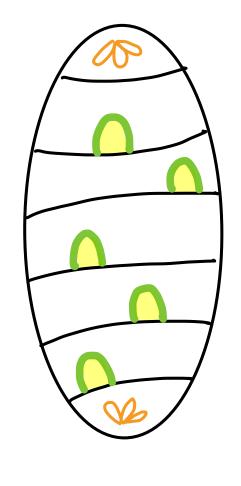
SRNI - LECTURE 1

SUBHANIFOLDS OF CONTACT STRUCTURES

- CONTACT STRUCTURES
- -(1D) LEGENDRIAN & TRANSVERSE KNOTS , LEGENDRIAN GRAPHS
- -(20) CONVEX SURFACES
- NEIGHBOURHOOD THEOREMS
- TIGHT & OVERTWISTED CONTACT STRUCTURES

1HF GIROUX CORRESPONDENCE VIA CONVEX SURFACES VERA VÉRTESI



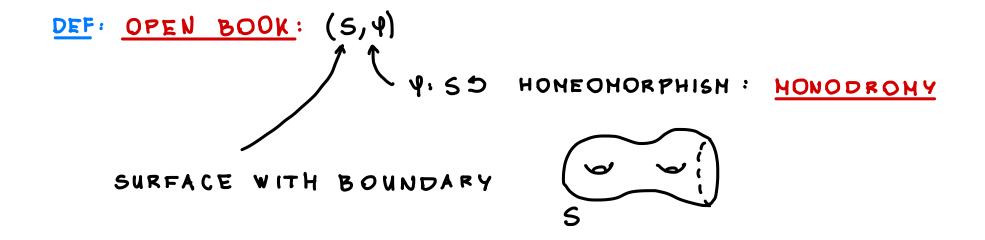
JOINT WORK WITH JOAN LICATA

UNIVERSITY OF VIENNA

1973 VINKELNKEHPER: FIRST USED THE WORD
"OPEN BOOK DECOMPOSITION"

BUT IT WAS ALREADY KNOWN & STUDIED UNDER DIFFERENT NAMES:

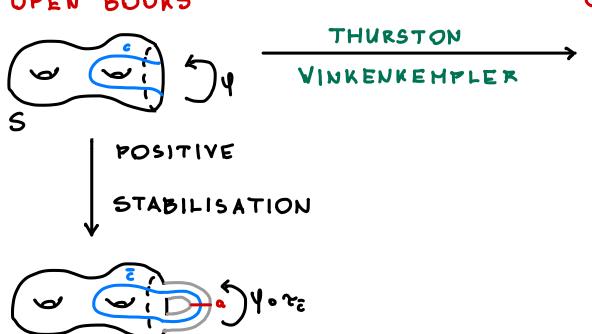
- · GLOBAL POINCARÉ BIRKHOFF SECTION
- · RELATIVE HAPPING TORUS
- · LEFSHETZ/ HILNOR FIBRATION
- . TIBERED LINKS
- · SPINNABLE STRUCTURES

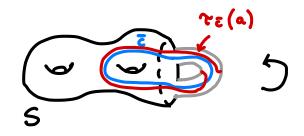


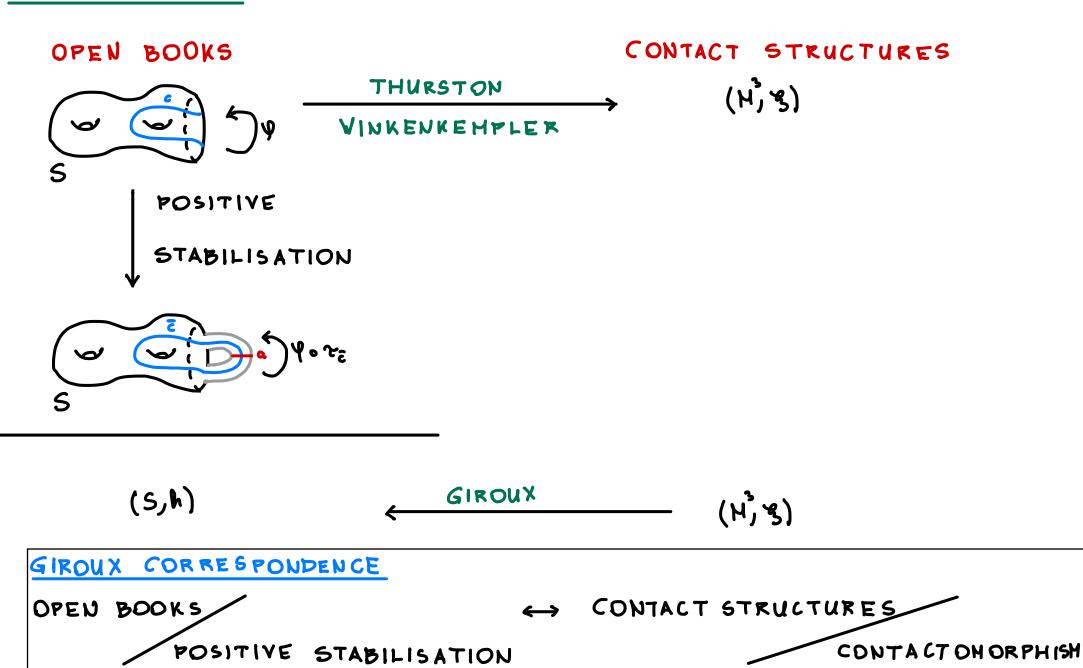
OPEN BOOKS

CONTACT STRUCTURES

(H, 3)







GIROUX CORRESPONDENCE OPEN BOOKS FOSITIVE STABILISATION CONTACT ON ORPHISH

- GC HAS BEEN EXTENSIVELY USED TO PROVE THUS ABOUT CTCT 3-NFDS
- THE ORIGINAL PROOF OF GIRDUX WAS INCOMPLETE

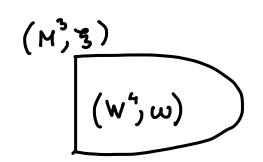
 (HASSOT WROTE DOWN A COMPLETE PROOF BUT DIDN'T)

 PUBLISH IT
- FOR CONTACT STRUCTURES IN ANY ODD DINENSIONS
- 1013 LICATA Y. : PROOF OF THE GIROUX CORRESPONDENCE

 FOR TIGHT CONTACT 3- NANIFOLDS (INDEPENDENT)
- 1024 LICATA V. : EXTENDED OUR PROOF TO WORK FOR ANY CONTACT 3- NANIFOLD

IN CONTACT TOPOLOGY

→ FILLABILITY



GIROUX: TOPOLOGICAL DESCRIPTION OF STEIN-FILLABLE CONTACT 3-MANIFOLDS

ELIASHBERG, ETNYRE: ANY WEAK SYMPLECTIC TILLING OF A

CONTACT 3-MANIFOLD CAN BE EYBEDDED INTO A CLOSED

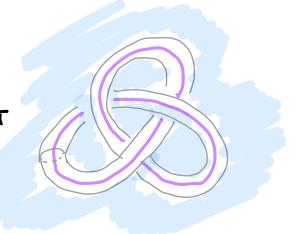
SYMPLECTIC HANIFOLD

* CONTACT SURGERY

WAND: CONTACT SURGERY PRESERVES TIGHTNESS

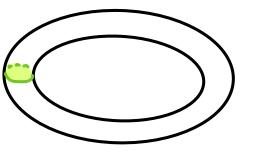
KEGEL- STENHENDE- V-ZUDDAS: CLASSIFICATION OF LEGENDRIAN SURGERY DIAGRAMS DESCRIBING THE SAME CONTACT HANIFOLD

SURGERY: REHOVE NEIGHBOURHOOD OF A KNOT



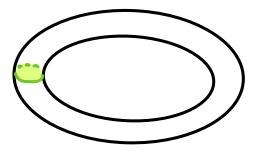
SURGERY: REHOVE NEIGHBOURHOOD OF A KNOT

& GLUE BACK A D2 × SA DIFFERENTLY



SURGERY: REHOVE NEIGHBOURHOOD OF A KNOT

& GLUE BACK A D2 × S4 DIFFERENTLY



KRONHEIHER - HROWKA: EVERY NONTRIVIAL KNOT HAS PROPERTY P

OZSYATH- SZABÓ: THE UNKNOT, TREFOIL & FIGURE-EIGHT KNOT

ARE CHARACTERISED BY THEIR SYRGERIES

OZSYATH- SZABÓ: THE THURGTON NORH IS DETERHINED BY
HEEGAARD FLOER HOHOLOGY

GIROUX - GOODMAN: INDUCTIVE CONSTRUCTION OF FIBERED

KNOTS IN 5°

- · LECTURE 4 : SUBHANIFOLDS OF CONTACT STRUCTURES
- LECTURE 2 : DESCRIBING CONTACT STRUCTURES
- LECTURE 3 : PROOF OF GIROUX CORRESPONDENCE

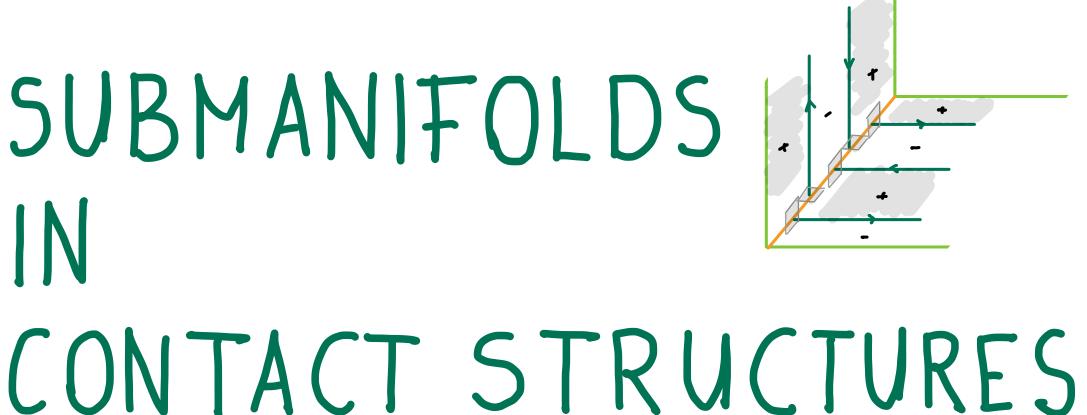
- LECTURE 1 : SUBHANIFOLDS OF CONTACT STRUCTURES
 - CONTACT STRUCTURES
 - -(10) LEGENDRIAN & TRANSVERSE KNOTS , LEGENDRIAN GRAPHS
 - -(20) CONVEX SURFACES
 - NEIGHBOURHOOD THEOREMS
 - TIGHT & OVERTWISTED CONTACT STRUCTURES
- LECTURE 2: DESCRIBING CONTACT STRUCTURES
- LECTURE 3 : PROOF OF GIROUX CORRESPONDENCE

- LECTURE 1: SUBHANIFOLDS OF CONTACT STRUCTURES
- LECTURE 2: DESCRIBING CONTACT STRUCTURES
 - CONTACT CELL DECOMPOSITIONS
 - CONVEX SURFACE THEORY BYPASSES
 - CONTACT HEEGAARD SPLITTINGS (PROOF OF EXISTENCE)
 - OPEN BOOK DECOMPOSITIONS
 - OPEN BOOK DECOMPOSITIONS & CONTACT HEEGAARD SPLITTINGS
- LECTURE 3 : PROOF OF GIROUX CORRESPONDENCE

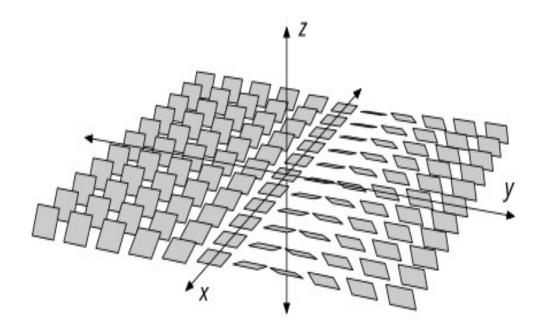
- LECTURE 1 : SUBHANIFOLDS OF CONTACT STRUCTURES
- LECTURE 2: DESCRIBING CONTACT STRUCTURES
- LECTURE 3 : PROOF OF GIROUX CORRESPONDENCE
 - STABILISATION
 - STATEMENT OF GIROUX CORRESPONDENCE
 - IDEA OF PROOF
 - FURTHER DIRECTIONS

LECTURE 1

SUBMANIFOLDS



CONTACT STRUCTURES

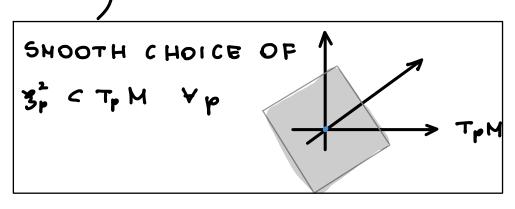


CONTACT STRUCTURES

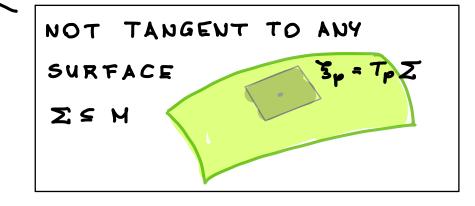
DEF: A CONTACT STRUCTURE ON A CLOSED, ORIENTED SHOOTH

3-MANIFOLD H' IS A TOTALLY NONINTEGRABLE

2-TLANE-DISTRIBUTION 3CTH



LOCALLY: 3 = km & & E 11 (M)



T FROBENIUS

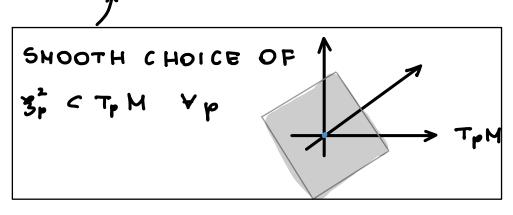
COORIENTED CONTACT STRUCTURE : GLOBAL &

CONTACT STRUCTURES

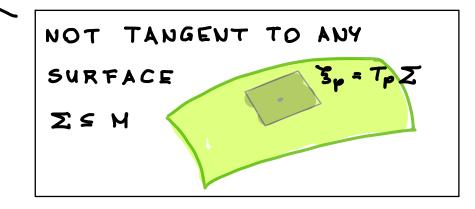
DEF: A CONTACT STRUCTURE ON A CLOSED, ORIENTED SHOOTH

3-MANIFOLD H' IS A TOTALLY NONINTEGRABLE

2-TLANE-DISTRIBUTION 3CTH



LOCALLY: 3 = km & & E 11 (H)



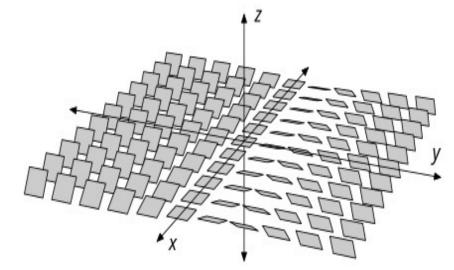
T FROBENIUS

COORIENTED CONTACT STRUCTURE : GLOBAL &

DARBOUX THIM: LOCALLY ANY CONTACT

STRUCTURE IS CONTACT OHORPHIC

DIFFEONORPHISM THAT CARRIES



EQUIVALENCE OF CONTACT STRUCTURES

(H, 3)& (H', 3') CONTACT STRUCTURES

· CONTACTONORPHISH (H, g) = (H', g') IF 3 DIFFEOHORPHISH Φ: H→H'

THAT CARRIES 3 TO 3': Φ, g = 5'

WHEN M= M'

- HOHOTOPY: 3=3 IF 3 1- PARAMETER FAHILY OF CONTACT

 STRUCTURES (3+)+ E[P,A] ON M WITH 3=3. & 3=5.
- · 150TOPY: 多次 当 IF ヨ 1- PARAMETER FAHILY OF SELF: DIFFEOHORPHISM

 (中山(ロー) OF M WITH・中の= ld &
 ・ ま) = (中山 ま) を

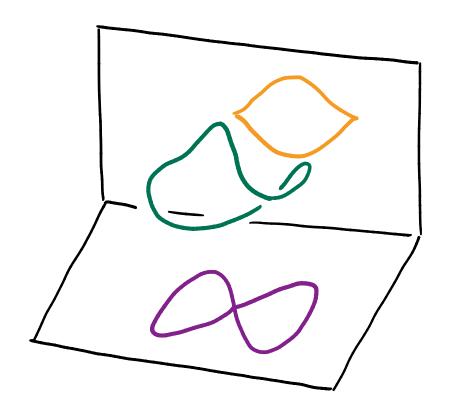
THM (GRAY STABILITY): "HOHOTOPY = 150TOPY"

ANY HOHOTOPY (3_{+})_{$+ \in [D, \Lambda]$} OF CONTACT STRUCTURES IS

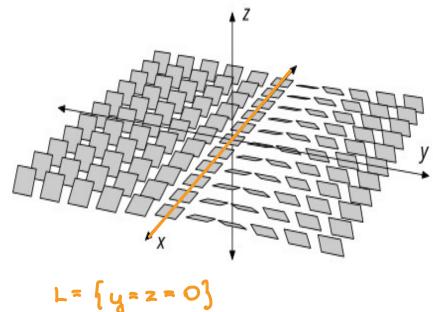
INDUCED BY AN ISOTOPY (ϕ_{+})_{$+ \in [D, \Lambda]$}: • $\phi_{+} = Id$ &

• $3_{+} = (\phi_{+})_{+} 3_{+}$

1-DM: KNOTS



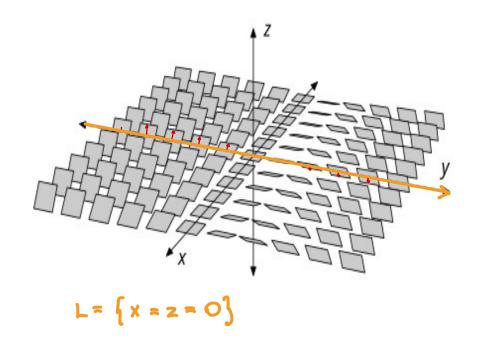
DEF : L'GM IS A LEGENDRIAN KNOT IF TPL < 3p Yp:



DEF: L'GM IS A LEGENDRIAN KNOT

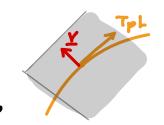
IF Tpl < 3p Yp:

MOTTO: THE CONTACT STRUCTURE
ALWAYS ROTATES
ALONG LEGENDRIANS



THURSTON - BENNEQUIN TRANING .

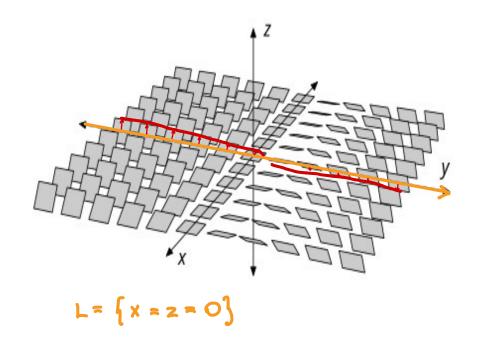
PUSH L IN THE
DIRECTION OF Y
WHERE Y L TPL & y & Sp



DEF: L'GM IS A LEGENDRIAN KNOT

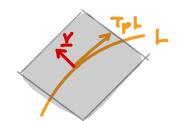
IF Tpl < 3p Yp:

MOTTO: THE CONTACT STRUCTURE
ALWAYS ROTATES
ALONG LEGENDRIANS



THURSTON - BENNEQUIN TRANING .

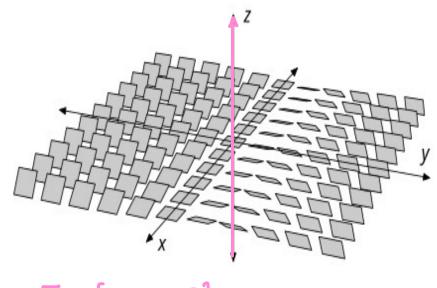
PUSH L IN THE
DIRECTION OF Y
WHERE Y L TPL & y & Sp



DEF: L'GM IS A LEGENDRIAN KNOT

IF Tpl < 3p Yp:

MOTTO: THE CONTACT STRUCTURE
ALWAYS ROTATES
ALONG LEGENDRIANS

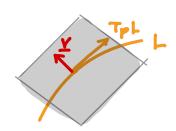


THURSTON - BENNEQUIN FRANING .

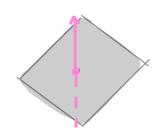
TUSH L IN THE

DIRECTION OF Y

WHERE YPITPL & YPESP



DEF: TGM IS A TRANSVERSE KNOT IF THT A 3p Yp:

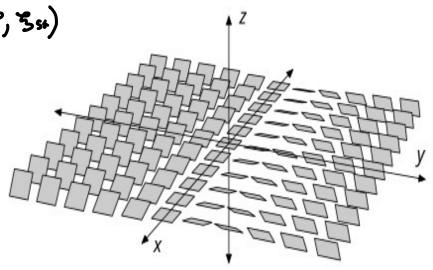


EGENDRIAN APPROXIMATION

THN: ANY KNOT K (M, S) CAN BE C°- APPROXIMATED BY
A LEGENDRIAN KNOT

IDEA OF TROOF : ENOUGH TO APPROXIMATE LOCALLY & BY

DARBOUX THM WE CAN WORK IN (183, 354)



EGENDRIAN APPROXIMATION

THN: ANY KNOT K (H, 5) CAN BE C°- APPROXIMATED BY
A LEGENDRIAN KNOT

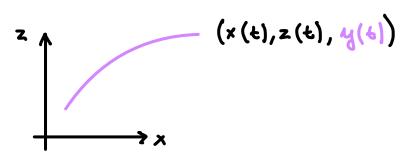
IDEA OF TROOF : ENOUGH TO APPROXIMATE LOCALLY & BY

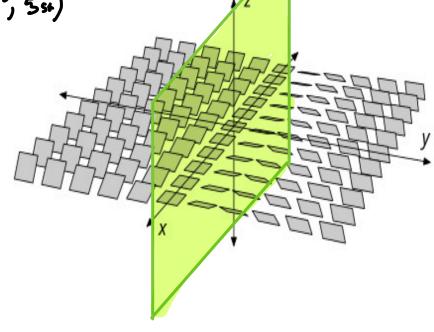
DARBOUX THM WE CAN WORK IN (183, 354)

$$3 = k (dz - y dx) \iff y = \frac{dz}{dx}$$

WE CAN READ OFF 4-COORDINATE FRON THE PROJECTION TO (x,z)-PLANE

· PROJECT K TO THE (x,z) - PLANE





EGENDRIAN APPROXIMATION

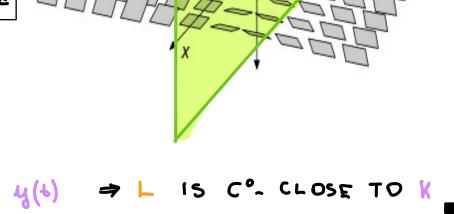
THM: ANY KNOT K (H, S) CAN BE C°- APPROXIMATED BY A LEGENDRIAN KNOT

IDEA OF TROOF : ENOUGH TO APPROXIMATE LOCALLY & BY DARBOUX THM WE CAN WORK IN (183, 354)

$$3 = k (dz - y dx) \iff y = \frac{dz}{dx}$$

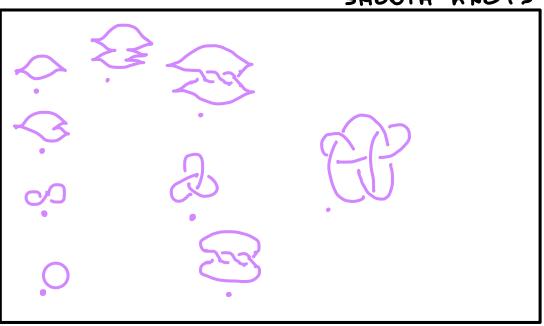
WE CAN READ OFF 4-COORDINATE FRON THE PROJECTION TO (x,z)-PLANE

• PROJECT K TO THE (x,z) - PLANE

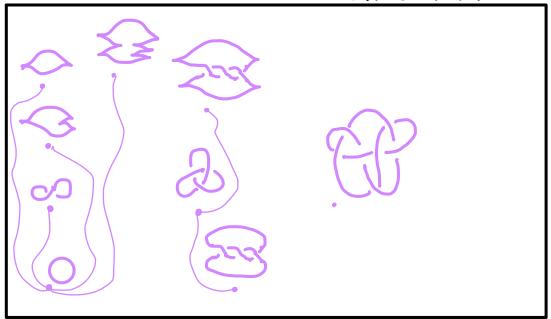


COR: ANY SHOOTH KNOT CAN BE REPRESENTED BY A LEGENDRIAN KNOT

SHOOTH KNOTS

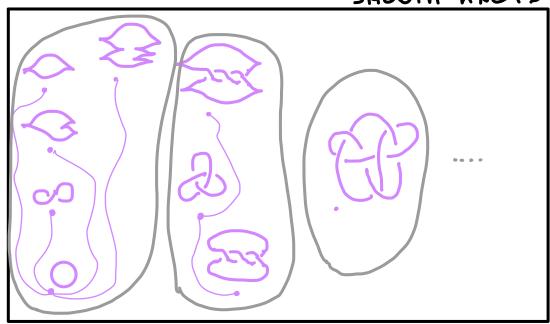


SHOOTH KNOTS



SPACE OF KNOTS

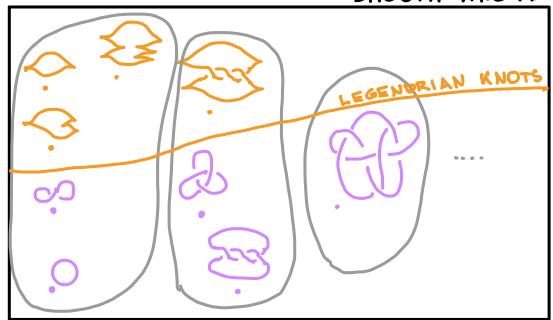
SHOOTH KNOTS



150TOPY: PATH IN THE SPACE OF KNOTS

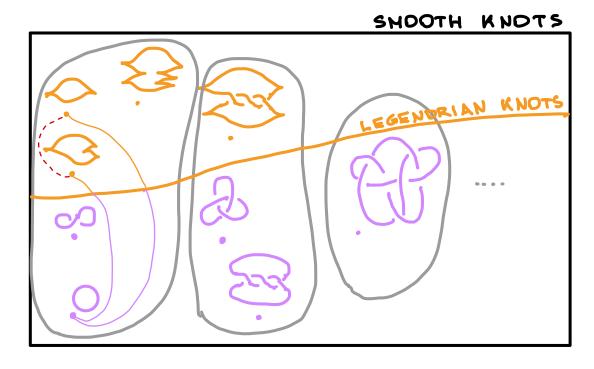
ISOTOPY CLASS : CONNECTED
COMPONENT

SHOOTH KNOTS



SPACE OF KNOTS

ISOTOPY CLASS : CONNECTED
COMPONENT



SPACE OF KNOTS

ISOTOPY CLASS : CONNECTED

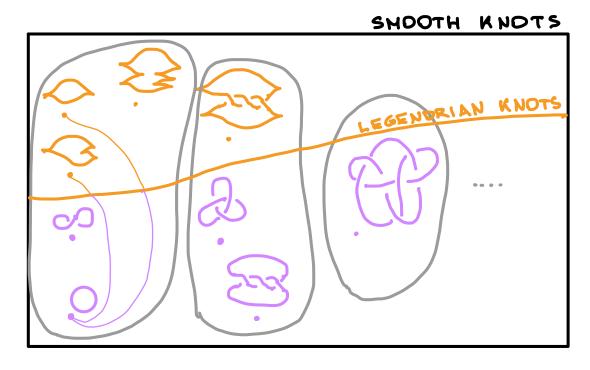
COMPONENT

LEGENDRIAN ISOTOPY PATH

IN THE SPACE OF LEGENDRIAN

KNOTS

IF L ISOTOPIC TO L' IMPLIES L LEGEDRIAN ISOTOPIC TOL'?



SPACE OF KUOTS

COMPONENT

LEGENDRIAN ISOTOPY ' PATH

IN THE SPACE OF LEGENDRIAN

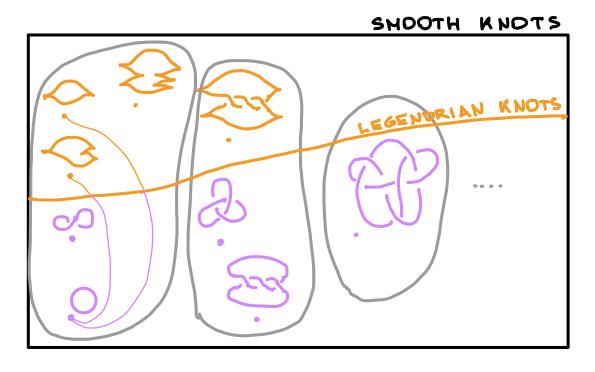
KNOTS

IF L ISOTOPIC TO L' IMPLIES L LEGEDRIAN ISOTOPIC TOL'?

NO! - THE TWISTING OF & (W.R.T THE SEIFERT SURFACE)

DOESN'T CHANGE DURING LEGENDRIAN

150TOPY



SPACE OF KNOTS

COMPONENT

LEGENDRIAN ISOTOPY ' TATH

IN THE SPACE OF LEGENDRIAN

KNOTS

IF L ISOTOPIC TO L' IMPLIES L LEGEDRIAN ISOTOPIC TOL'?

NO! - THE TWISTING OF & (W.R.T THE SEIFERT SURFACE)

DOESN'T CHANGE DURING LEGENDRIAN

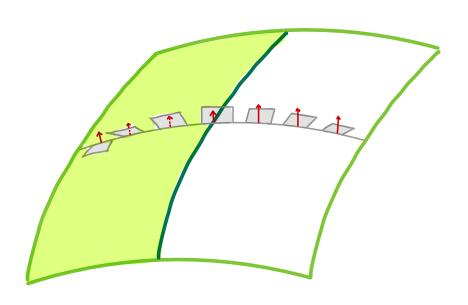
150TOPY

STABILISATION:

CHANGES TWISTING

THM (FUCHS-TABACHNIKOV): L IS ISOTOPIC TO L' - AFTER SONE STABILISATIONS St (L) IS LEGEDRIAN ISOTOPIC TO St (L')

2-DIM: SURFACES



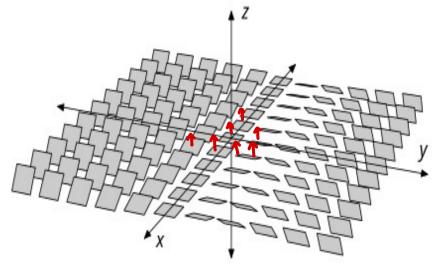
DEF: A CONTACT VECTORFIELD X & X (M)

IS A VECTORFIELD WHOSE FLOW

TRESERVS 3

1

Zx ~ = g ~ FOR SOME g: N→R

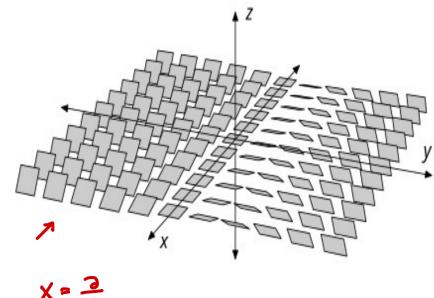


DEF: A CONTACT VECTORFIELD X & X (M)

IS A VECTORFIELD WHOSE FLOW

TRESERVS 3

Zx ~ = g ~ FOR SOME g: N→R



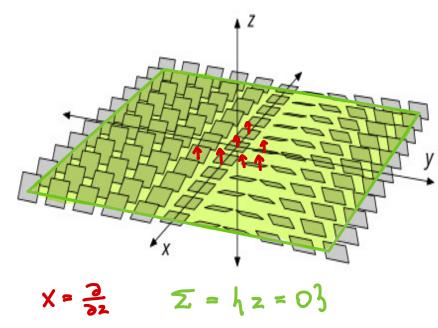
DEF: A CONTACT VECTORFIELD X & X (M)

IS A VECTORFIELD WHOSE FLOW

TRESERVS 3

1

Zx ~ = g ~ FOR SOME g: N→TR



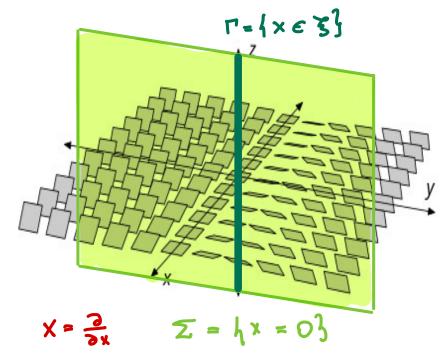
DEF: Z → H IS CONVEX IF 3 X CONTACT VECTORFIELD X \$\(\Delta\) \In \(\Delta\)

DEF: A CONTACT VECTORFIELD X & X (M)

15 A VECTORFIELD WHOSE FLOW

PRESERVS 3

Zx ~ = g ~ FOR SOME g: N→TR



DEF: Z → H IS CONVEX IF 3 X CONTACT VECTORFIELD X \$ Z

EQUIVALENTLY: Z HAS A NEIGHBOURHOOD N(I) = ZxI WITH
I-INVARIANT CONTACT STRUCTURE ₹

~= β + qd+ WHERE B ∈ Ω'(Z) & q: M → TR

FACT (GIROUX): TO UNDERSTAND 3 ON N(X) ONE ONLY NEEDS

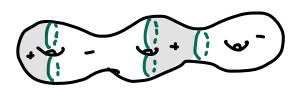
CONVEX SURFACES (GIROUX)

DEF: ZGH IS CONVEX IF & CONTACT VECTORFIELD X: ZAX

DEF: P= (X & 3) = (x(X)=0) CZ IS THE DIVIDING CURVE

TROP' - THE ISOTOPY CLASS OF T IS INDEPENDENT OF THE CHOICE OF X

- Γ DIVIDES Σ INTO TWO PIECES: $\Sigma_+ = \{ \kappa(X) > 0 \}$ $\Sigma_- = \{ \kappa(X) < 0 \}$



THH (THE DIVIDING CURVE DETERHINES & NEAR Z)

 Σ, Σ' CONVEX SURFACES W/ ISOTOPIC DIVIDING CURVES $\Longrightarrow \exists \ N(\Sigma), N(\Sigma')$ NEIGHBOURHOODS THAT ARE CONTACTONORPHIC

THM (CONVEX SURFACES ARE CO-GENERIC): ANY SURFACE I CAN

CONTACT MANIFOLDS WITH BOUNDARY

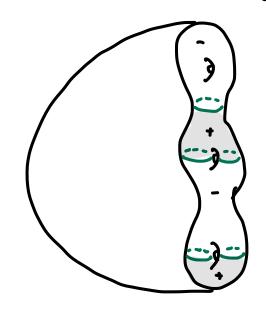
 $\underline{\mathsf{DEF}}: \big(\Sigma_{\mathsf{t}}\big)_{\mathsf{t}\in[0,4]} \quad \mathsf{IS} \quad \mathsf{A} \quad \underline{\mathsf{CONVEX}} \quad \mathsf{ISOTOPY} \quad \mathsf{IF} \quad \Sigma_{\mathsf{t}} \quad \mathsf{IS} \quad \mathsf{CONVEX} \quad \big(\forall \; \mathsf{t} \in [0,4]\big)$

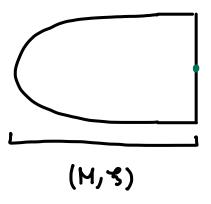
WE WILL WORK WITH

M' 5-HANIFOLD WITH BOUNDARY,

3 CONTACT STRUCTURE ON H, S.T

3 H IS CONVEX





CONTACT MANIFOLDS WITH BOUNDARY

DEF: $(\Sigma_t)_{t \in [0,4]}$ IS A CONVEX ISOTOPY IF Σ_t IS CONVEX $(\forall t \in [0,4])$

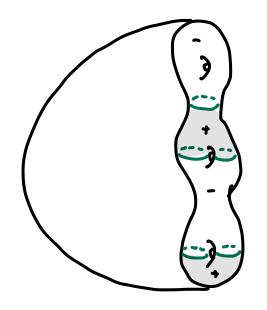
WE WILL WORK WITH

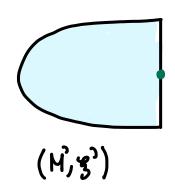
M' 5-HANIFOLD WITH BOUNDARY,

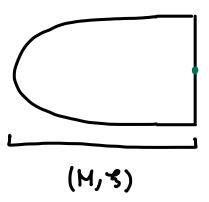
3 CONTACT STRUCTURE ON H, S.T

3 H IS CONVEX

· SAHE FOR (H', 5')







CONTACT MANIFOLDS WITH BOUNDARY

 $\underline{\mathsf{DEF}}: (\Sigma_{\mathsf{t}})_{\mathsf{t} \in [0,4]} \text{ is a } \underline{\mathsf{CONVEX}} \text{ isotopy} \text{ if } \Sigma_{\mathsf{t}} \text{ is convex} \left(\forall \; \mathsf{t} \in [0,4]\right)$

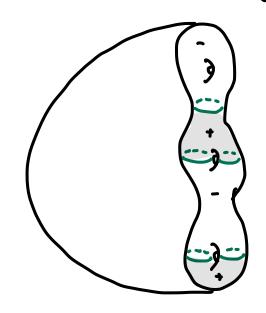
WE WILL WORK WITH

M' 5-HANIFOLD WITH BOUNDARY,

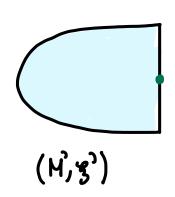
3 CONTACT STRUCTURE ON H, S.T

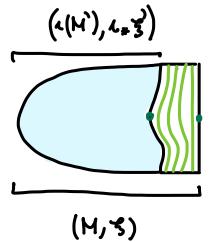
3 H IS CONVEX

· SAHE FOR (H', 5')



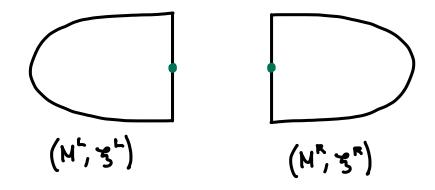
(F,H) FIND DUIDG BE : SIHOTOATHOD YLAND : TAHT HOUR



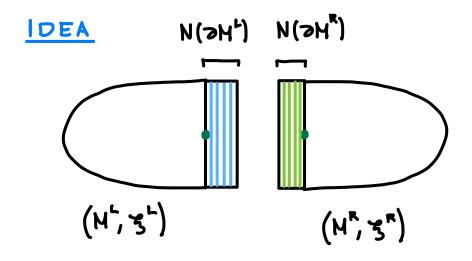


WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES

IDEA

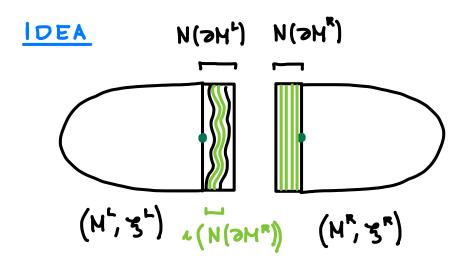


WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES



STEP 1: ADD I - INVARIANT PART TO EACH

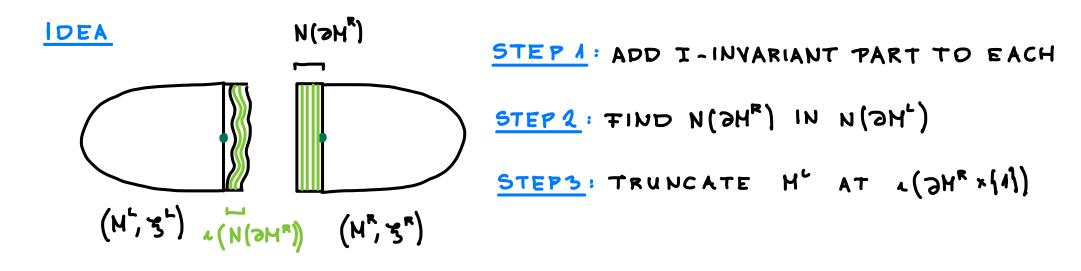
WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES



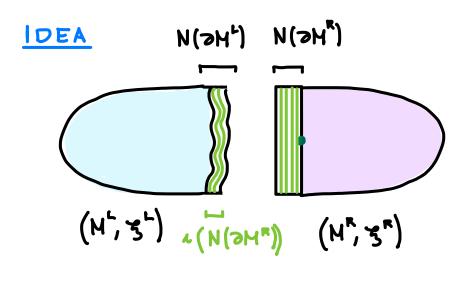
STEP 1: ADD I - INVARIANT PART TO EACH

STEP 2: FIND N(3HR) IN N(3HL)

WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES



WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES

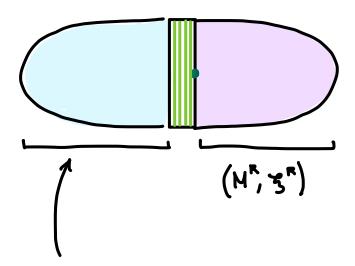


STEP 1: ADD I - INVARIANT PART TO EACH

STEP (TIND N(3HR) IN N(3HL)

STEPS: TRUNCATE H' AT L(3HR x(1))

STEP4: OVERLAP & (N(OMR)) WITH N(OMR)



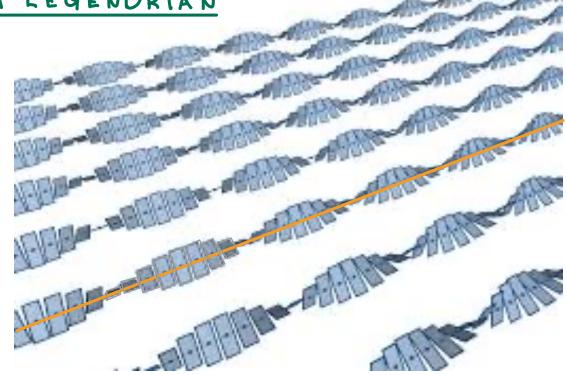
THE OBTAINED CONTACT MANIFOLD

IS (N', 3") U (N', 3")

& IT IS WELL DEFINED UP TO CONTACTOMORPHISM

WEAKLY CONTACT ISOTOPIC TO (HL, 3)

STANDARD NEIGHBOURHOOD OF A LEGENDRIAN E. 6: 3 = kw (cos(z) dx - sin(z) dy) (ISOTOPIC TO 3+)



STANDARD NEIGHBOURHOOD OF A LEGENDRIAN

E.6:3 = kw (cos(z) dx - sin(z) dy)

(ISOTOPIC TO 3 st)

IDENTIFY (x,y,z)~ (x,y,z+2TM)

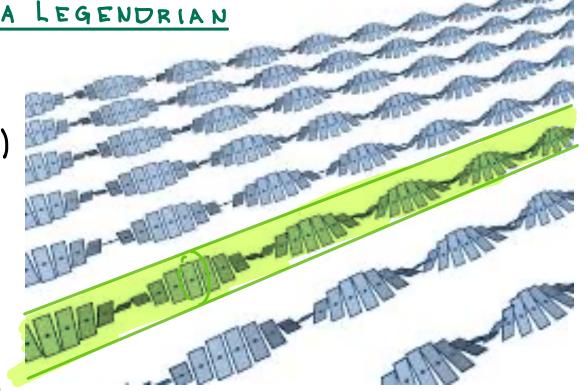
~> CONTACT STRUCTURE

ON TR2 x 5

WITH LEGENDRIAN KNOT

L= (0,0) x 5' C TR' x 5'

NEIGHBOURHOOD N(L)-D2 + 51



STANDARD NEIGHBOURHOOD OF A LEGENDRIAN

 $\underline{E.6}$: 3 = kw (cos(z) dx - sin(z) dy)

(ISOTOPIC TO 3 st)

IDENTIFY (x,y,z)~ (x,y,z+2Tin)

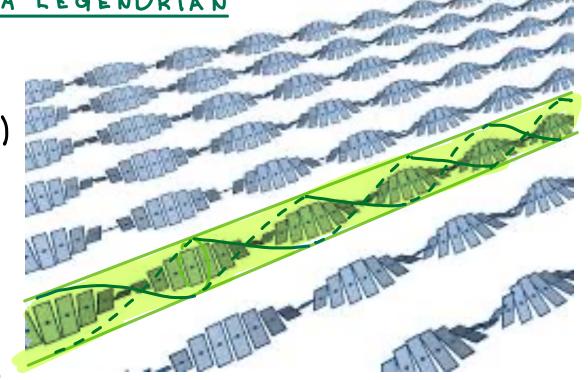
CONTACT STRUCTURE

ON R2 × S'

WITH LEGENDRIAN KNOT

L= (0,0) × S' CR2 × S'

NEIGHBOURHOOD N(L)-D2 x 5



THIS GIVES THE THURSTON - BENDEQUIN FRAHING

STANDARD NEIGHBOURHOOD OF A LEGENDRIAN

E.6: 3 = kw (cos(z) dx - sin(z) dy)

(ISOTOPIC TO 3 st)

IDENTIFY (x,y,z)~ (x,y,z+276n)

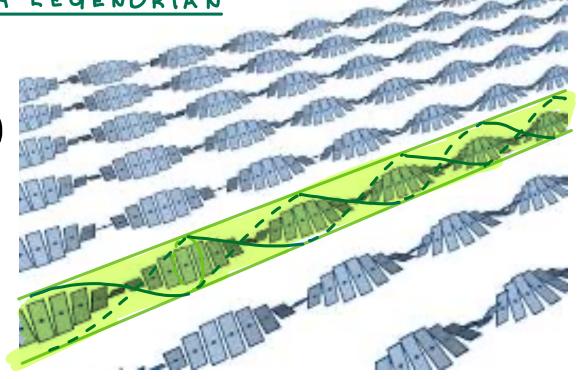
CONTACT STRUCTURE

ON R2 × S'

WITH LEGENDRIAN KNOT

L= (0,0) × S' CR2 × S'

NEIGHBOURHOOD N(L)-D2 + 5'



THIS GIVES THE THURSTON BY A CO-SHALL ISOTOPY

THE TO (SINCE PARALLEL TO (SINCE), COS(2), Z)

THM: ANY LEGENDRIAN KNOT LG (H, 3) HAS A NEIGHBOURHOOD N(L)
CONTACTOMORPHIC TO N(L.)

LEGENDRIANS ON CONVEX SURFACES

DET CC(Z,P) IS AN ISOLATING CURVE, IF SOME COMPONENT

OF Z/C IS DISTOINT TROM T:

THY (LEGENDRIAN REALISATION PRINCIPLE)

(Z,T) CONVEX SURFACE, CCI NON-ISOLATING CURVE

 \Longrightarrow Σ can be isotoped through convex surfaces $\Psi_{\bullet}(\Sigma)$ s.t. after the isotopy $\Psi_{\bullet}(c) \subset \Psi_{\bullet}(\Sigma)$ is legendrian

LEGENDRIANS ON CONVEX SURFACES

DET CC (Z,P) IS AN ISDLATING CURVE, IF SOME COMPONENT

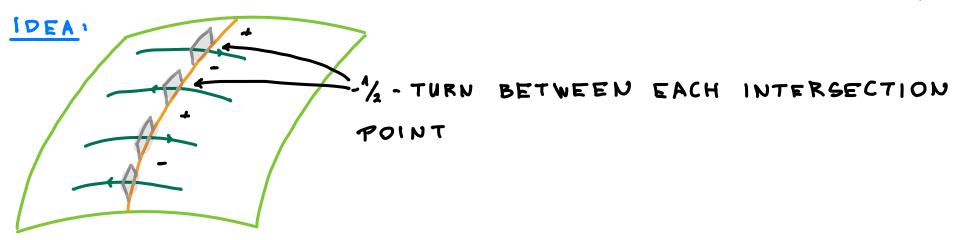
OF Z/C IS DISTOINT TROM T:

THY (LEGENDRIAN REALISATION PRINCIPLE)

(I,T) CONVEX SURFACE, CCI NON-ISOLATING CURVE

 \Longrightarrow Σ can be isotoped through convex surfaces $\Psi_{\epsilon}(\Sigma)$ s.t. after the isotopy $\Psi_{\epsilon}(c) \in \Psi_{\epsilon}(\Sigma)$ is legendrian

THE TWISTING OF & W.R.T. TZ ALONG C = - 1/2 COP



CONVEX SURFACES WITH LEGENDRIAN BOUNDARY

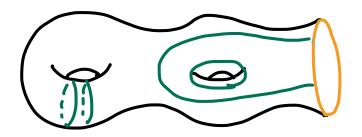
THM (KANDA): Z SURFACE WITH LEGENDRIAN BOUNDARY L CAN
BE ISOTOPED REL 3 TO BE CONVEX

1

TWISTING OF & W.R.T. Z ALONG L IS 40

• THE ISOTOPY CAN BE ASSUMED TO BE C°- SHALL (C° - SHALL IF Z IS ALREADY CONVEX NEAR ∂Z)

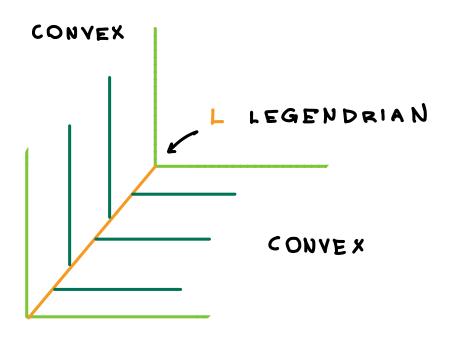
RMK: AFTER THE ISOTOPY



TWISTING OF & W.R.T. I ALONG L = - 1/2 POL

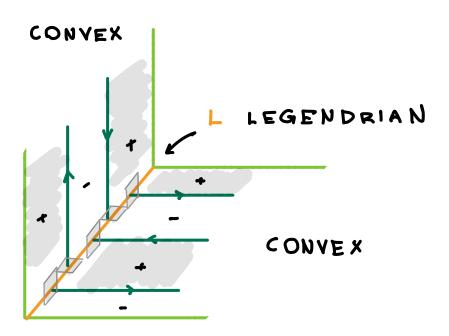
ROUNDING EDGES

IN R I CONVEX SURFACES WITH CONHON LEGENDRIAN BOUNDARY L



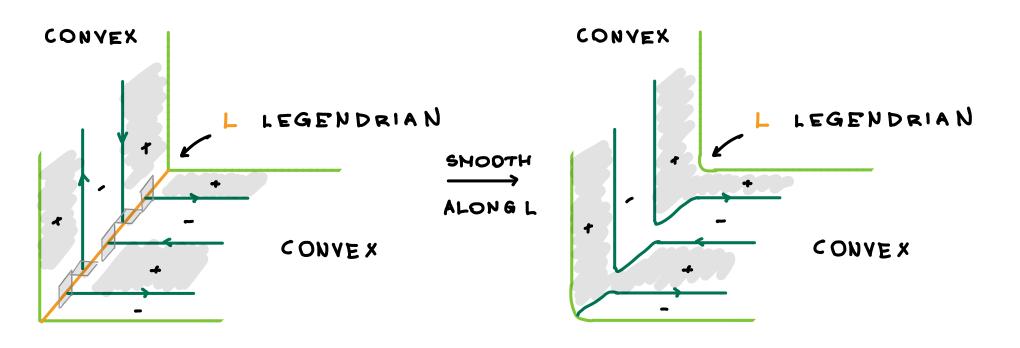
ROUNDING EDGES

IN R I CONVEX SURFACES WITH CONHON LEGENDRIAN BOUNDARY L



ROUNDING EDGES

Z, & Z, CONVEX SURFACES WITH CONHON LEGENDRIAN BOUNDARY L
THEN THE EDGE L CAN BE ROUNDED & WE GET A NEW
SHOOTH CONVEX SURFACE Z WITH DIVIDING CURVE AS BELDW

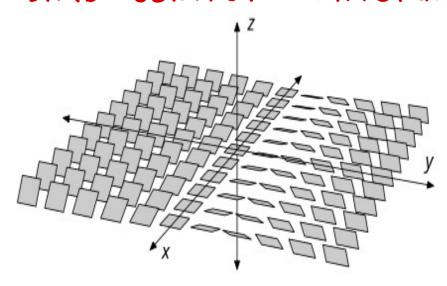


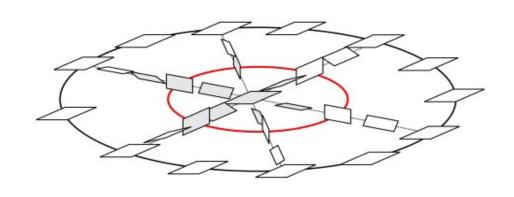
TIGHI OVERTWISTED)

TWO CONTACT STRUCTURES

STANDARD CONTACT STRUCTURE

OVERTWISTED CONTACT STRUCTURE

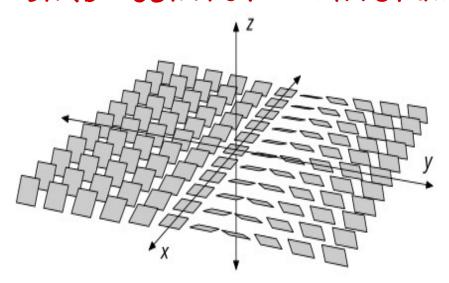


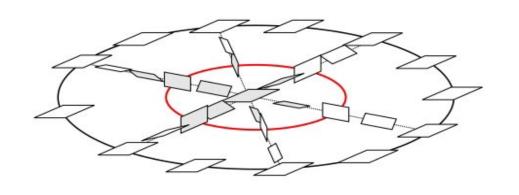


ARE 3 14 & 300 ISOTOPIC/CONTACTOMORPHIC ?

TWO CONTACT STRUCTURES

STANDARD CONTACT STRUCTURE OVERTWISTED CONTACT STRUCTURE





ARE 34 & 300 ISOTOPIC/CONTACTOMORPHIC ?

DEF D CH (H,3) IS AN OVERTWISTED DISK IF TD 30 = 3 30

RMK ENOUGH TWISTING OF & ALONG PO WAT D IS O

DEF . . 3 IS OVERTWISTED IF 3 CONTAINS AN OVERTWISTED DISK

· Y IS TIGHT IF IT IS NOT OVERTWISTED

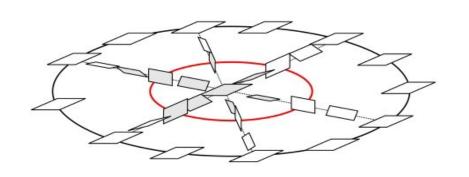
OVERTWISTED CONTACT STRUCTURES

THM (FLIASHBERG) 为,为 OVERTWISTED

CONTACT STRUCTURES 及

3~ 对 AS PLANEFIELDS

\$ \$ \$ \$



THM (LUTZ-HARTINEZ) ANY HONOTOPY CLASS OF PLANEFIELDS

15 REPRESENTED BY A(N OVERTWISTED) CONTACT STRUCTURE

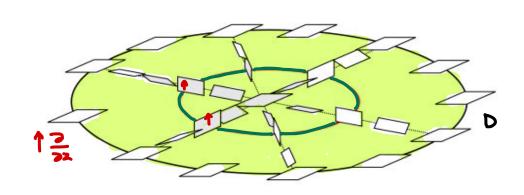
OVERTWISTED CONTACT STRUCTURES CAN BE UNDERSTOOD THROUGH ALGEBRAIC TOPOLOGICAL INVARIANTS : de, de

THK: TIGH CONTACT STRUCTURES ARE HARDER TO CLASSIFY

- · ELIASHBERG: 5 ADMITS A UNIQUE TIGHT CONTACT STRUCTURE
- · GIROUX · 3 LY HANY 3-HAUIFOLDS WITH LY MANY
 TIGHT CONTACT STRUCTURES
- · ETNYRE: I(1,3,5) ADMITS NO TIGHT CONTACT STRUCTURES

• ..,

RECOGNISING OVERTWISTED CONTACT STRUCTURES



DIS <u>CONVEX</u>: $x = \frac{2}{32}$ IS A CONTACT VECTORFIELD, $X \neq D$ $P = \left(\frac{2}{32} \in \mathcal{F}\right) = \left(\gamma = \pi \right) \times \{0\}$

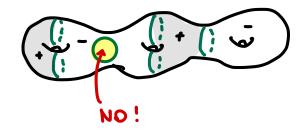
307 = ken (cos(1) dz + r sin(1) d2)

THH (GIROUX'S CRITERION): Z'-> (H, 3) CONVEX SURFACE ADHITS

A TIGHT NEIGHBOURHOOD $(N(\Sigma), 3|_{N(\Sigma)})$ IFF

· I + 5 & NO COMPONENT OF P BOUNDS A DISC

OR

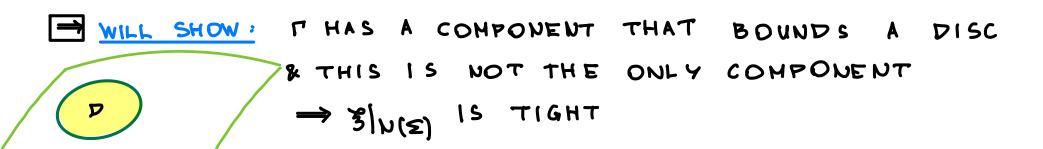


DEA OF PROOF

THH (GIROUX'S CRITERION): $\Sigma \hookrightarrow (H, \S)$ CONVEX SURFACE ADMITS

A TIGHT NEIGHBOURHOOD $(N(\Sigma), \S|_{N(\Sigma)})$ IFF

• $Z = S^2$ & $|\Gamma| = 1$ • $Z \neq S^2$ & NO COMPONENT OF Γ BOUNDS A DISC



DEA OF PROOF

THH (GIROUX'S CRITERION): Z'-> (H, Z) CONVEX SURFACE ADHITS

A TIGHT NEIGHBOURHOOD (N(E), 3 N(E)) IFF

- · Z = 52 & |r|=1
- I + 5 & NO COMPONENT OF P BOUNDS A DISC

WILL SHOW: I HAS A COMPONENT THAT BOUNDS A DISC D

& THIS IS NOT THE ONLY COMPONENT

→ 3/N(E) IS TIGHT

CONSIDER: C ENCAPSULATING P

C IS NON-ISOLATING

LEGENDRIAN REALISATION PRINCIPLE

WE CAN ISOTOPE & INSIDE N(E) SUCH THAT C IS LEGENDRIAN

DEA OF PROOF

THH (GIROUX'S CRITERION): Z' (H, 3) CONVEX SURFACE ADHITS

A TIGHT NEIGHBOURHOOD (N(E), 3/N(E)) IFF

• I + 52 & NO COMPONENT OF T BOUNDS A DISC

WILL SHOW: I HAS A COMPONENT THAT BOUNDS A DISC D

& THIS IS NOT THE ONLY COMPONENT

→ 3/U(E) IS TIGHT

CONSIDER: C ENCAPSULATING P

C IS NON-ISOLATING

LEGENDRIAN REALISATION PRINCIPLE

WE CAN ISOTOPE Ξ INSIDE $N(\Xi)$ SUCH THAT C IS LEGENDRIAN THEN TWISTING OF $\frac{\pi}{3}$ ALONG C W.R.T. Ξ = $\frac{\pi}{2}|\Gamma \cap C|$

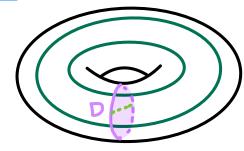
SO D' IS AN OVERTWISTED DISC/

₩ UNIVERSAL COVER OF I ...

THM (ELIASHBERG): D'ADMITS A UNIQUE TIGHT CONTACT
STRUCTURE WITH CONNECTED DIVIDING CURVE ON 5':

THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E.G. : M = 02 × 54 GIVEN ANY CONTACT STRUCTURE & ON H

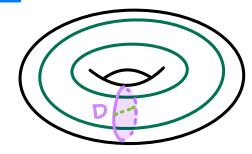


• STEP 1: BY THE LEGENDRIAN REALISATION PRINCIPLE
WE CAN ASSUME 3D IS LEGENDRIAN

THM (ELIASHBERG): D'ADMITS A UNIQUE TIGHT CONTACT
STRUCTURE WITH CONNECTED DIVIDING CURVE ON 5':

THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E.G. : H = D2 × 54 GIVEN ANY CONTACT STRUCTURE & ON H



• STEP 1: BY THE LEGENDRIAN REALISATION PRINCIPLE
WE CAN ASSUME 3D IS LEGENDRIAN

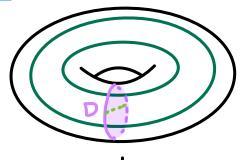
* STEP 2: ISOTOPE D REL. > TO BE CONVEX:

THE DIVIDING CURVE ON D IS A SINGLE ARC

THM (ELIASHBERG): D'ADMITS A UNIQUE TIGHT CONTACT
STRUCTURE WITH CONNECTED DIVIDING CURVE ON 5':

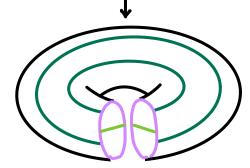
THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E.G.: H = D2 × S4 GIVEN ANY CONTACT STRUCTURE & ON H



• STEP 1: BY THE LEGENDRIAN REALISATION PRINCIPLE
WE CAN ASSUME 3D IS LEGENDRIAN

THE DIVIDING CURVE ON D IS A SINGLE ARC

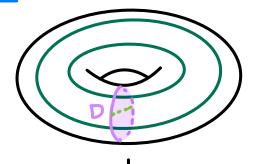


· STEP 3 : CUT H ALONG D

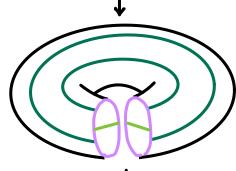
THM (ELIASHBERG): D'ADMITS A UNIQUE TIGHT CONTACT
STRUCTURE WITH CONNECTED DIVIDING CURVE ON 5':

THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E.G. : H = 02 × 54 GIVEN ANY CONTACT STRUCTURE & ON H



• STEP 1: BY THE LEGENDRIAN REALISATION PRINCIPLE
WE CAN ASSUME 3D IS LEGENDRIAN

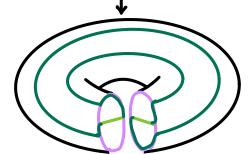


· STEP 3 : CUT H ALONG D

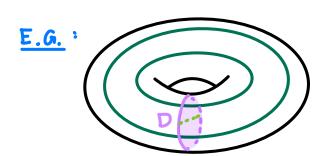
*STEP4: ROUND THE EDGES: WE GET A DOWNICH HAS A UNIQUE CONTACT STRUCTURE 3.

ANY 3 CAN BE OBTAINED FROM 3.

BY GLUEING => 3 IS UNIQUE TOO



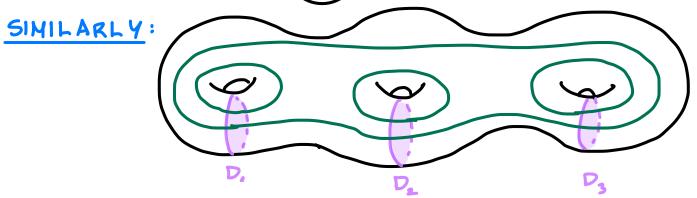
THM (ELIASHBERG): D'ADMITS A UNIQUE TIGHT CONTACT
STRUCTURE WITH CONNECTED DIVIDING CURVE ON 52:



ADMITS A UNIQUE TIGHT CONTACT STRUCTURE

- . WHAT DID WE USE IN THE PROOF?
- . THAT POOR = 2 THUS THE DIVIDING CURVE ON D WAS WELL

AFTER CUTTING AND ROUNDING



ADMITS A UNIQUE TIGHT CONTACT STRUCTURE

DEF: PRODUCT DISC DECOMPOSABLE

TO BE CONTINUED ...

LECTURE 2: DESCRIBING CONTACT STRUCTURES

- CONTACT CELL DECOMPOSITIONS
- CONVEX SURFACE THEORY BYPASSES
- CONTACT HEEGAARD SPLITTINGS (PROOF OF EXISTENCE)
- OPEN BOOK DECOMPOSITIONS
- OPEN BOOK DECOMPOSITIONS & CONTACT HEEGAARD SPLITTINGS