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NTRODUCTION

4973 VINKELNKEMPER:® FIRST USEDP THE WORD
"OPEM BOOK PECOMPOSITION"
BUT T WAS ALREADY KNOWN & STUDIED UNDER DIFFERENT MAMES:
- GLOBAL ’POINCARE'-BIRKHOFF SECTION
RELATIVE MWMAPP|NG TORUS
LEFSHETZ/ HILNOR TFIBRATION
FIBERED LINKS
SPINNABLE STRUC TURES

DEF: OPEN BOOK: (5,4)

K ¥: SO HOMNEOMORPHISM ¢ MONODROMY

SURFACE WITH BOUNDARY

S
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|NTR.ODUCTIOU

GIROUX CORRE 5§ PONPENCE

OPEM PBPOOKS e~ CONTACT STRULTURES
POSITIVE STABILISATION CONTACT OMORPH ISM

GG

2000 THE ORIGINAL PROOF OF GIROUX WAS INCOMPLETE
MASSOT

202% BREEN- HOMDA - HUANG : PROOF OF THE GIROUX CORRF SPONDENCE
TOR CONTACT STRUCTURES IN ANy ODPD VDIMENGIONS

2023 LICATA -V.: PROOF OF THE GIROUX CORRF SPONDEMNCE
FOR TIGHT CONTACT - NAMIFOLDS
2024 LICATA -V.: EXTEVUDED OUR PROOF TO WORUK FOR AMNY

CONTACT - NAMIFOLD



APPLICATIONS

(M5%)
IN CONTACT TOPOLOGY .
(W5 w)
SFILLABILITY
GIROUX : TOPOLOGICA|L DEGSGCRIPTION OF STEIN-FILLABLE

CONTACT 3-MANIFOLDS

ELIASHBERG ) ETNYRE = ANY WEAK SYMPLECTIC FILLING OF A
CONTACT 3-MHAVNIFOLD CAN BE ENBEDPDEDO INMTO A CLOSEPD
SYMPLECTIC MANIFOLD

» CONTACT SURGERY
WAND: CONTACT SURGERY PRESERVES TIGHTNESLS

KEGEL- STENHEWDE -V ~ZUDDAY = CLASSIFICATIOVN OF LEGENDRIAN
SURGERY DIAGRAMS DESCRIBING THE SAME COVTACT

HAMIFOLD



APPLICATIONS

SURGERY: REWOVE NE(GHBOURHOOD OF A KNOT
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APPLICATIONS

SURGERY: REWOVE NE(GHBOURHOOD OF A KNOT

% GLUE BACK A D'*&' DIFFErREVTLY

TOPOL OGY

KRONHEIMER - MROWKA ¢ EVERY NONTRIVIAL KNOT HAS PROPERTY P

OZ5VATH - SZABO: THE UNKNOT, TREFOIL % FIGURE-EIGHT KNOT
ARE CHARACTERISED BY THEIR SURGERIES

OZ5VATH- SZABO: THE THURETON NORH 1S DETERMINED BY
HEE GAARD FLOER HOMOLOGY

GIROUX ~GOODMAN: INDUCTIVE CONSTRUCTION OF TFIBERED
KNoTs 1IN S°




Pian oF IALKS

*« LECTURE | : SUBNANIFOLDS OF CONTACT STRUCTURES

e LECTURE 2: DESCRIBING CONTACT S TRUCTURES

e LECTURE 3 : PROOF OF GIROUX CORRESPONDE NCE




Pian oF IALKS

*« LECTURE | : SUBNANIFOLDS OF CONTACT STRUCTURES

-COMTACT STRUCTURES

-(ID) LEGENDRIAN & TRANSVERSE KNOTS , LEGENDRIAN GRAPHS
-(20) CcONVEX SUR®ACES

- NEIGHBOURHOOD THEOREMS

- TIGHT % OVERTWISTED CONTACT STRUCTURES

e LECTURE 2: DESCRIBING CONTACT STRUCTURES

e LECTURE 3 : PROOF OF GIROUX CORRESPONDE NCE




Pian oF IALKS

*« LECTURE | : SUBNANIFOLDS OF CONTACT STRUCTURES

e LECTURE 2: DESCRIBING CONTACT STRUCTURES

- CONTACT CELL DECOMPOSITIONS

- CONVEX SURFACE THEORY - BYPASSES
- CONTACT HEEGAARD SPLITTINGS
~ OPEN BOOXK DECONPO®SI TIONS

- OPEN BOOK DECONPOSITIONS ¥ CONTACT HEEGAARD SPLITTINGS

e LECTURE 3 : PROOF OF GIROUX CORRESPONDE NCE




Pian oF IALKS

*« LECTURE | : SUBNANIFOLDS OF CONTACT STRUCTURES

e LECTURE 2: DESCRIBING CONTACT STRUCTURES

e LECTURE 3 : PROOF OF GIROUX CORRESPONDE NCE

~ STABILISATION
- STATEMENT OF GIROUX CORRESPONPDENCE

~- IPDEA OF <PROOF
~-FURTHER DIRECTIONS



LECTURE 4

SUBMANIFOLDS L=
N =
CONTACT STRUCTURES




(ONTACT
STRUCTURES




CONTACT STRUCTURE‘S

DEF: A CONTACT STRUCTURE ON A CLOSFD, ORIENTED SMOOTH

TOTALLY NONINTEGRABLE

2-NANIFOLO M® 15 A

2-TLANE-DISTRIBUTION B CTM N~
} NOT TANGEWT TO ANY
SURFACE B, 2T
SNOOTH C HoICE OF \ ° r
. s M g
2y €TITM Vo

\ s> TrM
2 FrROBEMIUS

LOCALLY : ¥=law « o € 0'(M) «Aade YO




CONTACT STRUCTURE‘S

DEF: A CONTACT STRUCTURE ON A CLOSFD, ORIENTED SMOOTH

2-MANIFOLO M* 16 A TOTALLY NONINTEGRABLE

2-TLAVE-DISTRIBUTION BCTM N
} NOT TANGEWT TO ANY
SURFACE 0 8,5 T2
SNOOTH CHoICE OF \ r
2 2SS M —
\ s> TeM
$ FrRoBEMIUS
LOCALLY : ¥=law « o € 0'(M) «nde 2O

DARBOUX THIM: LOCALLY ANY CONTACT

STRUCTURE (S CONTACTOMNMORPHIC

To TR, B4 = b (d= "ﬂd"))

DIFFEONORPHISN THAT CARRIES
$ To %!




EQUIVALEUCE’ OF COHTACT STR(ACTURES
("z%)& (H’/B’) CONTACT STRUCTURES

+ CONTACTOMORPHISH: (M,8)% (M,5’) IF 3 DIFFEONORPHISN ¢: M —N

THAT CARRIES % To ¥ ., ‘P»‘S‘S>

WHEN [MeW

- HOMOTO®PY: %=% IF T A- PARAMETER FAMILY OF COMTACLT
)
STRUCTURES (Bi)iegpsy ON M WITH $=% & ¥=3,

* 1SOTOPY: %x® IF J A- PARAMETER FAMILY OF SELF - DIFFEONORPHISN
(4),,)“[9'“ OF M WITH - ¢, =Id &
Y
A (CHM -

]
THM (GRAY STABILITY): “HOMOTOPY = ISOTOPY

ANY HOMOTOPY (%) ¢cpo,; OF CONTACT STRUCTURES IS
INDUCED BY AN jso0ToPY (b)eer, @ - o= Id %

* e °(¢t)$ %o




DIM-KNOTS




kNO‘I‘& IN CONTACT STRUCTURES

DEF: LGM IS A LEGENDRIAN KNOT
Tl




Knors in Contact STrucTures

DEF: LGM IS A LEGENDRIAN KNOT

IF T, L< X, VF:

MOTTO: THE CONTACT STRUCTURE
ALWAYS ROTATES
ALONG LEGENUDR\V\ANS

@Q
%@9%%%
%%%® THURSTON ~BENVEQUIN FTRAMING »

_&
?9®%%%® PUSH L IN THE y

DIRECTION OF V

WHERE Y, LTl %y €%,



Knors in Contact STrucTures

DEF: LGM IS A LEGENDRIAN KNOT

IF T, L< X, VF:

MOTTO: THE CONTACT STRUCTURE
ALWAYS ROTATES
ALONG LEGENUDR\V\ANS

THURSTON ~BENVEQUIN FTRAMING

PUSH L IN THE

Y

DIRECTION OF V

WHERE Y, LTl %y €%,



kNO‘rs IN CONTACT STRuCTuREs . 7

DEF: LGM IS A LEGENDRIAN KNOT

IF T, L< X, VF:

MOTTO: THE CONTACT STRUCTURE
ALWAYS ROTATES
ALONG LEGENUDR\V\ANS

THURSTON ~BENVEQUIN FTRAMING

PUSH L IN THE

Y

DIRECTION OF V

WHERE Y, LTl %y €%,

DEF: T &M Is A TRANSYVERSE KNOT IF T, TA %, Vp:

.c(T,,'r))o



| ceenorian ArrroxiNATION

THM: ANY KNOT K < (M,8) CAV BE C°- APPROXIMATED BY

A LEGENDRIAN KNOT

IDEA OR PROOF: ENOUGH TO APPROXIMATE |LOCALLY % BY

DARBOUX THM WE CAN WORK IN (R %) 7

’S.+= L.VV(dz -AadX)



| ceenorian ArrroxiNATION

THN: ANY KNOT K <»(M,8) CAV ®BE C°- APPROXIMATED BY

A LEGENDRIAN KNOT

IDEA OFR PROOF: ENOUGH TO APPROXIMATE |LOCALLY % BY

DARBOUX THM WE CAN WORK IN (R %)

’Ss+=|'-—‘/'(dz"‘adx) oy —

WE CAN READ OFF %-COORV(NATE

FRON THE PROTFECTION TO (x,z)—-PLANE

e PROFECT K TO THE (x,2)- PLAME

2 A (" (&),2 (), 5

? X




| ceenorian ArrroxiNATION

THN: ANY KNOT K <»(M,8) CAV ®BE C°- APPROXIMATED BY

A LEGENDRIAN KNOT

IDEA OFR PROOF: ENOUGH TO APPROXIMATE |LOCALLY % BY

DARBOUX THM WE CAN WORK IN (R %)

’Ss+=|'-—‘/'(dz"‘adx) — uk‘"‘g—:"n

WE CAN READ OFF A%-COORV!NATE

FRON THE PROTFECTION TO (x,z)—-PLANE

* PROFELCT TO THE (x,2) - PLAME
2 (x(8),2(8), 4 (<))
\ SLOPET “cLOSE TO = IS C°% CcLoOSE TO
> x ]

COw « ANY SNDOTH KNOT CAN BE REPRESENTED BY A LEGEWDRIAN KNOT



\SOTOPlES OF kNOTS
SMOOTH KNOTS




\SOTOPlES OF kNOTS

SMOOTH KNOTS

1 SO TOPY: PATH IMN THE

SPACE OF KWVOTS
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‘SOTOPlES OF kNOTS

SMOOTH KNOTS

1 SO TOPY: PATH IV THE

SPACE OF KNOTS

ISOTOPY CLASS : CONMNECTED

COMPONENT

LEGENDRIAN 1SOTOPY ¢ PATH

IN THE SPACE OF LEGENDRIANV

KNOTS
K4
¥ L |SOTOPIC TO ' |MPHIES L LEGEDRIAN ISOTOPIC TO L



‘SOTOPlES OF kNOTS
SMOOTH KNOTS

1 SO TOPY: PATH IV THE

SPACE OF KWNOTS

ISOTOPY CLASS : COMNECTED

COMPONENT

LEGENDRIAN 1SOTOPY ¢ PATH

IN THE SPACE OF LEGENDRIANV

KNOTS
b )
IF L |sOTOPIC TO ' |MPLIES L LEGEDRIAN !50Toric TOL ?

W)

NO! - THe TWISTING OF % (W.RT THE SEIFERT SURTACE)
DOESN'T CHANGE DURING LEGEVDRIAN
l1sOTOPY




‘SOTOPlES OF kNOTS

SMOOTH KNOTS

1 SO TOPY: PATH IV THE

SPACE OF KWNOTS

ISOTOPY CLASS : COMNECTED

COMPONENT

LEGENDRIAN 1SOTOPY ¢ PATH

IN THE SPACE OF LEGENDRIANV

KNOTS
IF L |sOTOPIC TO ' |MPLIES L LEGEDRIAN !S5O0Toric TOLC ?

NO'! - THe TWISTING OF % (W.RT THE SEIFERT SURTACE)
DOESN'T CHANGE DURING LEGEVDRIAN
\sOoTOPY

STABILISATION : < CHANGES TWISTING

THM (FucHs- TABACHNIKOV): L 15 |SOTOPIC TO L &= AFTER SONE

STABILI SATIONS S+(L) |S LEGEDRIAN 1SOTOPIC TO St(\)




£-DIIT-SURFACES




Ourtaces N Contact OTrRuCTURES

DEF: A COMTACT VECTORFIELP Xé:‘aE.(H)
16 A VECTORTFIELD WHOSE TFLvLOW

PRESEFRV S 1;

$

dye =g TFOR SOME g MN—TR




Ourtaces N Contact OTrRuCTURES

DEF: A COMTACT VECTORFIELP Xé:‘aE.(H)
16 A VECTORTFIELD WHOSE TFLvLOW

PRESEFRV S 1;

$

dye =g TFOR SOME g MN—TR




Ourtaces N Contact OTrRuCTURES

DEF: A COMTACT VECTORFIELP Xé:‘aE.(H)
16 A VECTORTFIELD WHOSE TFLvLOW

PRESERV S ’;

$

dye =g TFOR SOME g MN—TR

)
X= =% ‘Z=l\z'~'0'])
DEF: Z<»M 15 CONVEX IF JF X CONTACT VECTORFIELD XAHZ



Ourtaces N Contact OTrRuCTURES

DEF: A CONTACT VECTORFIELP X € 2% (M)
16 A VECTORTFIELD WHOSE TFLvLOW

PRESERV S 75

3

{xe =ge TFTOR SOME g :N—R

2
X*® >

DEF: Z< M 15 CONNEX IF F X CONTACT VECTORFIELD XA Z

EQUIVALENTLY: Z HAS A NEIGHBOURHOOD N(Z) = Z»T wiTH

T -~ INVARIANT CONTACT STRUCTURE ¥

$

«=p+ gdt WHERE pED(Z) % g:M—R
TACT (GIROUX) ' TO UNDERSTAND € ON N(Z) ONE ONLY NEEDS

TO KNOW qu%ao‘t .;{;:_*e“gk afxe'S,S



Comvex Ourvaces  (&rou y

DEF: Z< WM 16 COWNVEX 1F 3 CONTACT VECTORFIELD X ! T4 X

DEF r'=ﬁx€’5's-fx(x)=o"g CZ 18 THE DIVIDING CUR\VE

PROP '~ THE ISOTOPY CcLASS OF T IS INDEPENDEMNT OF THEC

CHOICE OF X
- " PIVIDES Z INTO TWO PIKCES ¢ 2+={«.(x)>01

Z. = {«(x) 4o}

THN ( THE DIVIDING CURVE DETERMINES ¥ NEAR =)
Z,Z CONVEX SURFACES W/ 1SOTOPIC DIVIDING CURVES
= 3 N(t)) N(=') VEIGHBOURHOODVS THAT ARE

CONTACTONMORPHIC

THM (CONVEX SURFACES ARE C™- GENERIC|! ANY SURTACE T CAV
BE C™ SHALL ISOTOPED TO BE COMVEX




CONTACT MAH\FOLDS WITH BO\ANDARV

DEF : (2*)u|:o,u IS A CONVEX ISOTOPY |IF T, |S CONVEX (V{. e[o,ﬂ)

WE wiLL WORK WITH
M” 5.MANIFOLD WITH BOVNDARY ,
%, CONTACT STRUCTURE OM N, S.T

P9M 1S CONVEX

(M,%)



CONTACT MAH\FOLDS WITH BO\ANDARV

DEF: (To)iatoy 'S A COMVEX 150TOPY IF I, 1s colvex (V4 €[0,1])

WE wiLL WORK WITH
M” 5.MANIFOLD WITH BOVNDARY ,
%, CONTACT STRUCTURE OM N, S.T

P9M 1S CONVEX

« SAME FOR (M,%")

(M%) (M, %)



CONTACT MAH\FOLDS WITH BO\ANDARV

DEF: (To)iatoy 'S A COMVEX 150TOPY IF I, 1s colvex (V4 €[0,1])

WE wiLL WORK WITH
M” 5.MANIFOLD WITH BOVNDARY ,
%, CONTACT STRUCTURE OM N, S.T

P9M 1S CONVEX

« SAME FOR (M,%")

DEF: WEAKLY CONTACTOMORPHIC: T EMBEDPING (M, 5)cs (M%)
SUCH THAT 4(2M) 15 CONVEX 1SOTOPIC TO 2M

(“ ) ‘li

(M%) (M, %)



GLuine CONTAg T OTrucTurES

WE CAN GLUE CONTACT STRUCTURE S ALONG SURFACES WITH
MATCHING ©OIVIDING CURYNES

|IDEA

(%) )



GLuine CONTAg T OTrucTurES

WE CAN GLUE CONTACT STRUCTURE S ALONG SURFACES WITH
MATCHING ©OIVIDING CURYNES

|IDEA N(zM')  N(2M")

STEP 4: ADD T ~INVARIANT PART TO EACH

(M%) (M%7)



GLuine CONTAg T OTrucTurES

WE CAN GLUE CONTACT STRUCTURE S ALONG SURFACES WITH
MATCHING ©OIVIDING CURYNES

|IDEA N(zM')  N(2M")

STEP 4: ADD T ~INVARIANT PART TO EACH

sTEP 2 : FIvD N(2H®) IN N(2N")

(M%) (M%7)



GLuine CONTAg T OTrucTurES

WE CAN GLUE CONTACT STRUCTURE S ALONG SURFACES WITH
MATCHING ©OIVIDING CURYNES

IDEA N(2M')
—_ STEP 4: ADD T -INVARIANT PART TO EACH
sTEP 2 : FIvD N(2H®) IN N(2N")
{ ] »

STEPD: TRUNCATE MY AT L(gH“*\M

(M%) (M%7)



GLuine CONTAQ T OTrucTurES

WE CAN GLUE CONTACT STRUCTURE S ALONG SURFACES WITH
MATCHING ©OIVIDING CURYNES

IDEA N(=M) N(2M)

STEP 4: ADD T ~INVARIANT PART TO EACH

sTEP 4 : FiIvD N(2H®) IN N(2M")

STEPD: TRUNCATE MY AT L(QH“*\M

(N :‘5) (Nk'ﬁss) STEPL: OVERLAP «(N(2M%)) wiTH N (2M%)

THE OBTAINED CONTACT MANIFOLO
e (M%) u (M5 %7)

% |IT 1S WELL DEFINED UP TO
(M%)
CONTACTOMORPHISM

WEAKLY CONTACT ISOTOPIC TO (M%%")



STANDARD NEIGHBOURHOOD OF A LEGENDRIA N

E.6: %= lav (cos(z) dx - sin(z)dy)
(1sOTOPIC TO B,



STANDARD NEIGHBOURHOOD OF A LEGENDRIA N

E.G: %= luw (COS(Z\ dx - 5»"(2\ dlt)
(1SOTOPIC TO B,)
{OENTIFY (x,aa,z\'" ()\,A."Zf 21'5“)

A~y CONTACT STRUCTURE
on Rxg
WITH LEGENDRIAN KNOT
L= (0,0)= &' cR'xg

NEIGHBOUR HOOD N(L>D" = s



STANDARD NEIGHBOURHOOD OF A LEGENDRIAN
E.6: %= \uv (cos(z) dx- sin (2) dy)
(1sOTOPIC TO B,

{DEVTIFY (x,aa,z\a- (;\,A.hZf ZTtn) :

A~y CONTACT STRUCTURE
oN ‘R"x 54
WITH LSGENDRIAN KWOT
L= (0,0)x &' eRx¢

NEIGHBOUR HOOD N(L>D" = s

AKMK : BN(L,) IS NOT CONVEX BUT BY A C™ SNALL ISOTOPY
T CAN BE WMADFE CONVEX WITH A TWO COMPONE VT

©IVIDING CURVE PARALLEL TO (5*"(7-31609(23r")/

2
THIS GIVES THE THURSTON -BENNEQUIN FRAMIVG



STANDARD NEIGHBOURHOOD OF A LEGENDRIA N

E.6: %= v (cos(z) dx - sin(z)dy)
(1sOTOPIC TO B,
\OENTIFY (x,‘a,z\ﬁ- (;\’A."Zf Z'Tt.m) ::.-.-«

A~y CONTACT STRUCTURE
oN ‘lk"x 54
WITH LSGENDRIAN KWOT
L= (0,0)x &' eRx¢

NEIGHBOUR HOOD N(L}D" » s’

AKMK : BN(L,) IS NOT CONVEX BUT BY A C™ SNALL ISOTOPY
T CAN BE WNMADFE CONVEX WITH A TWO COMPONE VT

©IVIDING CURVE PARALLEL TO (%(Z\;COS('&)'")/

2
THIS GIVES THE THURSTON -BENNEQUIN FRAMIVG

THH: AGY LEGENDRIAN KNOT L G (M,€) HAS A NEIGHBOURHOOD N(L)

CONTACLTOMORPHIC TO W(L.)




LEGE’)JDR\ANg. ON CONVEX SURTACE—:S

DEF: Cc(Z,r) 1S AN ISOLATING CURVE,IF SOME COMPONEVT

OF =\C |¢& pPIsTOWT FROM N:

THM (I—F—’GFNDR\AN REALISATION ’PRNcIPL-E)
(Z,7) COMVEX SURFACLE, CEL NOMN-ISOLATING CURVE

=2 T CAN BE ISOTOPED THROUGH CONMVEX SURFACES Y, (=)
S.T. AFTER THE (s0TOPY WY (C)c W (Z) IS LEGENDRIAN




LEGE’)JDR\ANg. ON CONVEX SURTACE—:S

DEF: Cc(Z,r) 1S AN ISOLATING CURVE,IF SOME COMPONEVT

OF =\C |¢& pPIsTOWT FROM N:

THM (I—F—’GFNDR\AN REALISATION ’PF.\)JclPL-E)
(Z,7) COMVEX SURFACLE, CEL NOMN-ISOLATING CURVE

=2 T CAN BE ISOTOPED THROUGH CONMVEX SURFACES Y, (=)
S.T. AFTER THE (s0TOPY WY (C)c W (Z) IS LEGENDRIAN

RMK: THE TWISTING OF ¥ W.R.T. TZ ALONG C =-%|CnF|
[DEA: 7 4
’—(:“\\
—— T —-Y% - TURN BETWEEMN EACH INTERSECTION

-

/‘(“‘\ POINT



CONVEX S(ARFACE’S WITH LE’GE\JUR\AN 60unm\zv

THM [KANDA): Z SURFACE WITH LEGENDRIAN BOUNDARY L CAM
BE ISOTOPED REL 2 TO BE CONVEX

$

TWISTING OF ¥ WR.T. X ALON G L 16 40O

* THE 150TOPY CAN PBE ASSUMED TO BE C° sSMALL

RMK: AFTER THE (SOTOPY

TWISTING OF ¥ WR.T. Z ALON 6 L =-—‘/1|l"nL‘



,ROMNmNa EDGE‘s
2y % Z, CONVEX SURTACES WITH CONMMON LEGENDRIAN BOUNDARY L

CONVEX

LEGENDRIAN

'd

CONVE X




Rounping Epsrs
2'4 % 'Z',_ CONVEX SURTACES WITH CONNON LEGENDRIAN BOUNPDARY L

CONVEX
LEGENDRIAN
\V“/
I I B/ +
l » >
| & AL/ -
/
| CONVE X




,ROMNmNa EDGE‘s
2y % Z, CONVEX SURTACES WITH CONMMON LEGENDRIAN BOUNDARY L

THEN THE EUVDGE L CAV BE ROUNDPED % WE GET A VeEW
SNOOTH CONVEX SURFACE Z WITH DAWIDING CURVE AS BELDW

CONVEX CONVEX
! LEGENDRIAN LEGENDRIAN
T / SNOOTH s /
' P - —_— +
. Y ALONG L o B
' s CONVE X 2 CONVE X
» . / . E




OVERTWISTED



Two ContacT STrucTurES

STAVDARD CONTACT STRUCTURK OVERTWISTED CONTACT STRUCTURKE

*S'+= Lyv(dz-l‘d)() Eo-rg h,(c_o;(q) dz*ﬂ'&&ﬂ(lv)d‘[})

ARE %4 & %o, 150TOPIC/ CONTACTOMORPHIC ?



Two Contact STrucTurESs
STAUDARD CONTACT STRUCTURE OVERTWISTED CONTACT STRUCTURE

*S'+= LJ/'(dz"‘«ad") Eo-rg h,(co;(q) o{z-rfrsi.n(cv)dv!)

ARE %4 & %o, 150TOPIC/ CONTACTOMORPHIC ?

BEMNEQUN (4382): NO! consiper D= o ¢ 2T [0Y

DEF: pea (M3) 1S AN QVERTWISTED DISK IF ‘TD| =‘$|
- 0 “|?p

RHK' RNOUGH TWISTIVG OF % ALONG 2O WRT D 1§ ©

DEF: ¢ % |5 OVERTWISTED IF 8 COJTAINS AW OVERTWISTED 0DISK

«¥ IS TIGHT IF 1T Is NOT OVERTWISTED



QVEKTWI_STED CONTACT STRU(_:TURES
THM (ELIASHBERG) §,% OVERTWISTED
CONTACT STRUCTURES 3

¥=% As PLANVETFIELDS

=7Eu:.~g’

THM (Lurz-HAR-rmEz) ANY HOMOTOPY CLASS OF PLANEFIELDS
ls REPRESENTED ®v AN OVERTWISTED) CONTACT STRUCTURE

BHK: TIGH CONTACT STRUCTURES ARE HMARDER TO CLASSIFY
. ELIASHBERG: S° ADMITS A UNIQUE TIGHT COWTACT STRUCTURE
» GIROUX* T o0 ~LY MANY D-NMAVIFOLDS WITH oo-LY7 WMAVY
TIGHT COWTACT STRUCTURES
. ETNYRE:® ~X(2,3,5) ADMITS WO TIGHT COMNTACT STRUCTURES



Recoamisivg Ovegrwistep Conract Strucrures

1S : a2
D CONVEX K 52 Is A

COVTACT VNECTORFIELD , % D

r-f2eg)={rar)xio}]

Sor = ktr (cos(a) oz + @ sin(v) o)

THM (GIROUX'S _CRITERION]: =< (M,§) CONVEX SURFACE ADMITS
A TIGHT NE(GHBOUR HOOD (N(i))’i\\p(s)) \FF
e ZT=2S % |r|=4A
- T4 5 % NO COMPONEWUT OF I BOUNDS A DISC

OR




loea oF “YProor

THH (GIROUX'S CRITERION]: Z<> (M,%) CONVEX SURFACE ADMITS
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THH (GIROUX'S CRITERION]: Z<> (M,%) CONVEX SURFACE ADMITS
A TIGHT NEIGHBOURHOOD  (N(Z);%|pig))  \FF

e ZT =S % [r|=4

- Z4 S5 % NO COMPONENT OF P BOUNDS A DISC

=] wiLL. SHOW: [ HAS A COMPOMNEVUT THAT BOUNDS A DISC D
%« THIS 1S NOT THE ONLY COMPOMEMNT
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THH (GIROUX'S CRITERION]: Z<> (M,%) CONVEX SURFACE ADMITS
A TIGHT NEIGHBOURHOOD  (N(Z);%|pig))  \FF

e ZT =S % [r|=4

- Z4 S5 % NO COMPONENT OF P BOUNDS A DISC

= WiLl. SHOW : [ HAS A COMPONEVUT THAT BOuUNDES A DPISC D

% THIS 1S NMOT THE ONLY COWPOMENT

/‘\
O =)3\v(£] IS TIGHT
_ D.,

CONSIDER: C ENCAPSULATING W
I’f C 15 NON-ISOLATING

\IL LEGEVDR(AN REALISATION TPrINCIPLE

WE CAN (SOTDPE T (vsPE MN(g) SuCH THAT € 1S LEGENDRIAN
THEN TWISTING OF % ALONG € W.RT Z =4|rac]

SO V' |5 AN OVERTWISTED DISC /

&~| UNIVERSAL COVER OF T ...




CuassieicaTion oF Ti6HT Cowract Strucrures

THM (ELIASHBERG): D° ADMITE A UNIQUE TIGHT CONTACT

STRUCTURE WITH CONMNMECTED DIVIDING CURVE ON S °

THIS RESULT ALLOWS US TO PROVE OTHER UNIQNESS RESULTS

E.G.* M=D'x8  GIVEN ANY CONTACT STRUCTURF % ON M
« STEP 4+ BY THE L EGENDRIAN REALISATION PRINCIPLE

WE CAMN ASSUME 290 IS5 LEGENMNDRIAN
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THE DIVIDING CURVYE ON © 1S A SINGLE ARC
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THM (ELIASHBERG): D° ADMITE A UNIQUE TIGHT CONTACT

STRUCTURE WITH CONMECTED DIVIDING CURVE ON S

THIS RESULT ALLOWS US TO PROVE OTHER UNIQNESS RESULTS

E.G.* M=D'x8  GIVEN ANY CONTACT STRUCTURF % ON M
« STEP 4+ BY THE L EGENDRIAN REALISATION PRINCIPLE

WE CAMN ASSUME 290 IS5 LEGENMNDRIAN

e« STEP 2: |SOTOPE D REL. 2 TO BE CONVEX:

! THE DIVIDING CURVYE ON © 1S A SINGLE ARC
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THM (ELIASHBERG): D° ADMITE A UNIQUE TIGHT CONTACT

STRUCTURE WITH CONMECTED DIVIDING CURVE ON S ¢

THIS RESULT ALLOWS US TO PROVE OTHER UNIQNESS RESULTS

M =Dt s GIVEN ANY CONTACT STRUCTURF ¥ ON M
« STEP 4+ BY THE L EGENDRIAN REALISATION PRINCIPLE

WE CAMN ASSUME 290 IS5 LEGENMNDRIAN

- STEP 2: |SOTOPE D REL. 2 TO BE COWNVEX:

THE DIVIDING CURVE ON © 1S A SINGLE ARC
* STEP 5 : CUT M ALONG D

O -sTEP4: ROUND THE EDGES : WE GET A D

WHICH HAS A UNIQUE CONTACT STRUCTURE %,
=7 ANY ¥ CAN ®E OBTAINED FROM %,

Q BY GLUEING = % I's uNMIQUE TOO -
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THM (ELIASHBERG): D° ADMITS A UNIQUE TIGHT CONTACT

STRUCTURE WITH CONMNMECTED DIVIDING CURVE ON S °

E.G. * ADMITS A UNIQUE TIGHT CONTACT STRUCTYRE

e WHAT DID WE USE |IN THE “PROOF ¢

e THAT [DAP|=2 THUS THE DIVIDING CURVE ON D WAS VELL
DEFINED

*% THAT WE GOT AFTER CUTTING AND ROUNDING

SIMILARLY:

ADMITS A UNIQUE TIGHT

@ @ @ CONTACT STRUCTYRE

PEF: PRODUCT DISC DECOMPOSABLE
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LECTURE 2: DESCRIBING CONTACT S TRUCTURES

- CONTACT CELL DECOMPOSITIONS

- CONVEX SURFACE THEORY - BYPASSES
- CONTACT HEEGAARD SPLITTINGS
- OPEN BOOK DECONPOSI TIONS

- OPEN BOOX DECONPOSITIONS ¥ CONTACT HEEGAARD SPLITTINGS



