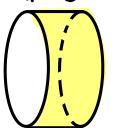
HANDLEBODY

O-HANDLE 1-HANDLE 2-HANDLE 3-HANDLE

$$h^{\circ} = D^{\circ} \times D^{3}$$







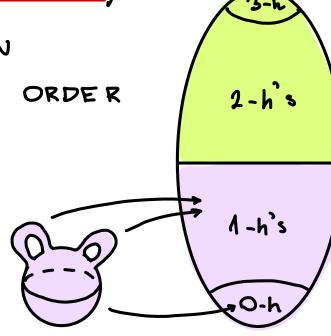
THM (MORSE): ANY 3-MANIFOLD CAN BE OBTAINED VIA

SUCCESIVELY ATTACHING HANDLES ONTO EACH OTHER

ALONG 30" × 03-" (HANDLE DECOMPOSITION)

MOREOVER THE INDICES OF HANDLES CAN

BE ASSUMED TO BE IN INCREASING ORDER



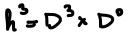
HANDLEBODY

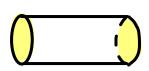
O-HANDLE 1-HANDLE 2-HANDLE 3-HANDLE

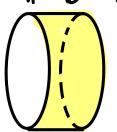
$$h^{\circ} = D^{\circ} \times D^{3}$$

$$h^4 = D^4 \times D^2$$









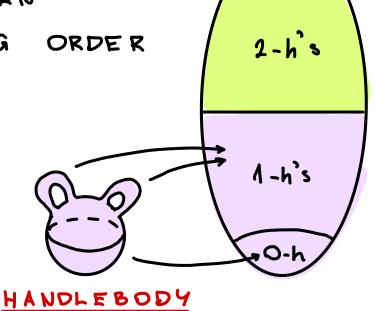
THM (MORSE): ANY (3) MANIFOLD CAN BE OBTAINED VIA SUCCESIVELY ATTACHING HANDLES ONTO EACH OTHER

ALONG 30" × 03-0 (HANDLE DECOMPOSITION)

MOREOVER THE INDICES OF HANDLES CAN

BE ASSUMED TO BE IN INCREASING ORDER

EVERY 3- HANJFOLD ADMITS A HEEGAARD DECOMPOSITION



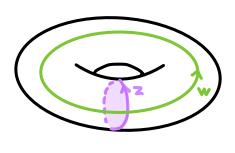
HEEGAARD DECOMPOSITIONS

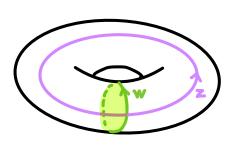
THM (ALEXANDER) EVERY 3- MANIFOLD ADMITS A HEEGAARD DECOMPOSITION

M= U u V

HANDLE BODIES:

•
$$5^3 = \{|z|^2 + |w|^2 = 1\} \subseteq \mathbb{C}^2$$





ORIGIN - MORSE TUNCTIONS : M SHOOTH (3-)MANIFOLD

OFF.: f: M - TR SHOOTH FUNCTION IS HORSE IF ALL

CRITICAL POINTS OF f ARE NONDEGENERATE NONDEGENERATE

Vf +0

ORIGIN - MORSE TUNCTIONS : M SHOOTH (3-) MANIFOLD OFF.: f: M - TR SMOOTH FUNCTION IS MORSE IF ALL CRITICAL POINTS OF f ARE NONDEGENERATE NONDEGENERATE FACTS: MORSE FUNCTIONS ARE Co-GENERIC LOCAL MODEL NEAR A MORSE - CRITICAL POINT: INDEX - \(\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} \frac{1}{4} \times \frac{1}{4} \times

→ FLOW OF Vf

ORIGIN - MORSE TUNCTIONS : M SHOOTH (3-)MANIFOLD DEF.: f: M - TR SMOOTH FUNCTION IS MORSE IF ALL CRITICAL POINTS OF f ARE NONDEGENERATE NONDEGENERATE TACTS: • MORSE FUNCTIONS ARE C[®]- GENERIC • LOCAL MODEL NEAR A MORSE - CRITICAL POINT:

• LOCAL MODEL NEAR A HORSE - CRITICAL POINT:

- \(\frac{1}{2} \) \(\text{X}_{\frac{1}{2}}^{\frac{1}{2}} \) \(\text{X}_{\frac{1}{2}}^{\frac{1}{2}} \) \(\text{Y}_{\frac{1}{2}}^{\frac{1}{2}} \) \(\text{V}_{\frac{1}{2}}^{\frac{1}{2}} \) \(\text{V}_{\frac{1}{2}}^{\frac{1}{2}} \) \(\text{V}_{\frac{1}{2}}^{\frac{1}{2}} \) \(\text{CORE} \)

· INDEX - & CRITICAL POINTS ~ hi = Di x D" - i - HANDLES

ORIGIN - MORSE TUNCTIONS : M SHOOTH (3-) MANIFOLD DEF.: f: M - TR SMOOTH FUNCTION IS MORSE IF ALL CRITICAL POINTS OF f ARE NONDEGENERATE NONDEGENERATE FACTS: MORSE FUNCTIONS ARE Co-GENERIC LOCAL MODEL NEAR A MORSE - CRITICAL POINT: INDEX - TX X; + TX X;

THOW OF ∇f $x_{241/..., x_{3}}$ $x_{4,..., x_{4}}$ $x_{4,..., x_{4}}$

• INDEX - ¿ CRITICAL POINTS ~ hoving INDEX ¿-HANDLES

REARRANGING CRITICAL POINTS: MOVING INDEX &-HANDLES UNDER
INDEX &7-HANDLES

USES TRANSVERSALITY & THAT Dim (CORE) + Dim (COCORE) 43

んくむ

CONTACT HANDLES

0-HANDLE

 $D_o \times D_3$

h°

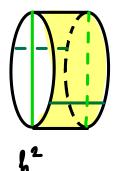
1-HANDLE

 $D^4 \times D^2$

h⁴

2-HANDLE

D2 × D4



3- HANDLE

 $D^3 \times D^0$

h³

ATTER ROUNDING THE EDGES EACH BECOMES

& BY ELIASHBERG'S THM THIS ADMITS A UNIQE TIGHT CONTACT STRUCTURE

CONTACT HANDLES

0-HANDLE

 $D_o \times D_3$

(h°, 3°)

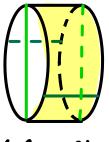
1-HANDLE

 $D^4 \times D^2$

(h', 3')

2-HANDLE

D2 × D4



(h², 3°)

3- HANDLE

D3x D°

(h3, 33)

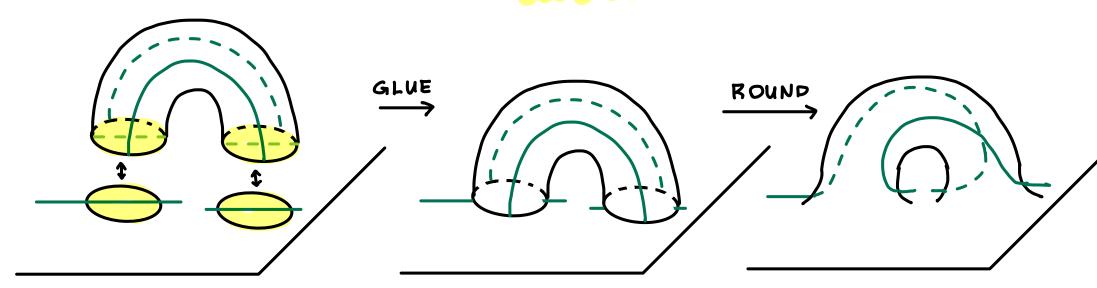
ATTER ROUNDING THE FDGES EACH BECOMES

& BY ELIASHBERG'S THY THIS ADMITS A UNIQE TIGHT CONTACT STRUCTURE

 \sim UP TO ISOTOPY WE GET WELL DEFINED CONTACT STRUCTURES ON THE \mathbf{h}^{2}

ATTACHING CONTACT HANDLES

WE CAN CONSTRUCT CONTACT MANIFOLDS BY SUCCESIVELY GLUING HANDLES ALONG 30° × 03-4 :

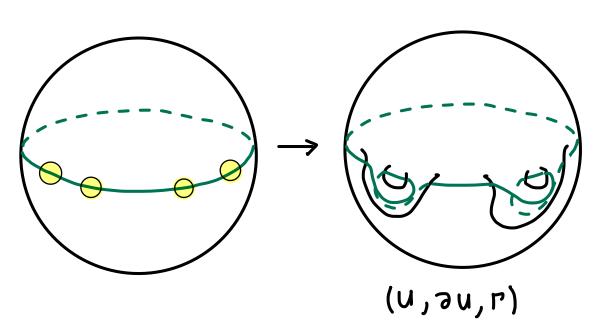


CONTACT HANDLEDECOMPOSITION

THM (GIROUX) ANY CONTACT 3-MANIFOLD ADMITS A CONTACT HANDLEDECOMPOSITION

CONTACT HANDLEBODY

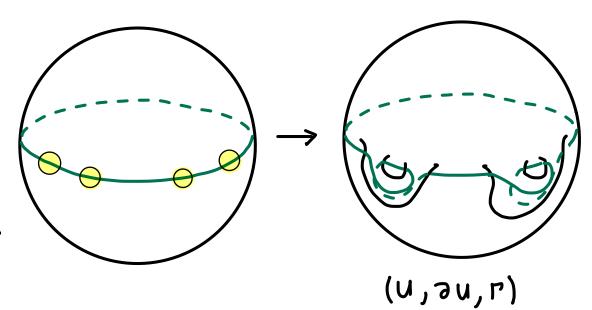
O-HANDLE U SONE 1-HANDLES E.G.



CONTACT HANDLEBODY

O-HANDLE U SONE 1-HANDLES

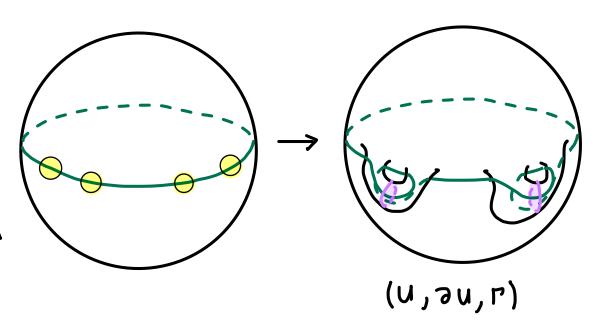
NEIGHBOURHOOD OF A LEGENDRIAN GRAPH:



CONTACT HANDLEBODY

O-HANDLE U SONE 1-HANDLES

NEIGHBOURHOOD OF A LEGENDRIAN GRAPH:



NOTE: CONTACT HANDLEBODIES ARE PRODUCT DISC DECOMPOSABLE

RECALL: A PRODUCT DISC DECOMPOSABLE HANDLEBODY & ADMITS
A UNIQUE TIGHT CONTACT STRUCTURE WITH DIVIDING
CURVE P ON DU.

THUS

THM: A PRODUCT DISC DECOMPOSABLE HANDLEBODY U WITH TIGHT CONTACT STRUCTURE 3 15 A CONTACT HANDLEBODY

REARRANGING CONTACT HANDLES

JUST AS IN THE SHOOTH CASE

IN A CONTACT HANDLE DECOMPOSITION ONE CAN ASSUME THAT:

- CONTACT O-h'S ARE ATTACHED FIRST
- CONTACT 3-h'S ARE ATTACHED LAST

REARRANGING CONTACT HANDLES

JUST AS IN THE SHOOTH CASE

IN A CONTACT HANDLE DECOMPOSITION ONE CAN ASSUME THAT:

- CONTACT O-h's ARE ATTACHED FIRST
- CONTACT 3-h'S ARE ATTACHED LAST

BUT CONTACT 1-h'S CANNOT ALWAYS BE ATTACHED
BEFORE CONTACT 2-h'S

INTERLUDE - CONTACT MORSE FUNCTIONS

```
(M) 3) CONTACT MANIFOLD

DEF: f: M→1R MORGE FUNCTION IS CONTACT IF 3 X CONTACT

VECTORFIELD THAT IS AN ALMOST GRADIENT FOR f

RMK: NONCRITICAL LEVELSETS ARE

CONVEX

DEF: CRITICAL SUBHANIFOLD: C={X € }}

(> UNION OF DIVIDING CURVES OF LEVELSETS)
```

INTERLUDE - CONTACT MORSE FUNCTIONS

```
(M, 3) CONTACT MANIFOLD
```

DEF: f: H - TR HORSE FUNCTION IS CONTACT IF 3 X CONTACT

VECTORFIELD THAT IS AN ALMOST GRADIENT FOR F

TMK: NONCRITICAL LEVELSETS ARE CONVEX

M TO LEVEL SETS
& "LIKE" Of NEAR
CRITICAL POINTS

DEF: CRITICAL SUBHANIFOLD: C= (X & 3)

(= UNION OF DIVIDING CURVES OF LEVELSETS)

THM (GIROUX): $f|_{C:C \longrightarrow TR}$ IS ALSO HORSE WITH THE SAME CRITICAL POINTS AS f WITH INDICES

f	f c
0	0
4	1
2	1
3	2

INTERLUDE - CONTACT MORSE FUNCTIONS

```
(M, 3) CONTACT HANIFOLD
```

DEF: f: H - TR HORGE FUNCTION IS CONTACT IF 3 X CONTACT

VECTORFIELD THAT IS AN ALHOST GRADIENT FOR F

TMK: NONCRITICAL LEVELSETS ARE CONVEX

TO LEVEL SETS

& "LIKE" Of NEAR

CRITICAL POINTS

DEF: CRITICAL SUBMANIFOLD: C= (X & 3)

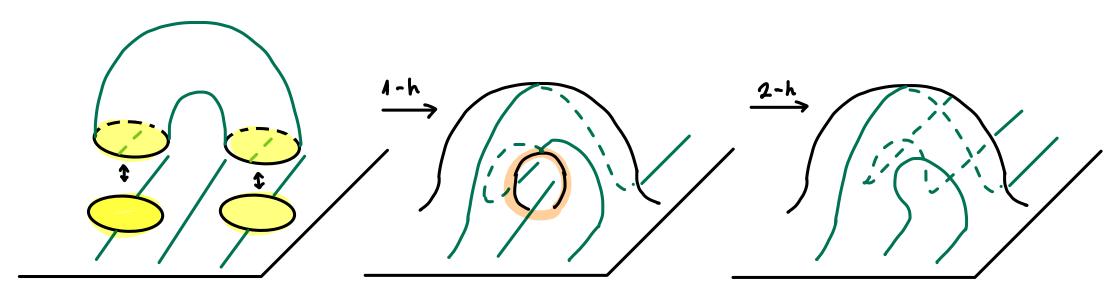
(= UNION OF DIVIDING CURVES OF LEVELSETS)

THM (GIROUX): $f|_{C:C} \longrightarrow \mathbb{R}$ IS ALSO HORSE WITH THE SAME CRITICAL POINTS AS f WITH INDICES fTHIS EXPLAINS WHY WE CANNOT HOVE

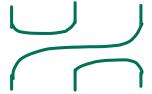
1-HANDLES UNDER 2-HANDLES

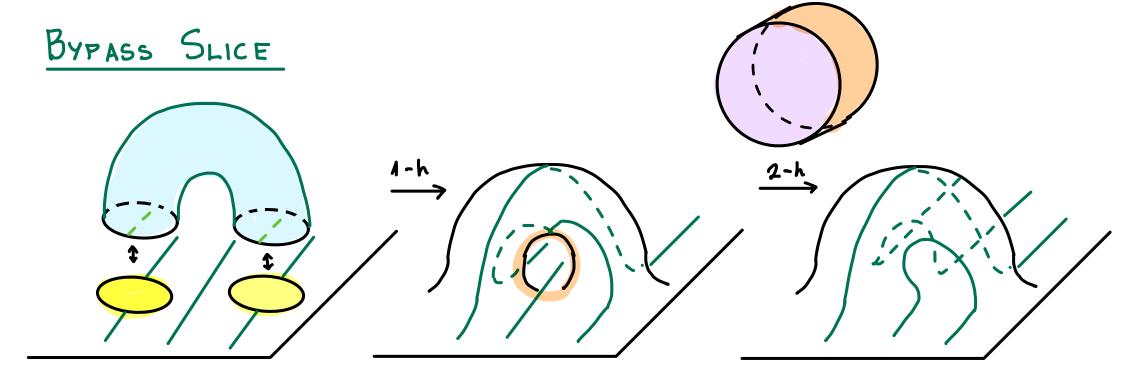
(THEY ARE BOTH 1- HANDLES FOR C)

BYPASS SLICE



FROM THE TOP





FROM THE TOP

THE ABOVE PAIR OF CONTACT 1-82-10 CAN BE
ATTACHED TO ANY CONVEX SURFACE (Z,T) ALONG ANY
ARC C INTERSECTING P AS C

WILL SEE: BYPASSES ARE BASIC BUILDING BLOCKS OF CONTACT STRUCTURES ON Z × I

O-PARAMETER

RECALL (GIROUX): CONVEX SURFACES ARE C - GENERIC

1-PARAMETER

THM (GIROUX, COLIN, REPHRASED BY HONDA) ANY 1- PARAMETER FAHILY OF SURFACES (Σ_{t})_{$t \in [D, 1]$} WITH Σ_{o} , Σ_{t} CONVEX CAN BE ISOTOPED TO (Σ_{t}^{2})_{$t \in [D, 1]$} SO THAT • $\Xi_{t} = Z_{t}^{2}$ NEAR t = 0 & 1

O-PARAMETER

RECALL (GIROUX): CONVEX SURFACES ARE C - GENERIC

1-PARAMETER

THM (GIROUX, COLIN, REPHRASED BY HONDA) ANY 1- PARAMETER FAMILY OF SURFACES (Σ_t) $_{t\in[D,T]}$ WITH Σ_0 , Σ_1 CONVEX CAN BE ISOTOPED TO (Σ_t^2) $_{t\in[D,T]}$ SO THAT

- · 7 = 2 NEAR t= 0 & 1
- · Z' IS CONVEX EXCEPT AT DISCRETE TIMES (t., .. , t.) [O,1]

O-PARAMETER

RECALL (GIROUX): CONVEX SURFACES ARE C - GENERIC

1-PARAMETER

THM (GIROUX, COLIN, REPHRASED BY HONDA) ANY 1- PARAMETER FAMILY OF SURFACES (Σ_t) $_{t\in[0,1]}$ WITH Σ_0 , Σ_1 CONVEX CAN BE ISOTOPED TO (Σ_t^2) $_{t\in[0,1]}$ SO THAT

- · 7 = 2 NEAR t= 0 & 1
- · Z' IS CONVEX EXCEPT AT DISCRETE TIMES (t.,.,t.) [O,1]
- · I'LLE & I'LLE COBOUND A BYPASS SLICE (i=1.. k)

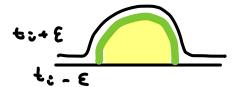
O-PARAMETER

RECALL (GIROUX): CONVEX SURFACES ARE C - GENERIC

1-PARAMETER

THM (GIROUX, COLIN, REPHRASED BY HONDA) ANY 1- PARAMETER FAMILY OF SURFACES (Σ_t) $_{t\in[D,1]}$ WITH Σ_0 , Σ_i CONVEX CAN BE ISOTOPED TO (Σ_t^2) $_{t\in[D,1]}$ SO THAT

- · 7 7 NEAR t= 0 & 1
- · Z' IS CONVEX EXCEPT AT DISCRETE TIMES (t.,.,t.) [O,1]
- · I'LLE & I'LLE COBOUND A BYPASS SLICE (i=1.. k)



O-PARAMETER

RECALL (GIROUX): CONVEX SURFACES ARE C - GENERIC

1-PARAMETER

THM (GIROUX, COLIN, REPHRASED BY HONDA) ANY 1- PARAMETER FAMILY OF SURFACES (Σ_t) $_{t\in[0,1]}$ WITH Σ_0 , Σ_i CONVEX CAN BE ISOTOPED TO (Σ_t^2) $_{t\in[0,1]}$ SO THAT

- · 7 = 2 NEAR t= 0 & 1
- Zt IS CONVEX EXCEPT AT DISCRETE TIMES (t., .. , t.) [O,1]
- · I'LLE & I'LLE COBOUND A BYPASS SLICE (i=1.. k)

THN (GIROUX REPHRASED BY HONDA)

ANY CONTACT STRUCTURE ON ZXI IS

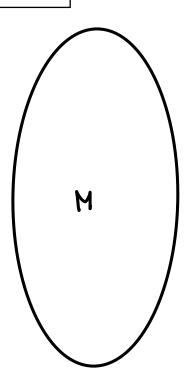
CONTACTONORPHIC TO A STACK OF BYPASS SLICES

T - INVARIANT

EXISTENCE OF CONTACT HEEGAARD DECOMPOSITIONS

THM (GIROUX): ANY CONTACT 3-MANIFOLD (M,3) ADMITS A CONTACT HEEGAARD DECOMPOSITION

PROOF (LICATA - V)



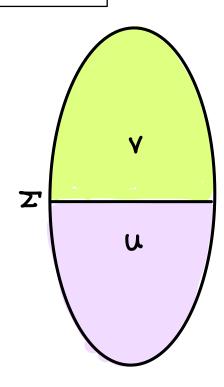
EXISTENCE OF CONTACT HEEGAARD DECOMPOSITIONS

THM (GIROUX), ANY CONTACT 3- MANIFOLD (M,3) ADMITS A
CONTACT HEEGAARD DECOMPOSITION

PROOF (LICATA - V)

STEP 1: TAKE ANY SHOOTH HEEGAARD

DE COMPOSITION OF M: M = U UV



EXISTENCE OF CONTACT HEEGAARD DECOMPOSITIONS

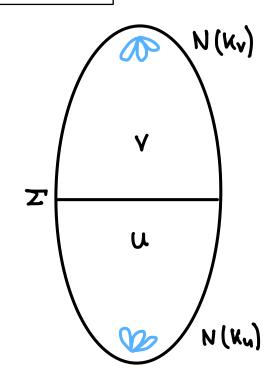
THM (GIROUX), ANY CONTACT 3- MANIFOLD (M,3) ADMITS A CONTACT HEEGAARD DECOMPOSITION

PROOF (LICATA - V)

STEP 1: TAKE ANY SHOOTH HEEGAARD

DE COMPOSITION OF M: M = U UV

STEP 2: TAKE SPINES Ky CU & Ky CV



THM (GIROUX), ANY CONTACT 3- MANIFOLD (M,3) ADMITS A CONTACT HEEGAARD DECOMPOSITION

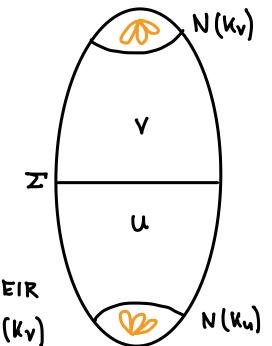
PROOF (LICATA - V)

STEP 1: TAKE ANY SHOOTH HEEGAARD

DE COMPOSITION OF M: M = U UV

STEP 2: TAKE SPINES Ky CU & Ky CV

STEP 3: LEGENDRIAN REALISE Ku & Kv & TAKE THEIR STANDARD CONTACT NEIGHBOURHOODS N(Ku) & N(Kv)



THM (GIROUX), ANY CONTACT 3- MANIFOLD (M,3) ADMITS A CONTACT HEEGAARD DECOMPOSITION

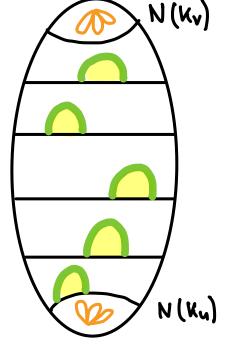
PROOF (LICATA - V)

STEP 1: TAKE ANY SHOOTH HEEGAARD

DE COMPOSITION OF M: M = U UV

STEP 2: TAKE SPINES Ky CU & Ky CV

STEP 3: LEGENDRIAN REALISE Ku & Kv & TAKE THEIR STANDARD CONTACT NEIGHBOURHOODS N(Ku) & N(Kv)



STEP 4: X=H-(N(Ku)UN(Kv)) = Z x I = 3/X CAN BE WRITTEN
AS A STACK OF BYPASS-SLICES = h Uh2

(AWAY FROM THE HANDLES & IS I-INVARIANT)

THM (GIROUX), ANY CONTACT 3- MANIFOLD (M,3) ADMITS A CONTACT HEEGAARD DECOMPOSITION

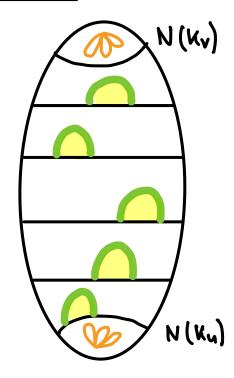
```
PROOF (LICATA - V)

STEP 4: X = H - (N(Ku) UN(Kv)) = I x I => 3/X

CAN BE WRITTEN AS A STACK

OF BYPASS - SLICES = h U h U

(AWAY FROM THE HANDLES & IS I-INVARIANT)
```



THM (GIROUX), ANY CONTACT 3- MANIFOLD (M,3) ADMITS A CONTACT HEEGAARD DECOMPOSITION

```
PROOF (LICATA - V)

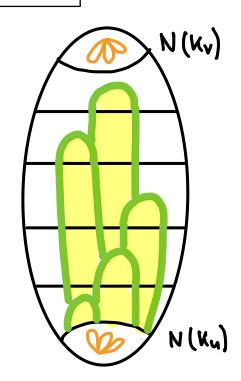
STEP 4: X=H-(N(Ku)UN(Kv)) = Z*I => 3/X

CAN BE WRITTEN AS A STACK

OF BYPASS-SLICES = h,U h2

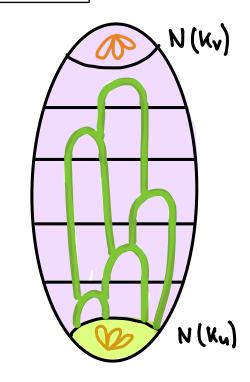
(AWAY FROM THE HANDLES & IS I-INVARIANT)

STEP 5: USE THIS FLOW TO EXTEND THE HANDLES
```



THM (GIROUX), ANY CONTACT 3- HANIFOLD (N,Z) ADMITS A CONTACT HEEGAARD DECOMPOSITION

```
PROOF (LICATA - V)
 STEP 4: X=H-(N(Ku)UN(Kv)) = IX = 3/x
  CAN BE WRITTEN AS A STACK
  OF BYPASS-SLICES = h, u h2
  (AWAY FROM THE HANDLES & IS I-INVARIANT)
 STEP 5: USE THIS FLOW TO EXTEND THE HANDLES
 CONSIDER: Û = N(Ku) U (Uhi)
                        CONTACT 1-HANDLES
        CONTACT HANDLEBODY
           → Û IS A CONTACT HANDLEBODY
```



THM (GIROUX), ANY CONTACT 3- MANIFOLD (M,3) ADMITS A CONTACT HEEGAARD DECOMPOSITION

```
PROOF (LICATA - V)
                                                       N(k_v)
 STEP 4: X= M- (N(Ku) UN(Kv)) = Z x I => 3/x
  CAN BE WRITTEN AS A STACK
  OF BYPASS-SLICES = h, u h2
  (AWAY FROM THE HANDLES & IS I-INVARIANT)
 STEP 5: USE THIS FLOW TO EXTEND THE HANDLES
 CONSIDER: Û = N(Ku) U (Uhi)
                                                        N(Ku)
                       CONTACT 1-HANDLES
        CONTACT HANDLEBODY
           - Û IS A CONTACT HANDLEBODY
 UPSIDE DOWN: V= H\ Û = N(K,) U (Uhi) IS A CONTACT HANDLEBODY
 → H=Û U V IS A CONTACT HEEGAARD DECOMPOSITION
```

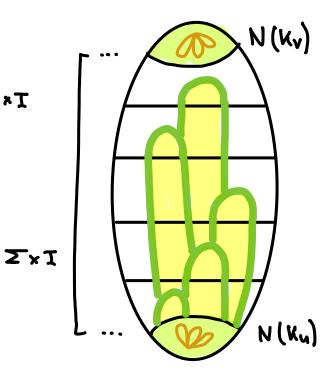
BRIDGING

$$H = U \cup V \xrightarrow{\text{BRIDGING}} H = \hat{U} \cup \hat{V} \xrightarrow{\text{BRIDGE}} \text{WHERE } \cdot \hat{U} = N(K_u) \cup (\cup h_{\hat{k}}^{\Lambda})$$

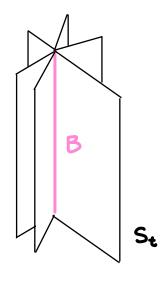
$$\hat{\mathcal{H}}$$

NOTE: THE BRIDGE DEPENDS ON

- · 4
- · Ky & Ky
- . THE BYPASSES & BUILDING UP \$ IXI



OPEN BOOK DECOMPOSITIONS



OPEN BOOK DECOMPOSITIONS

DEF: PAIR (Bix), WHERE

- B \hookrightarrow M EMBEDDED A-MANIFOLD: BINDING

- π : M - B \longrightarrow S¹ FIBRATION SUCH THAT

+ Y t \in S¹ S_i:= π -¹(t) IS A SEIFERT SURFACE FOR B

+& ON N(B) \cong B \times D 2 π = Augle

DEF: Si-T (t) ARE THE PAGES OF (B,T)

OPEN BOOK DECOMPOSITIONS

DEF: PAIR (BIT), WHERE

- BC- M ENBEDDED A-MANIFOLD: BINDING

- T: H-B - 5 TIBRATION SUCH THAT

+ Y t ∈ S S S = T - (t) IS A SEIFERT SURFACE FOR B

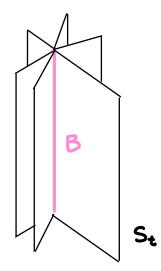
+& ON N(B)=B×D2 X = ANGLE

DEF: Si'= x" (t) ARE THE PAGES OF (B,x)

E.G.
$$H = S^3 = \{|z|^2 + |w|^2 = 1\} \le C^2$$

$$B = \{|z| = 0\} \cong S^4, \quad \pi : S^3 \setminus B \longrightarrow S^4$$

$$(z,w) \longmapsto \frac{z}{|z|}$$



OPEN BOOK DECOMPOSITIONS

DEF: PAIR (Bit), WHERE

- BC H ENBEDDED A-MANIFOLD: BINDING

-
$$\pi$$
: H-B \longrightarrow S' TIBRATION SUCH THAT

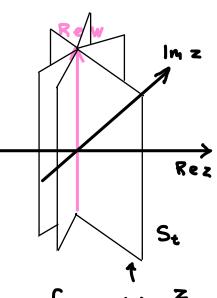
+ \forall t \in S' S_{i} := π^{-i} (t) IS A SEIFERT SURFACE FOR B

E.G.
$$N = S^3 = \{|z|^2 + |w|^2 = 4\} \le C^2$$

$$B = \{|z| = 0\} \cong S^4, \quad \pi : S^3 \setminus B \longrightarrow S^4$$

$$(z,w) \longmapsto \frac{z}{|z|}$$
ON \mathbb{R}^3 WITH COORDINATE $S: \frac{A}{A - \operatorname{Im} w} (\underline{z}, \operatorname{Re} w)$

$$\{\alpha n q(z) = \frac{z}{|z|} = \xi\}$$

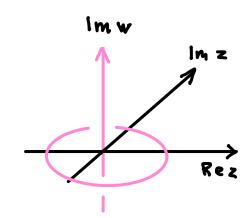


OPEN BOOK DECOMPOSITIONS - ANOTHER EXAMPLE

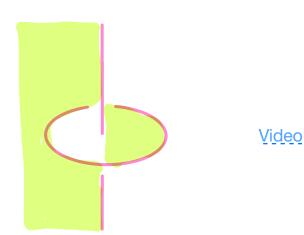
E.G.
$$H = S^3 = \{|z|^2 + |w|^2 = 4\} \le C^2$$

$$B = \{|z| = 0\} \perp |w| = 0\} \qquad \pi : S^3 \setminus B \longrightarrow S^4$$

$$(z,w) \longmapsto \frac{zw}{|zw|}$$
ON \mathbb{R}^3 WITH COORDINATE $S: \frac{1}{1 - |w|} (\underline{z}, \operatorname{Re} w)$



HERE B≥S'LLS' S₄≈S'×I V t



THM (ALEXANDER): ANY 3-HANIFOLD ADMITS AN OPEN BOOK DECOMPOSITION

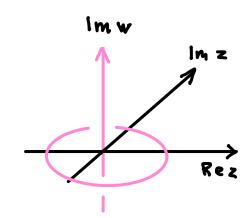
PROOF LATER

OPEN BOOK DECOMPOSITIONS - ANOTHER EXAMPLE

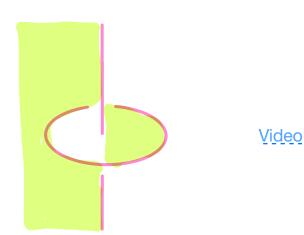
E.G.
$$H = S^3 = \{|z|^2 + |w|^2 = 4\} \le C^2$$

$$B = \{|z| = 0\} \perp |w| = 0\} \qquad \pi : S^3 \setminus B \longrightarrow S^4$$

$$(z,w) \longmapsto \frac{zw}{|zw|}$$
ON \mathbb{R}^3 WITH COORDINATE $S: \frac{1}{1 - |w|} (\underline{z}, \operatorname{Re} w)$



HERE B≥S'LLS' S₄≈S'×I V t



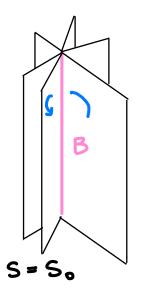
THM (ALEXANDER): ANY 3-HANIFOLD ADMITS AN OPEN BOOK DECOMPOSITION

PROOF LATER

FIX S:= S. & LOOK AT THE FIRST RETURN-MAP OF $\pi: H-B \rightarrow S' \longrightarrow GET (5,4)$ WHERE

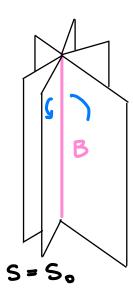
- S IS AN ORIENTED SURFACE WITH BOUNDARY
- & 4:555 HOMEOMORPHISM THAT FIXES N(DS)

DEF: THE PAIR (S,4) IS AN ABSTRACT OPEN BOOK



FIX S:= S. & LOOK AT THE FIRST RETURN-MAP OF $\pi: H-B \rightarrow S' \sim GET (5,4)$ WHERE

- S IS AN ORIENTED SURFACE WITH BOUNDARY
- & 4:555 HOMEOMORPHISM THAT FIXES N(DS)

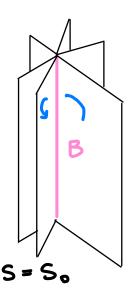


DEF: THE PAIR (S,4) IS AN ABSTRACT OPEN BOOK

E.G.: THE PREVIOUS EXAMPLE GIVES

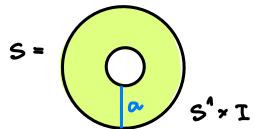
FIX S:= S. & LOOK AT THE FIRST RETURN - MAP OF $\pi: H-B \rightarrow S' \sim GET (S,Y)$ WHERE

- & 4:555 HOMEOMORPHISM THAT FIXES N(OS)

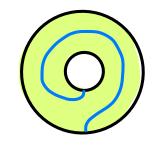


DEF: THE PAIR (S,4) IS AN ABSTRACT OPEN BOOK

E.G.: THE PREVIOUS EXAMPLE GIVES



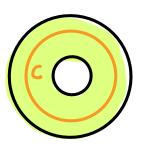
& 4 HAPPING a TO 4(a)



(THIS DETERMINES & UP TO ISDTOPY)

DEF: THE ABOVE MAP IS A RIGHT HANDED DEHN-TWIST

ALONG C



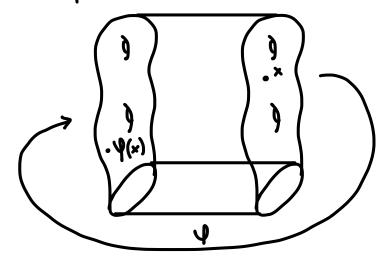
CONVERSALY: AN ABSTRACT OB (S,4) DETERMINES A 3-MANIFOLD

M TOGETHER WITH AN OPEN BOOK DECOMPOSITION

PROOF: . TAKE THE HAPPING TORUS OF Y:

$$M_{\Psi} = \frac{S \times I}{(x, \Lambda)} \sim (\Psi(x), 0)$$

$$\cdot (AS \ \Psi \ FIXES \ 3S) \ 3M_{\Psi} = 3S \times S^{\Lambda}$$



CONVERSALY: AN ABSTRACT OB (5,4) DETERMINES A 3-MANIFOLD M TOGETHER WITH AN OPEN BOOK DECOMPOSITION

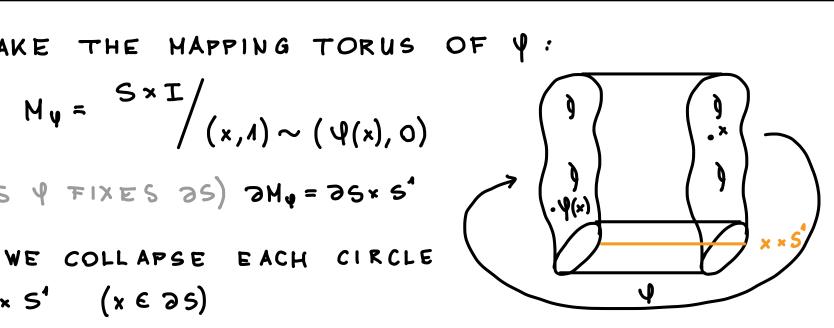
TROOP: . TAKE THE MAPPING TORUS OF 4:

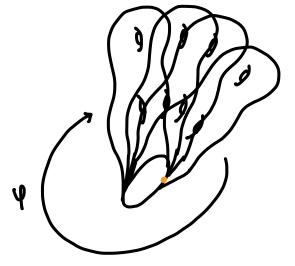
$$M_{\Psi} = \frac{S \times I}{(x, \Lambda)} \sim (\Psi(x), 0)$$

· & WE COLLAPSE EACH CIRCLE $x \times 5^4 \quad (x \in 35)$

$$x : M - B \rightarrow S'$$

$$(x,t) \rightarrow t$$
GIVES AN OBD





POVER OF OPEN BOOKS: TO DESCRIBE CTCT STRUCTURES

WE WEED TO UNDERSTAND $\{ \psi : S \longrightarrow S : \psi \}_{\partial S} = id \} / = :HCG(s)$ (MAPPING CLASS GROUP)

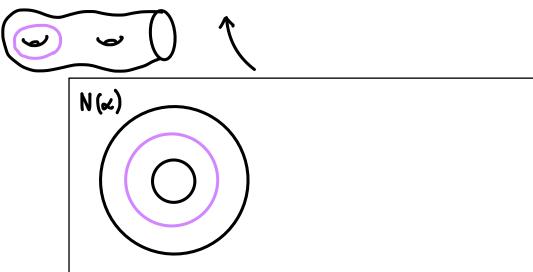
POVER OF OPEN BOOKS: TO DESCRIBE CTCT STRUCTURES

WE NEED TO UNDERSTAND \[\psi: 5 \rightarrow S: \psi]_{\pis} = id \frac{1}{\lightarrow} = : \text{HCG(s)} \]

(\frac{\text{MAPPING CLASS GROUP}}{\text{MAPPING CLASS GROUP}}

THM (DEHN): NCG(5) IS GENERATED BY DEHN TWISTS ALONG

SIMPLE CLOSED CURVES &



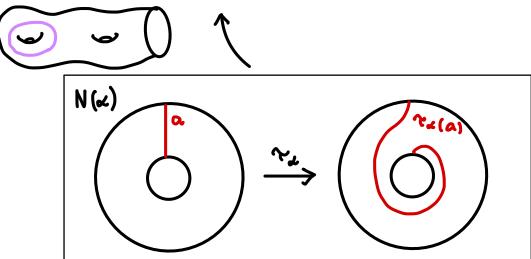
POVER OF OPEN BOOKS: TO DESCRIBE CTCT STRUCTURES

WE NEED TO UNDERSTAND \[\psi: S \rightarrow S: \psi|_\text{\gamma_S} = id \frac{1}{150TOPY} \]

(\frac{MAPPING CLASS GROUP}{\text{APPING CLASS GROUP}}

THM (DEHN): NCG(5) IS GENERATED BY DEHN TWISTS ALONG

SIMPLE CLOSED CURVES &



POVER OF OPEN BOOKS: TO DESCRIBE CTCT STRUCTURES

WE NEED TO UNDERSTAND \[\q \cdot S \rightarrow S : \q \rightarrow \]

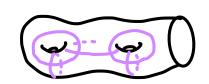
150TOPY

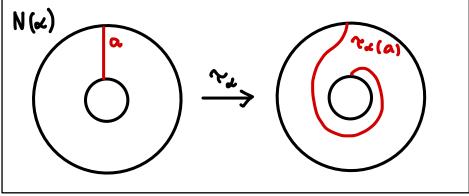
(MAPPING CLASS GROUP)

THM (DEHN): NCG(S) IS GENERATED BY DEHN TWISTS ALONG
SIMPLE CLOSED CURVES &

THM (LICKORISH) NCG(S)IS GENERATED

BY DEHN TWISTS ALONG





WE CAN REPHRASE SOLVE PROBLEMS ABOUT CTC STRUCTURES COMBINATORIALLY (CURVES ON A SURFACE)

TOVER OF OPEN BOOKS: TO DESCRIBE CTCT STRUCTURES

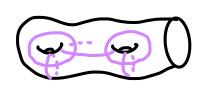
WE NEED TO UNDERSTAND \[\q \cdot S \rightarrow S : \q \rightarrow S = id \] \/ \[\tau \rightarrow S \rig

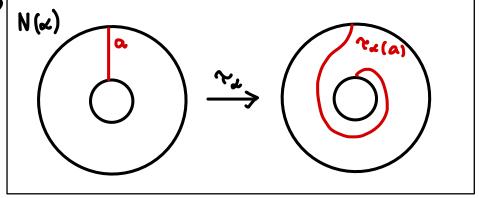
(MAPPING CLASS GROUP)

THM (DEHN): NGG(S) IS GENERATED BY DEHN TWISTS ALONG
SIMPLE CLOSED CURVES &

THM (LICKORISH) NCG(S)IS GENERATED

BY DEHN TWISTS ALONG





WE CAN REPHRASE SOLVE PROBLEMS ABOUT CTC STRUCTURES COMBINATORIALLY (CURVES ON A SURFACE)

GIR OUX CORRESPONDANCE ALLOWS US TO USE OPEN BOOKS
TO DEFINE INVARIANTS OF CTC STRUCTURES

OPEN BOOKS & CONTACT STRUCTURES

DEF: AN OBD (B,π) SUPPORTS A CONTACT STRUCTURE IF

• B IS TRANSVERSE (TB \$ 50

• dα TS, >0

π-1(t) POSITIVE AREA FORH ON St.:

* NEVER GETS = TS.

OPEN BOOKS & CONTACT STRUCTURES

DEF, AN OBD (B,π) SUPPORTS A CONTACT STRUCTURE IF

• B IS TRANSVERSE (TB \$ 3) : α 3 > 0

• dα TS, > 0

π-(t) POSITIVE AREA FORH ON St.:

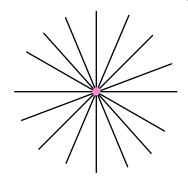
* NEVER GETS = TS.

WE WILL HAVE A MORE TOPOLOGICAL DEF LATER

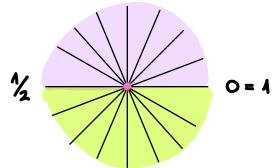
CONSTRUCTION (THURSTON - VINKENKEMPLER): ANY OBD SUPPORTS
A CONTACT STRUCTURE THAT IS UNIQUE UP TO
ISOTOPY

. + LOCAL CONSTRUCTION NEAR BINDING

GIVEN AN OBD (B,TC)



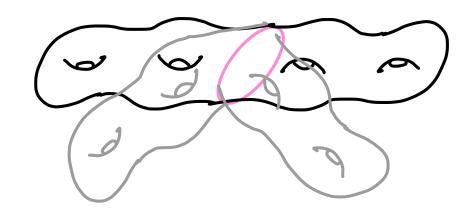
GIVEN AN OBD (B,TC) ~> CONSIDER M=UUV



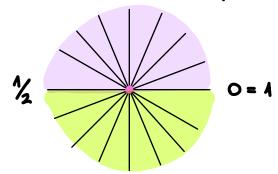
$$U = \pi^{-1}([0, \frac{1}{2}])$$
 $V = \pi^{-1}([\frac{1}{2}, 1])$

HERE Z = Sou Sa

TROP: U & V ARE HANDLEBODIES



GIVEN AN OBD (B,T) ~> CONSIDER M=UUV WHERE

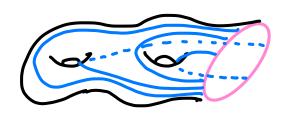


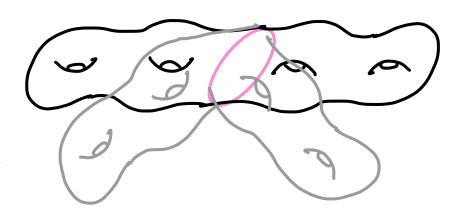
HERE Z = Sou Sa

TROP: U & V ARE HANDLEBODIES

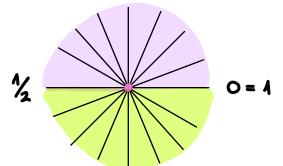
PROOF: FOR U:

· LET a,,..., a 29+6 BE ARCS ON 6 SUCH THAT Sava; = D2





GIVEN AN OBD (B,T) ~> CONSIDER M=UUV WHERE

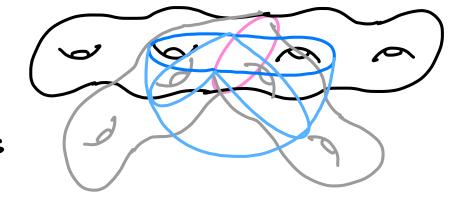


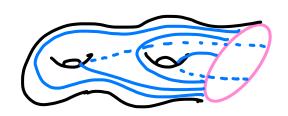
HERE Z = Sou Sa

TROP: U & V ARE HANDLEBODIES

PROOF: FOR U:

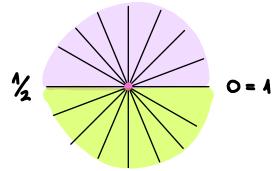
· LET a1) Ja29+6 BE ARCS ON S SUCH THAT S- ua; = D2







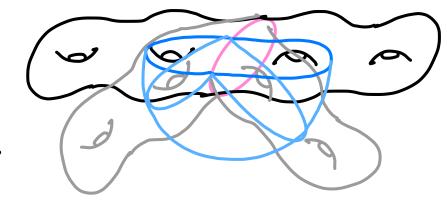
GIVEN AN OBD (B,TC) ~> CONSIDER M= U UV WHERE

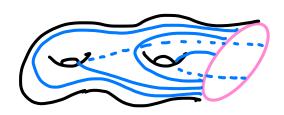


TROP: U & V ARE HANDLEBODIES

PROOF: FOR U:

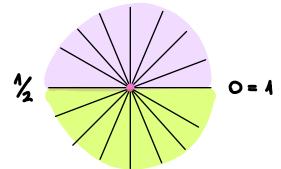
· LET a,,..., a 29+6 BE ARCS ON S SUCH THAT S- ua; = D2





$$\cdot \& \quad \mathsf{U} - \mathsf{U} \, \mathsf{D}_{c} = \left(\mathsf{S} - \mathsf{U} \, \mathsf{a}_{c} \right) \times \left[\mathsf{O}_{c} \, \frac{1}{2} \right] / \cong \mathsf{D}^{2} \times \left[\mathsf{O}_{c} \, \frac{1}{2} \right] / \cong \mathsf{D}^{3}$$

GIVEN AN OBD (B,TC) ~> CONSIDER M= U UV WHERE

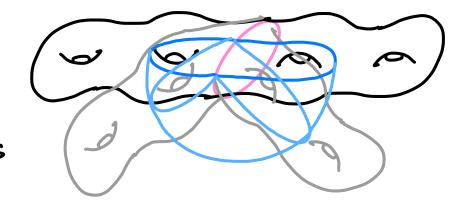


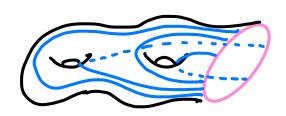
HERE Z = Sou Sa

TROP: U & V ARE HANDLEBODIES

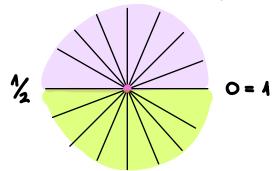
PROOF: FOR U:

• LET a,,..., a 23+6 BE ARCS ON 5 SUCH THAT S-Ua; = D2





GIVEN AN OBD (B,TC) ~> CONSIDER M= U U,V WHERE

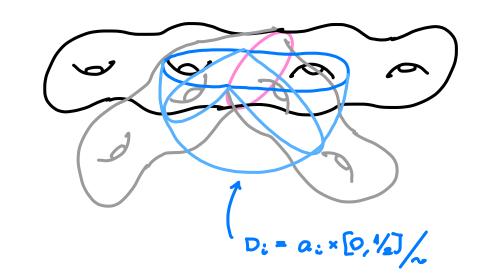


HERE Z = Sou Sa

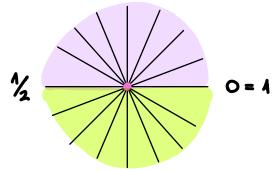
TROP: U & V ARE HANDLEBODIES

NOREOVER! (U, Z, F = B) IS

PRODUCT DISC DECOMPOSABLE



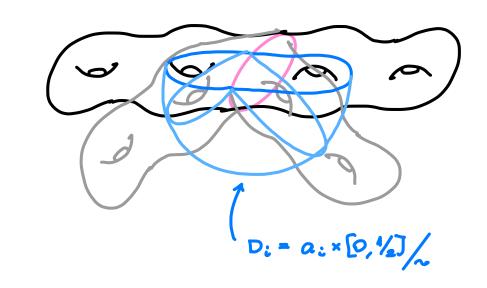
GIVEN AN OBD (B,TC) ~> CONSIDER M=UUV WHERE



TROP: U & V ARE HANDLEBODIES

NOREOVER! (U, Z, F = B) IS

PRODUCT DISC DECOMPOSABLE



WE HAVE SEEN: AN OPEN BOOK DECOMPOSITION DEFINES A HEEGAARD DECOMPOSITION WITH PRODUCT DECOMPOSABLE HANDLEBODIES

WARNING: NEED P ON Z

THM: AN OPEN BOOK DECOMPOSITION DEFINES A HEEGAARD
DECOMPOSITION WITH PRODUCT DECOMPOSABLE HANDLEBODIES

$$(B,\pi) \longrightarrow M = U \cup_{(\Sigma,\Gamma)} V$$

LET'S LOOK AT THE CONTACT STRUCTURE SUPPORTED BY (B,T)

THM (TORISU): THE SURFACE Z IS CONVEX WITH DIVIDING CURVE P. THE CONTACT STRUCTURES 3/4 & 3/4 ARE TIGHT.

THM: AN OPEN BOOK DECOMPOSITION DEFINES A HEEGAARD
DECOMPOSITION WITH PRODUCT DECOMPOSABLE HANDLEBODIES

$$(B,\pi)$$
 \longrightarrow $M=UU_{(\Sigma,\Gamma)}$

LET'S LOOK AT THE CONTACT STRUCTURE SUPPORTED BY (B,T)

THM (TORISU): THE SURFACE Z IS CONVEX WITH DIVIDING CURVE P, THE CONTACT STRUCTURES 3/4 & 3/4 ARE TIGHT.

50: (N, 3u) & (V, 3v) ARE CONTACT HANDLEBODIES

THUS M= U U(E,P) V IS A CONTACT HEEGAARD DECOMPOSITION

THM: AN OPEN BOOK DECOMPOSITION DEFINES A HEEGAARD
DECOMPOSITION WITH PRODUCT DECOMPOSABLE HANDLEBODIES

$$(B,\pi)$$
 \longrightarrow $M=UU_{(\Sigma,\Gamma)}$

LET'S LOOK AT THE CONTACT STRUCTURE SUPPORTED BY (B, T)

THM (TORISU): THE SURFACE Z IS CONVEX WITH DIVIDING CURVE P. THE CONTACT STRUCTURES 3/4 & 3/4 ARE TIGHT.

50: (N, 3,) & (V, 3,) ARE CONTACT HANDLEBODIES

THUS M= U U(E,P) V IS A CONTACT HEEGAARD DECOMPOSITION

THIS GIVES RISE TO AN EQUIVALENT DEFINITION:

DEF: 3 IS SUPPORTED BY THE OPEN BOOK (B,元) IF

THE HEEGARD DECOMPOSITION DEFINED BY (B元) IS A

CONTACT HEEGARD DECOMPOSITION

HEEGAARD DECOMPOSITIONS ~> OPEN BOOK DECOMPOSITIONS

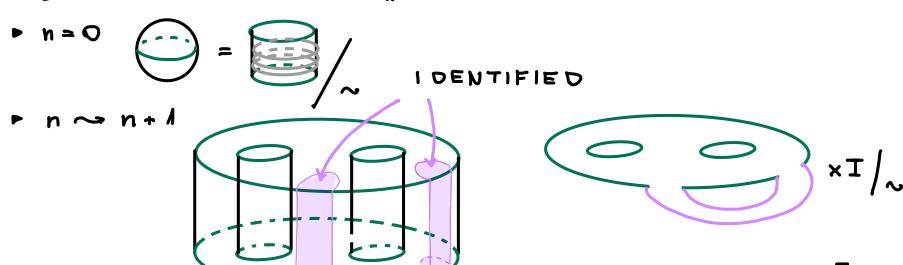
$$\frac{PROP}{(U,\Gamma)}$$
 PRODUCT DISC DECOMPOSABLE HANDLEBODY

 $\Rightarrow U = S \times I/(x,t) \sim (x,t^2) \times C = S, t^2 \in I$

SUCH THAT $\partial U = S \times O \cup_{\Gamma} S \times A$

& $\Gamma = \partial S/\sim$

IDEA: INDUCTION ON THE # OF PRODUCT DISCS



HEEGAARD DECOMPOSITIONS ~ OPEN BOOK DECOMPOSITIONS

TROP:
$$(U,\Gamma)$$
 PRODUCT DISC DECOMPOSABLE HANDLEBODY

$$\Rightarrow U = S \times T/(x,\xi) \sim (x,\xi^2) \quad x \in \partial S, \ \xi,\xi^2 \in T$$
SUCH THAT $\partial U = S \times O \cup_{\Gamma} S \times A$

& $\Gamma = \partial S/_{\sim}$

GIVEN A CONTACT HEEGAARD DECOMPOSITION M=U U(E,P)

HEEGAARD DECOMPOSITIONS ~ OPEN BOOK DECOMPOSITIONS

```
PROP' (U,T) PRODUCT DISC DECOMPOSABLE HANDLEBODY

\Rightarrow U = S \times T/(x,t) \sim (x,t^2) \times C S, t,t^2 \in T

SUCH THAT SU = S \times O \cup_{r} S \times A

& \Gamma = OS/\sim
```

GIVEN BY PROJECTION ONTO [0, 1/2, 1]

SO WE GET A DNE-TO-ONE CORRESPONDANCE

SO WE CAN WORK WITH WHICHEVER IS MORE CONVENIENT

RECALL:

THM: FVERY CONTACT MANIFOLD (M, 5) ADHITS A
CONTACT HEEGAARD DECOMPOSITION

COR: FVERY CONTACT MANIFOLD (M, 5) ADHITS AN OPEN BOOK DECOMPOSITION

COMING UP:

- STABILISATION
- STATEMENT OF GIROUX CORRESPONDENCE
- IDEA OF PROOF