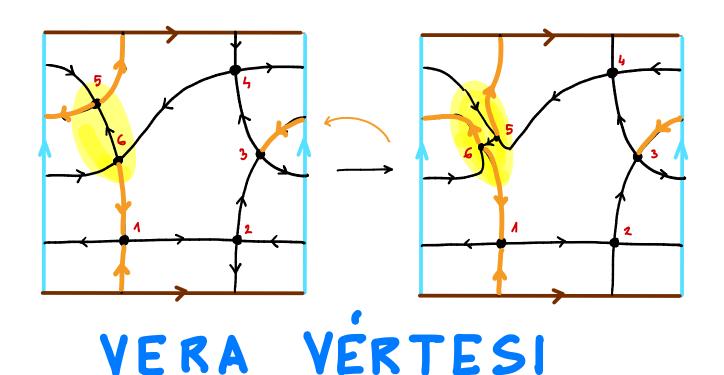
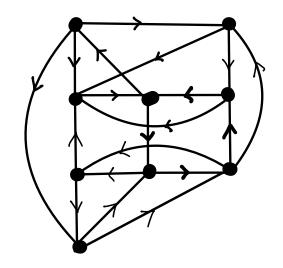
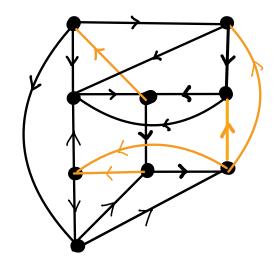
# FEEDBACK ARC SET PROBLEM OF SURFACE GRAPHS

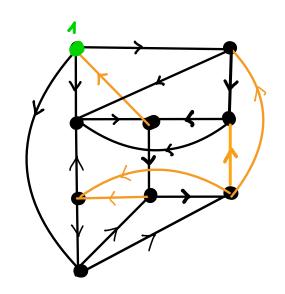
THE

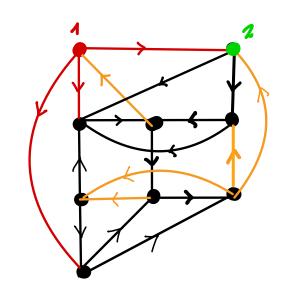


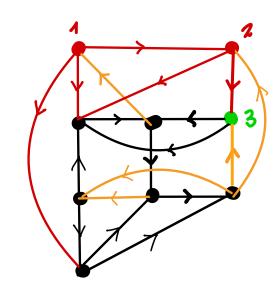
Jan. 16.

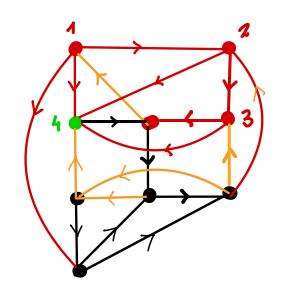


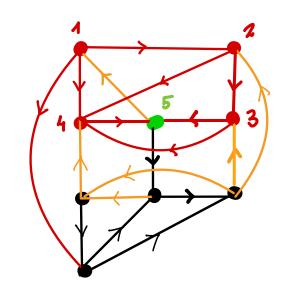


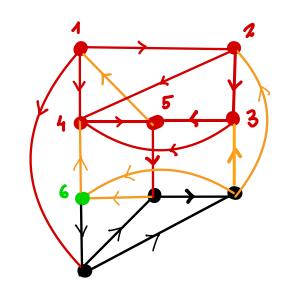


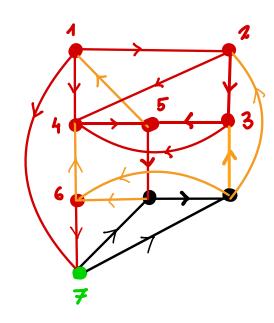


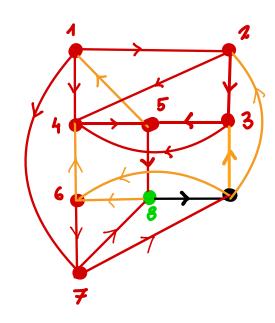


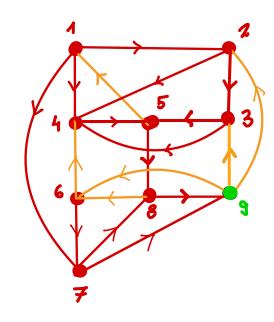












DEF: A feedback and set for a digraph  $D(V, \vec{E})$  is  $\vec{E} \subseteq \vec{E}$  s.t.  $D'(V, \vec{E} \setminus \vec{E}')$  is acyclic

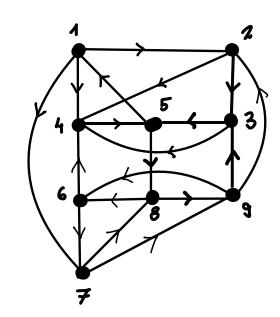
#### COMPUTATIONAL PROBLEM

GIVEN: D(V, E) digraph & k E N



#### COMPUTATIONAL COMPLEXITY

- NP complete (item 8 on Kayp's Driginal list)
- fixed parameter tractable (FTP) : O(n4kk3k!)

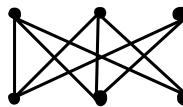


#### TEEDBACK ARC SET - SPECIAL INPUTS

if we restrict D(V, E) to...

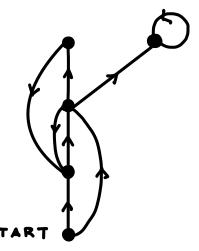
... directed planar graph: O(n 1/2 log n)

... graphs w/ no k<sub>3,3</sub> minor:



--- weakly acyclic digraph

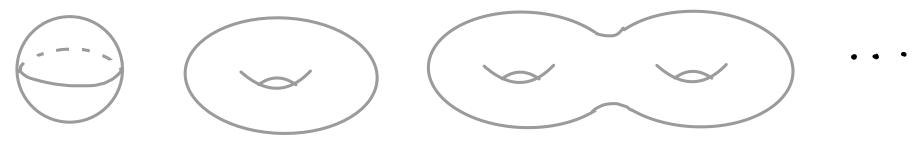
... reducible flow graphs



then there is polynomial algorithm

NEXT: specialised imput important in my research

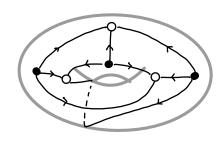
# (ORIENTED) SURFACES

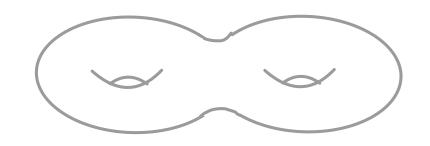


$$D(V, E) \hookrightarrow \Sigma'$$
  $V$  - points on  $\Sigma$   
E - ancs  $w/$  no intersections

# (ORIENTED) SURFACES







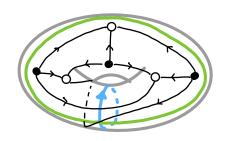
$$D(V, \vec{E}) \hookrightarrow \Sigma$$

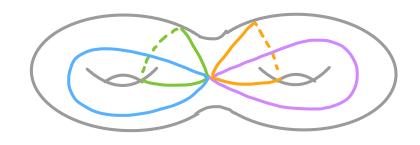
 $D(V, E) \hookrightarrow \Sigma$  V - points on  $\Sigma$ 

E - ancs w/ no intersections

# (ORIENTED) SURFACES





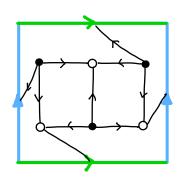


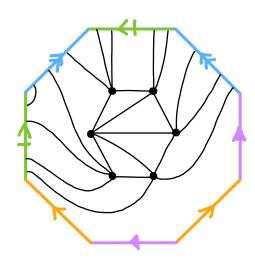
$$D(V,E) \hookrightarrow \Sigma$$

 $D(V, E) \hookrightarrow \Sigma$  V - points on  $\Sigma$ 

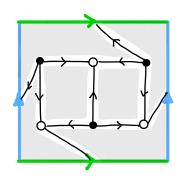
E - ancs w/ no intersections

aut open  $\Sigma$ :

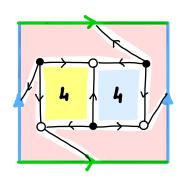




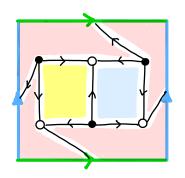
DEF: 1-all embedding: each component of I/D is a polygon

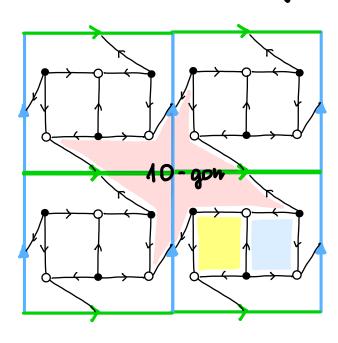


DEF: 1-all embedding: each component of I/D is a polygon

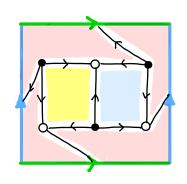


DEF: 1-all embedding: each component of I/D is a polygon





DEF: 2-all embedding: each component of I/D is a polygon

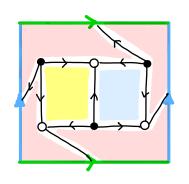


T face F

## ASSUMPTIONS:

· D(V, Ē) is Eulerian & 4-regular (∀v € V: degin(v) = degous(v)=2)

DEF: 2-all embedding: each component of I/D is a polygon



face F

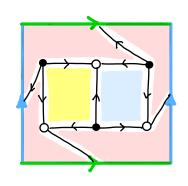
#### ASSUMPTIONS:

· D(V, Ē) is Eulerian & 4-regular (∀v € V: degin(v) = degous(v)=2)



- . D(V, E) → I is a 1-cell embedding s.t. for each face F
  - + the vertices on 7 F one all distinct

DEF: 1-all embedding: each component of I/D is a polygon



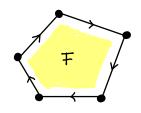
face F

#### ASSUMPTIONS:

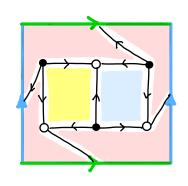
· D(V, Ē) is Eulerian & 4-regular (∀v € V: degin(v) = degout(v)=2)



- D(V, È) → Z is a 1-cell embedding s.t. for each face F
  - + the vertices on 2 F one all distinct
  - + the edges on 2F form an oriented cincle



DEF: 1-all embedding: each component of I/D is a polygon



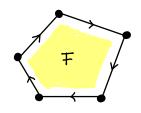
face F

#### ASSUMPTIONS:

· D(V, Ē) is Eulerian & 4-regular (∀v € V: degin(v) = degout(v)=2)



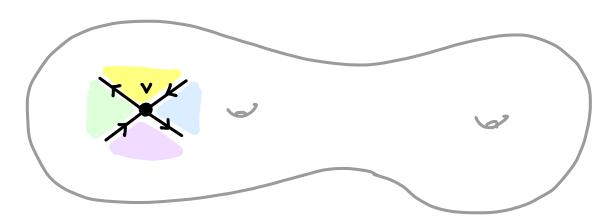
- D(V, È) → Z is a 1-cell embedding s.t. for each face F
  - + the vertices on 2 F one all distinct
  - + the edges on 2F form an oriented cincle



v in the abstract digraph

v after embedding in I

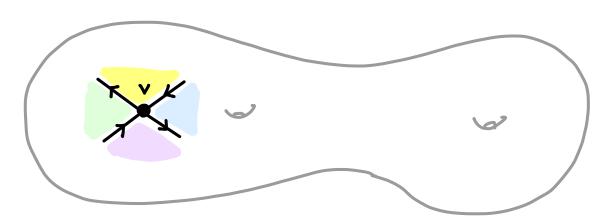




v in the abstract digraph

v after embedding in I





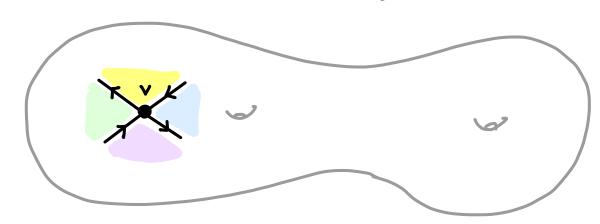
- · can build up all faces:
  - → boundaires of faces e. 1



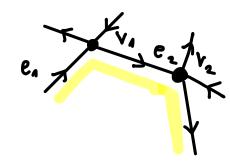
v in the abstract digraph

v after embedding in I





- · can build up all faces:
  - boundaries of faces



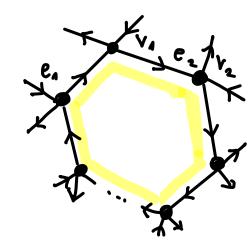
v in the abstract digraph

v after embedding in I





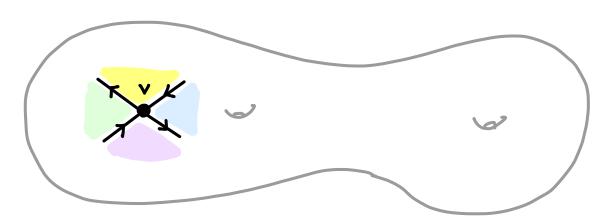
- · can build up all faces:
  - boundaries of faces



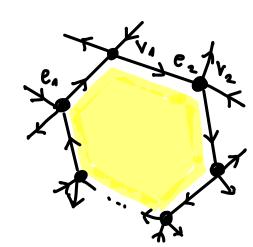
v in the abstract digraph

v after embedding in I





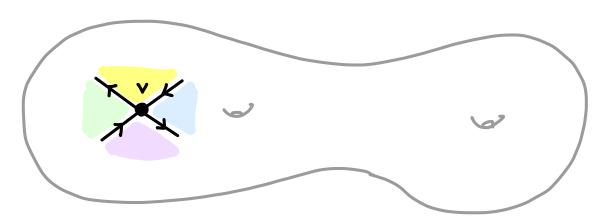
- · can build up all faces:
  - boundaires of faces
  - reach face is
    - a polygon



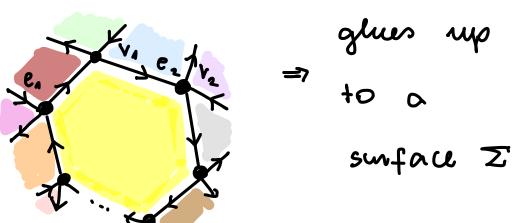
v in the abstract digraph



v after embedding in I



- · can build up all faces:
  - boundaires of faces
  - reach face is
    - a polygon

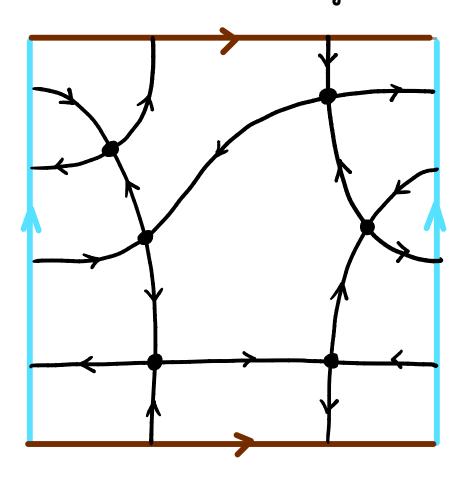


INPUT: an Eulerian & 4-regular digraph D(V, É)

& a 1-cell embedding  $D(V, \tilde{E}) \hookrightarrow Z$  s.t. for each face F

+ the vertices on 2F one all distinct

+ the edges on 2F form an oriented circle



#### REMARKS:

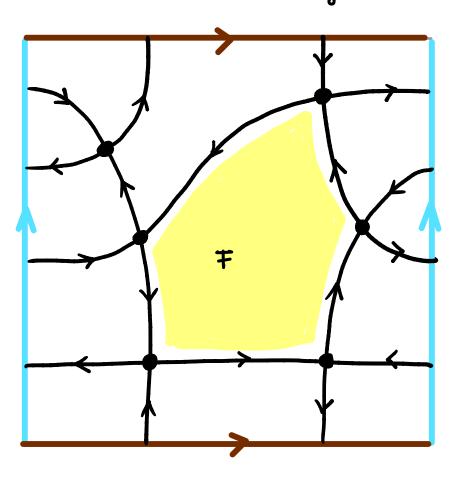
· near each vertex D loots lite > ++

INPUT: an Eulerian & 4-regular digraph D(V, É)

& a 1-cell embedding D(V, E) \rightarrow Z s.t. for each face F

+ the vertices on 2F one all distinct

+ the edges on 2F form an oriented circle



#### REMARKS:

· near each vertex D loots lite > ++

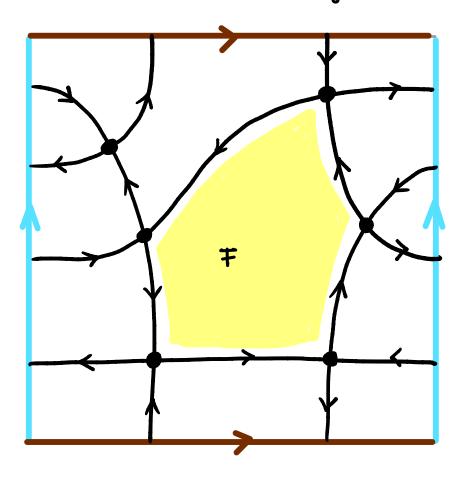
· 2F oriented circle

INPUT: an Eulerian & 4-regular digraph D(V, É)

& a 1-cell embedding  $D(V, \tilde{E}) \hookrightarrow Z$  s.t. for each face F

+ the vertices on 2F are all distinct

+ the edges on 2F form an oriented circle



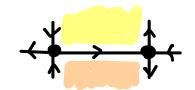
#### REMARKS

· near each vertex D loots lite > +

· 2F oriented circle

⇒any feedback one set É'SE must contain an edge from each F

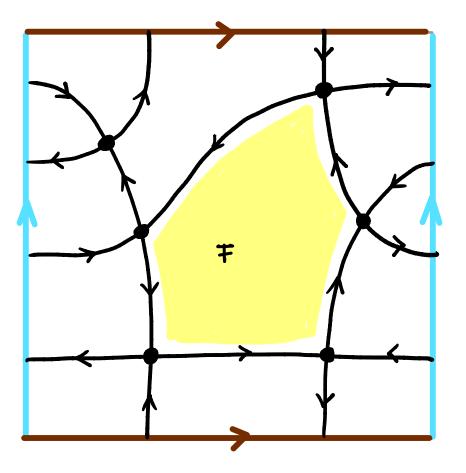
· on edge is contained in 2 faces



INPUT: an Eulerian & 4-regular digraph D(V, É)

& a 1-cell embedding  $D(V, \tilde{E}) \hookrightarrow Z$  s.t. for each face F

- + the vertices on 2F one all distinct
- + the edges on 2F form an oriented circle



#### REMARKS

- · near each vertex D loots lite > +
- · 2F oriented circle
- ⇒any feedback onc out É'SE must contain an edge from each ∂F
- · on edge is contained in 2 faces

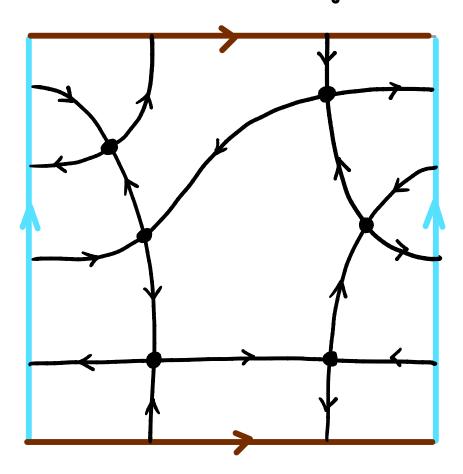
$$\Rightarrow |E'| \rangle \frac{\# facts}{2}$$

INPUT: an Eulerian & 4-regular digraph D(V, É)

& a 1-cell embedding  $D(V, \tilde{E}) \hookrightarrow Z$  s.t. for each face F

+ the vertices on 2F one all distinct

+ the edges on 2F form an oriented circle

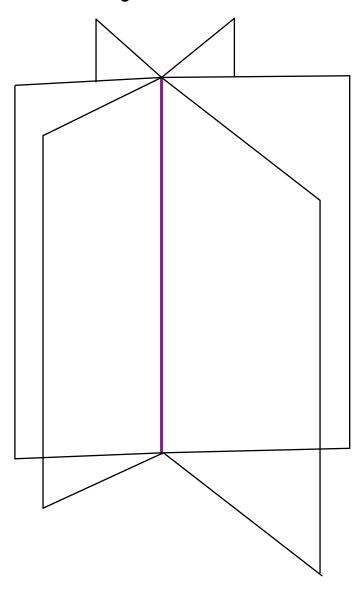


QUESTION: 3s there a feedback arc set

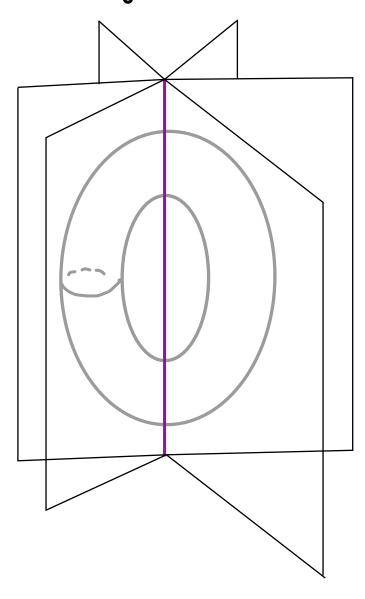
of size # faces ?

#### PLAN FOR REST OF THE TALK

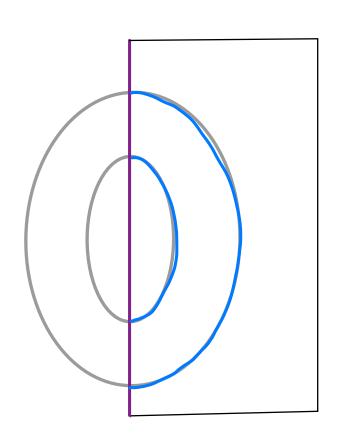
- · origin of the problem
  - braid foliations
  - open book foliations
- · idea for solution
- · further directions



- · H = : 1 10 + 3 half plans
- . they intersect in the x-axis

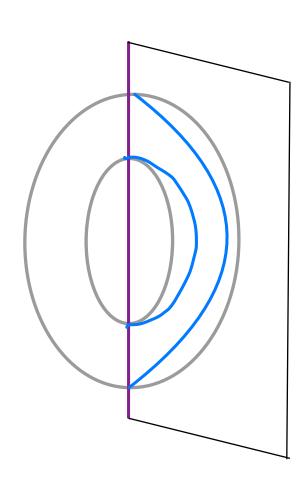


- · H = : 1 10 + 3 half plans
- . they intersect in the x-axis
- · take a surface I in TR3



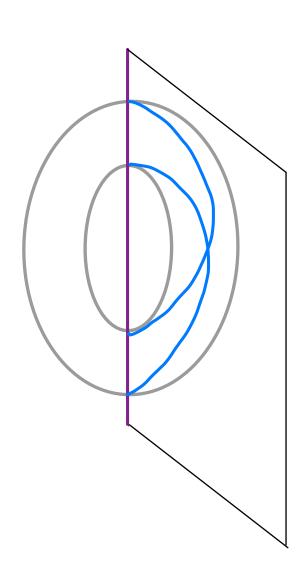
- · H = : 1 v = + } half plans
- . they intersect in the x-axis
- · take a surface Z in  ${\rm IR}^3$
- & look at its intersection w/ Hz

for 
$$t = 0$$



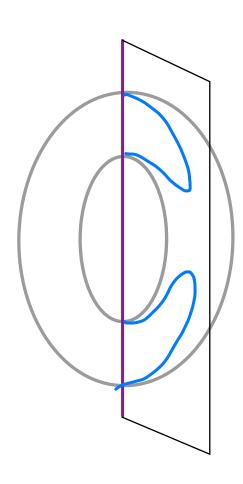
- . they intersect in the x-axis
- · take a surface Z in  ${\rm TR}^3$
- & look at its intersection w/ Hz

for 
$$t = -\frac{\pi}{8}$$



- · H = : 1 v = + } half plans
- . they intersect in the x-axis
- · take a surface Z in  ${\rm TR}^3$
- & look at its intersection w/ Hz

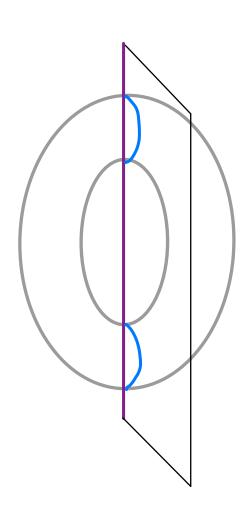
for 
$$t = -\frac{\pi}{4}$$



- · H = : 1 v = + } half plans
- . they intersect in the x-axis
- · take a surface Z in  $\mathbb{R}^3$
- & look at its intersection w/ Hz

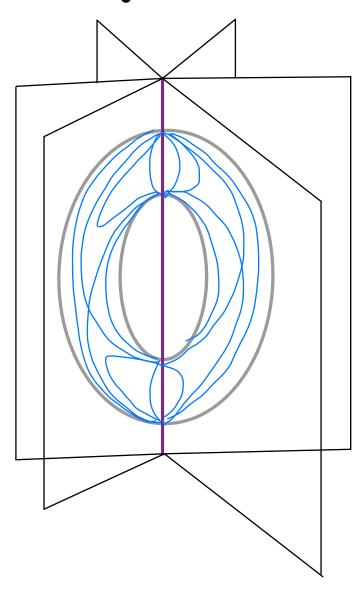
for 
$$t = -\frac{3\pi}{8}$$

 $\mathbb{R}^3$   $\forall$  cylindrical coordinates  $(z,\tau,v)$ 

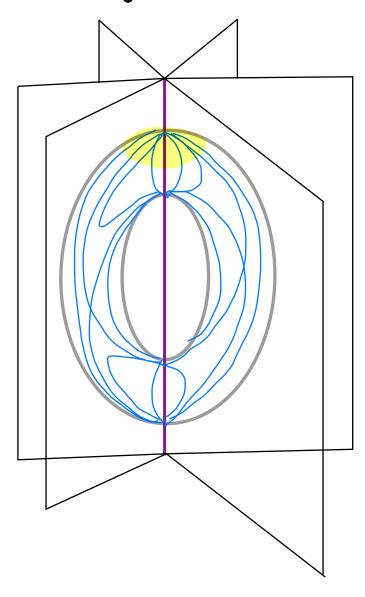


& look at its intersection w/ Hz

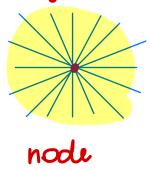
for 
$$t = -\frac{\pi}{2}$$



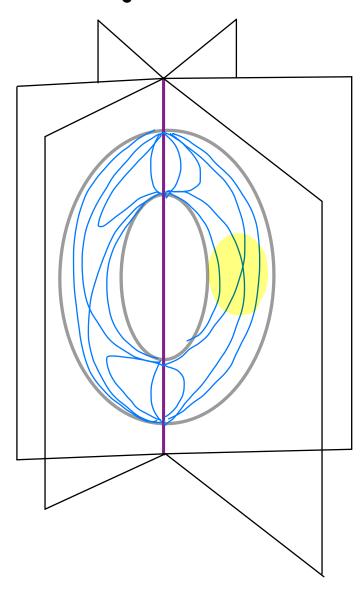
- · H = : 1 2 + ] half plans
- . they intersect in the x-axis
- · take a surface Z in 1R3
- & look at its intersection w/ Hz
- $\sim$  gives a singular foliation F on  $\Sigma$



- · H = : 1 10 + 3 half plans
- . they intersect in the x-axis
- · take a surface Z in TR3
- & look at its intersection w/ Hz
- $\sim$  gives a singular foliation F on  $\Sigma$
- \*/ singularities:

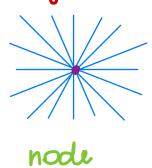


 $\mathbb{R}^3$   $\mathbb{W}$  cylindrical coordinates  $(z, \pi, \mathcal{V})$ 



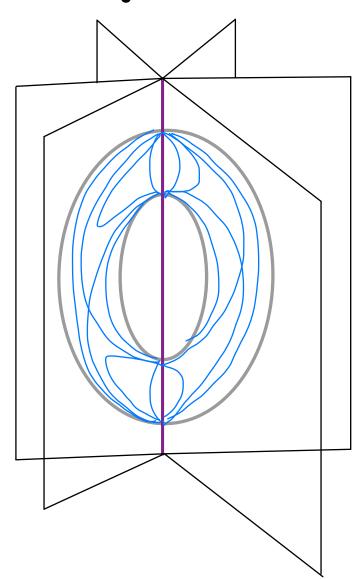
- · H = : 1 2 + ] half plans
- . they intersect in the x-axis
- · take a surface Z in TR3
- & look at its intersection w/ Hz
- $\sim$  gives a singular foliation F on  $\Sigma$

\*/ singularities:

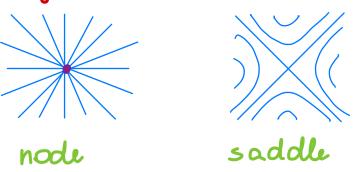




 $\mathbb{R}^3$   $\forall$  cylindrical coordinates  $(z,\tau,v)$ 



- · H = : { v + } half plans
- . they intersect in the x-axis
- · take a surface Z in 1R3
- & look at its intersection w/ Hz
- $\sim$  gives a singular foliation F on  $\Sigma$
- \*/ singularities:



(can remove other type of singularities via isotopy)

### WHAT BRAID FOLIATIONS ARE USED FOR?

Bennequin 1980: the standard contact structure on R3 is tight

Binman - Menasco 1990s: - Mansou Theorem w/o stabilisation
- construction of transversally
nonsimple knots

La Fountain - Menasco, Dynikor - Prasolor 2019:

generalised yours conjecture

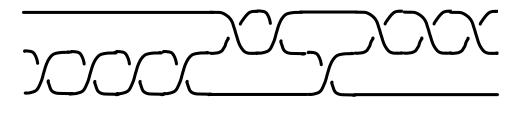
<u>Dynikor-Prasolor 2023</u>: algorithmic classification of Kegendrian knots

### GENERALISED FONES CONFECTURE

Suppose two braid - words 
$$u = TG_{ij}^{n_i}$$
  $v = TG_{ij}^{m_i}$ 

- · represent the same and &
- · have minimal braid index => Z'n; = Im;

<u>e.g.</u>;



$$u = 6, 6, 6, 6, 6, 6$$

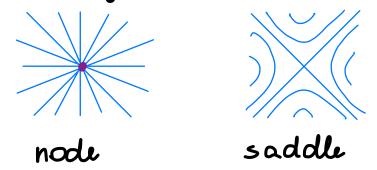


- there represent the same bnot /
  - · have minimal braid index

& indeed 
$$-4+2-1+3=-4+3-1+2$$

### RECOGNISING BRAID FOLIATIONS

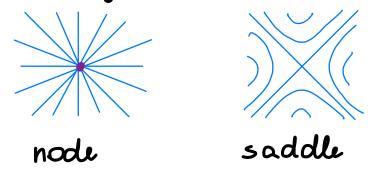
IVPUT: a singular foliation F on  $\Sigma$  w/ singularities:



QUESTION: Can F be obtained as a braid foliation on some embedding of Z in  $\mathbb{R}^3$ ?

### RECOGNISING BRAID FOLIATIONS

INPUT: a singular foliation F on I w/ singularities:

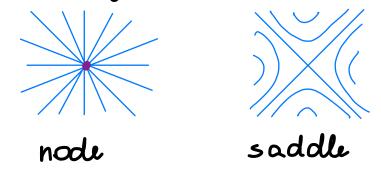


QUESTION: Can F be obtained as a braid foliation on some embedding of  $\Sigma$  in  $\mathbb{R}^3$ ?

Hand to reformulate combinatorially ask a more general question

### RECOGNISING BRAID FOLIATIONS

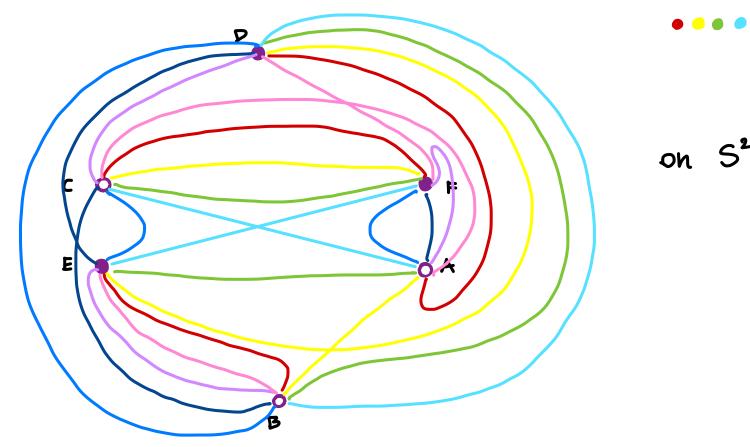
INPUT: a singular foliation F on I w/ singularities:



open boot foliation

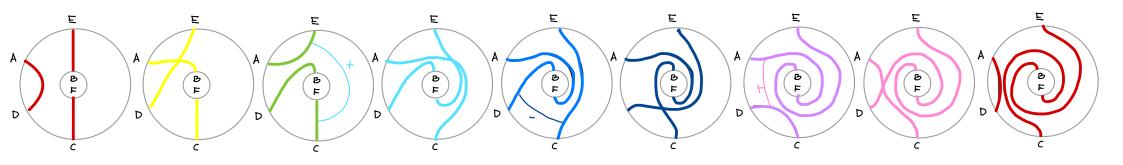
QUESTION: Can F be obtained as a braid foliation on some embedding of Z in TR3?

Hand to reformulate combinatorially as a more general question



on  $5^2$  (sphere)

an embedding of Fonto the annulus



### OPEN BOOK FOLIATIONS

- · uses more general surfaces instead of half-plans
- · defined on arbitrarly 3-manifolds

<u>Ito-Kawanuvo 2009-2020</u>: tightuss criteria

for contact structures

Hayden 2021: characterisation of quasipositive links

<u>Xicata - V 2022</u>: combinatorial description of contact

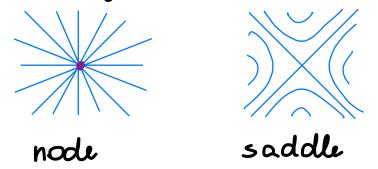
structures on 3-nanifolds w/ boundary

tlishasi - Földváni - Hendricks - Kicata - Petlova - V 1023:

gluable invariant for contact structures in the gaard Flour homology

### RECOGNISING OPEN BOOK FOLIATIONS

INPUT: a singular foliation F on I w/ singularities:



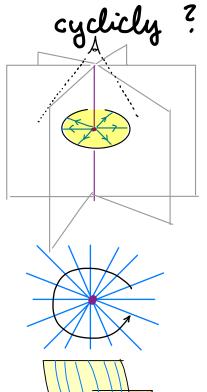
QUESTION: Tan F be obtained as a open book foliation on some embedding of  $\Sigma$  in  $\mathbb{R}^3$ ?

### RECOGNISING OPEN BOOK FOLIATIONS

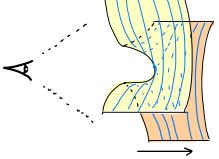
INPUT: a singular foliation 7 on I m/ node & saddle singularities

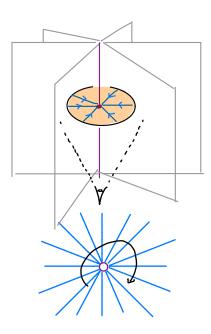
EQUIVALENT QUESTION: Tan one index the leaves of F

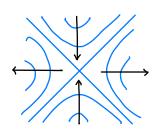
two types of nodes



nean a saddle

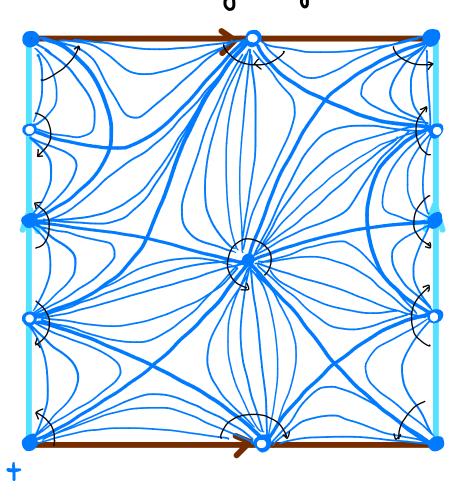






# ANOTHER EQUIVALENT QUESTION: Tan one order the saddles cyclicly?

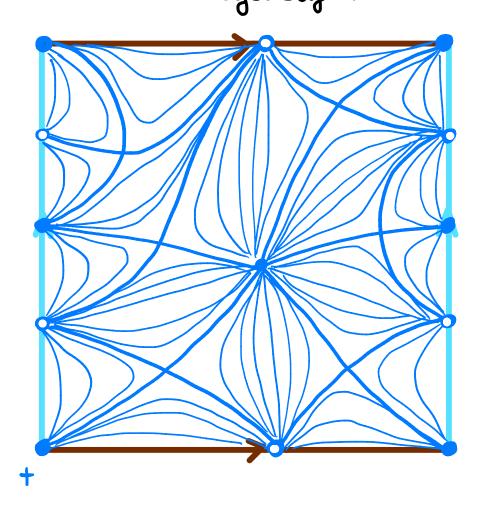
given: F on I



# ANOTHER EQUIVALENT QUESTION: Tan one order the saddles cyclicly?

given: F on I

define: a digraph  $D(V, \hat{E})$ on I

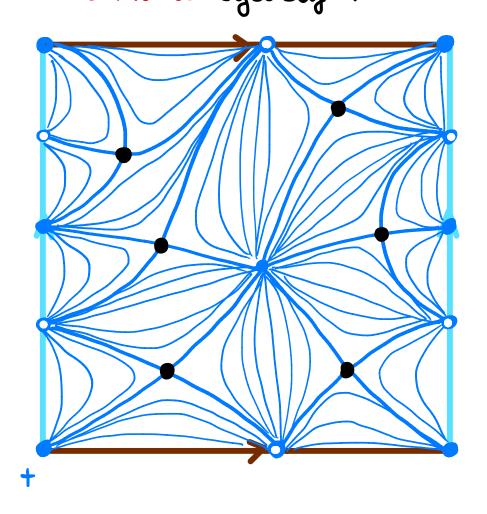


# ANOTHER EQUIVALENT QUESTION: Tan one order the saddles cyclicly?

given: F on I

define: a digraph  $D(V, \hat{E})$ on I

• V = saddles



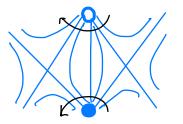
### ANOTHER EQUIVALENT QUESTION: Tan one order the

given!  $\mathcal{F}$  on  $\Sigma$ 

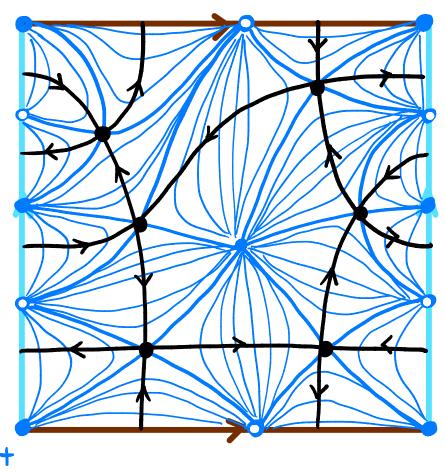
define: a digraph  $D(V, \hat{E})$ 

ON I

- · V = saddles
- · edges :





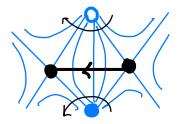


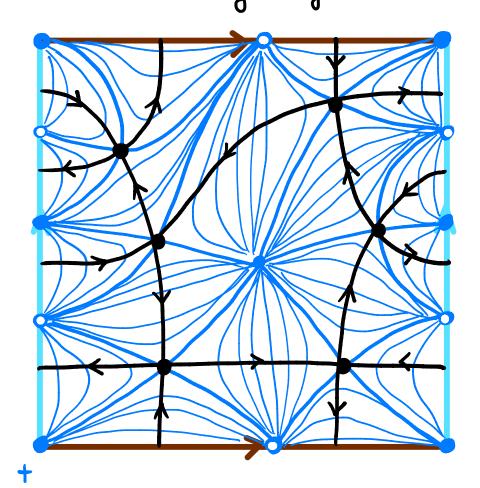
## ANOTHER EQUIVALENT QUESTION: Tan one order the saddles cyclicly?

given:  $\widehat{\mathcal{F}}$  on  $\Sigma$  define: a digraph  $D(V, \widehat{E})$ 

on I

- · V = saddles
- · edges:



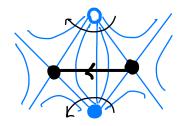


### ANOTHER EQUIVALENT QUESTION: Tan one order the saddles cyclicly?

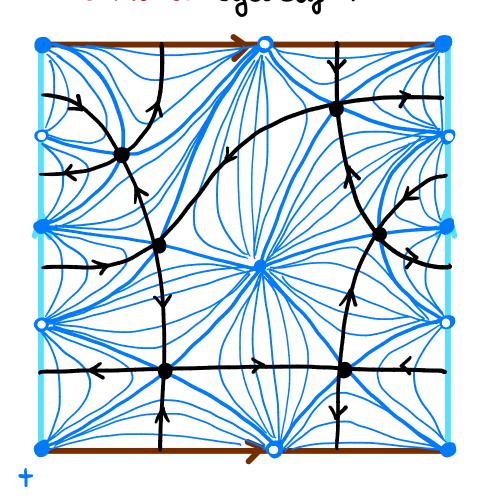
given:  $\widehat{\mathcal{F}}$  on  $\Sigma$ define: a digraph  $D(V, \widehat{E})$ 

on I

- · V = saddles
- · edges :



⇒ Eulerian & 4-regular digraph

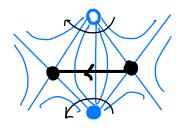


### ANOTHER EQUIVALENT QUESTION: Tan one order the

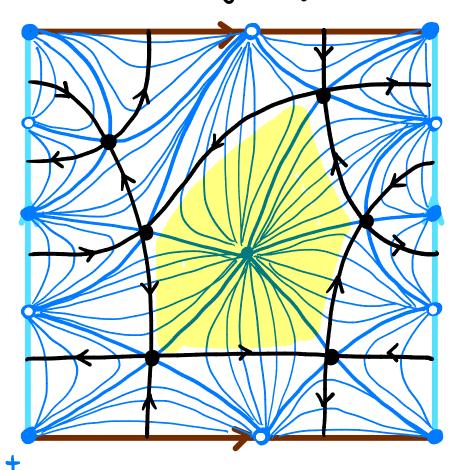
saddles cyclicly?

ON I

- · V = saddles
- · edges :



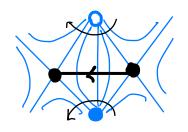
⇒ Eulerian & 4-regular digraph



### ANOTHER EQUIVALENT QUESTION: Tan one order the saddles cyclicly?

given:  $\mathcal{F}$  on  $\Sigma$ define: a digraph  $D(V, \hat{E})$ on  $\Sigma$ 

- · V = saddles
- · edges :



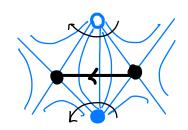
⇒ Eulerian & 4-regular digraph

w/a 2-cell-embedding s.t for each face F
the edges on 2F form an oriented circle &

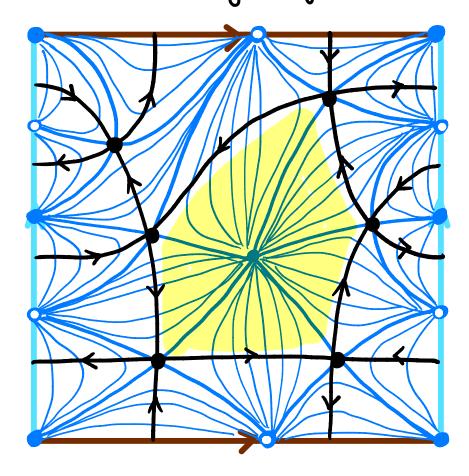
### ANOTHER EQUIVALENT QUESTION: Tan one order the saddles cyclicly?

given: F on  $\Sigma$ define: a digraph  $D(V, \hat{E})$ on  $\Sigma$ 

- · Y= saddles
- · edges :



⇒ Eulerian & 4-regular digraph

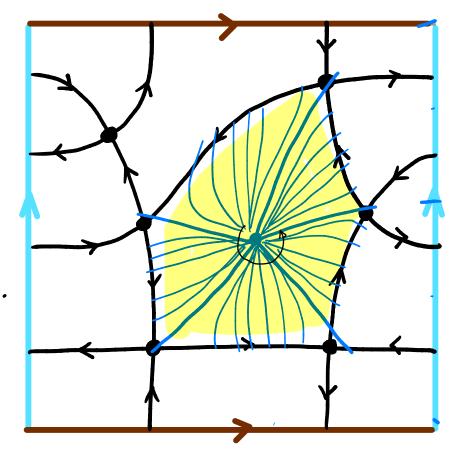


w/ a 2-cell-embedding s.t for each face F

the edges on 2F form an oriented circle &

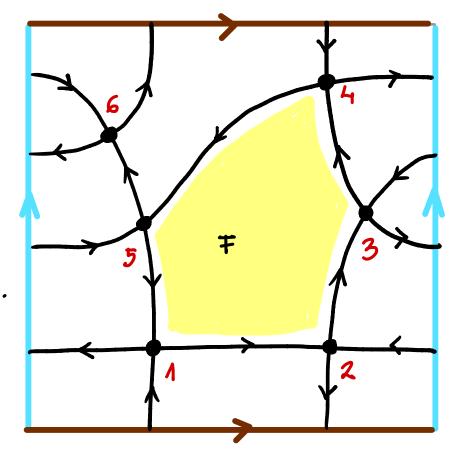
the vertices on 2F are all distinct

D(V, E) Eulerian & 4-regular digraph w/ a 2-cell-embedding into I s.t for each face F the edges on 2F form an oriented circ. the vertices on 2F one all distinct QUESTION: Does the vertices have a cyclic order that



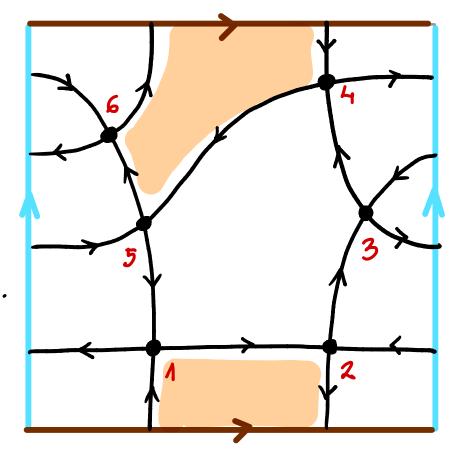
restricts to a cyclic order on each 2 F?

D(V, E) Eulerian & 4-regular digraph w/ a 2-cell-enbedding into I s.t for each face F the edges on 2F form an oriented circ. the vertices on 2F are all distinct QUESTION: Does the vertices have a cyclic order that



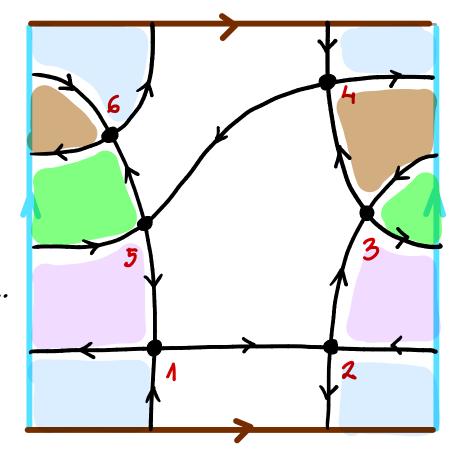
restricts to a cyclic order on each 2 F?

D(V, E) Eulerian & 4-regular digraph w/ a 2-cell-embedding into I s.t for each face F the edges on 2F form an oriented circ. the vertices on 2F are all distinct QUESTION: Does the vertices have a cyclic order that



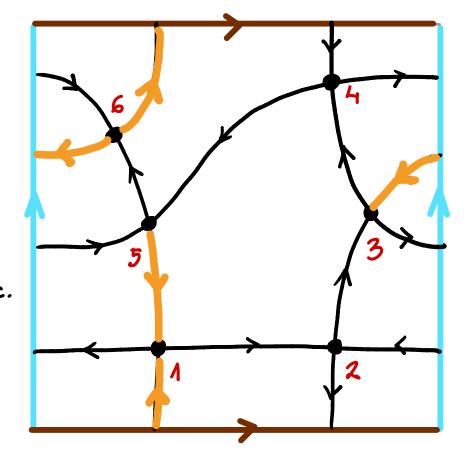
restricts to a cyclic order on each 2 F?

D(V, E) Eulerian & 4-regular digraph w/ a 2-cell-embedding into I s.t for each face F the edges on 2F form an oriented circ. the vertices on 2F one all distinct QUESTION: Does the vertices have



a cyclic order that restricts to a cyclic order on each 2 F?

D(V, E) Eulerian & 4-regular digraph w/ a 2-cell-embedding into I s.t for each face F the edges on 2F form an oriented circ. the vertices on 2F are all distinct QUESTION: Does the vertices have a cyclic order that



restricts to a cyclic order on each 2F?

 $\rightarrow$  feedback arc set:  $\vec{E} = | \text{backward edges}|$ one on each  $\partial F \Rightarrow |\vec{E}| = \frac{\# \text{ faces}}{2}$ 

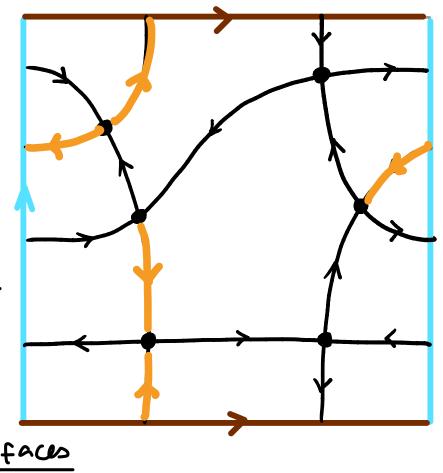
 $D(V,\vec{E})$  Eulerian & 4-regular digraph W/a 2-cell-embedding into  $\Sigma$  s.t for each face F

the edges on 2F form an oriented circ.

the vertices on 2F are all distinct

CONVERSLY suppose we've found a

feedback arc set;  $\stackrel{\triangleright}{\triangleright}$  of size  $\frac{\# \text{ faces}}{n}$ 



 $D(V,\vec{E})$  Eulerian & 4-regular digraph w/a 2-cell-embedding into  $\Sigma$  s.t for each face F

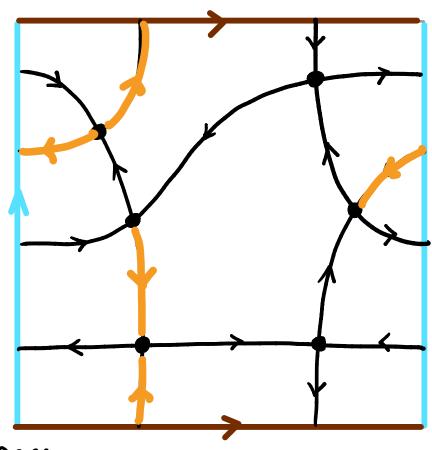
the edges on 2 F form an oriented circ.

the vertices on 2F one all distinct

CONVERSLY suppose we've found a

feedback arc set i = of size # faces

⇒ must have at least one edge on each ∂F



#### REFORMULATION - CONTINUED

D(V, E) Eulerian & 4-regular digraph

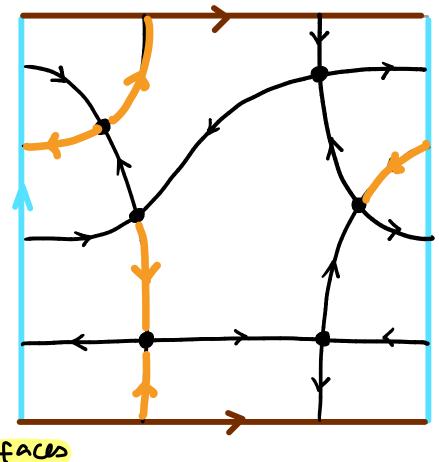
W/ a 2-cell-embedding into I'

s.t for each face F

the edges on FF form an oriented circ.

the vertices on FF one all distinct

CONVERSLY suppose we've found a



#### REFORMULATION - CONTINUED

D(V, E) Eulerian & 4-regular digraph

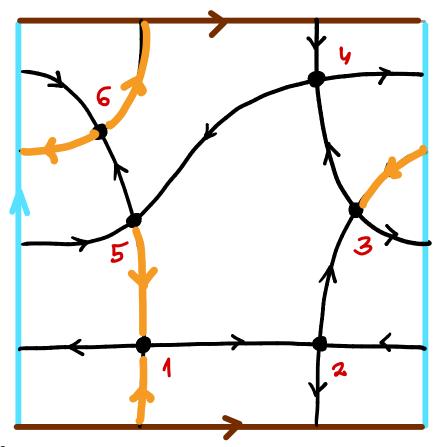
w/ a 2-cell-embedding into I

s.t for each face F

the edges on F form an oriented circ.

the vertices on F are all distinct

CONVERSLY suppose we've found a



feedback arc set i = of size # faces

⇒ must have exactly one edge on each ∂F

· linear onder ~ a cyclic order that restricts to a cyclic order on each 2 F?

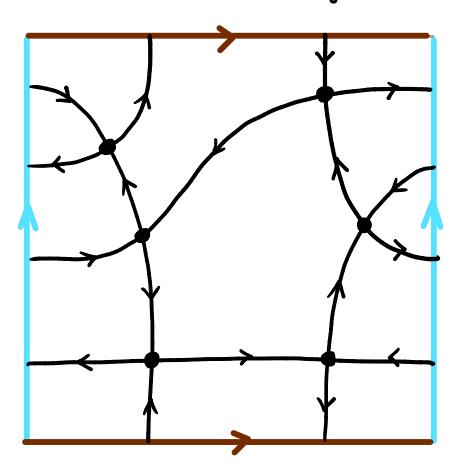
#### MAIN QUESTION

INPUT: an Eulerian & 4-regular digraph D(V, E)

8 a 1-cell embedding D(V, É) → Z s.t. for each face F

+ the vertices on 2F one all distinct

+ the edges on 2F form an oriented circle



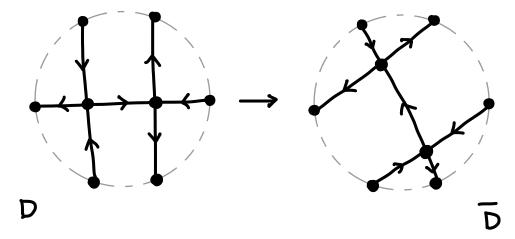
QUESTION: 7s there a feedback arc set

of size # faces ?

#### STRATEGY

D is an INPUT of the problem

local change:



LEHMA: Assume D'is also an "INPUT". Then

Dhas a feedback and set of size # faces
2

D'has a feedback anc set of size # faces
2

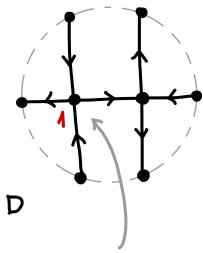
Recall: feedback and set of size # faces

2 backward

cyclic order of vertices that restricts to a

cyclic order on each 2F

· assume D has a cyclic order as above



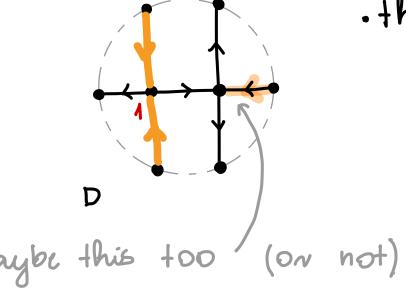
we can assume

Recall: feedback and set of size # faces

2 backward edges

cyclic order of vertices that restricts to a cyclic order on each FF

· assume D has a cyclic order as above



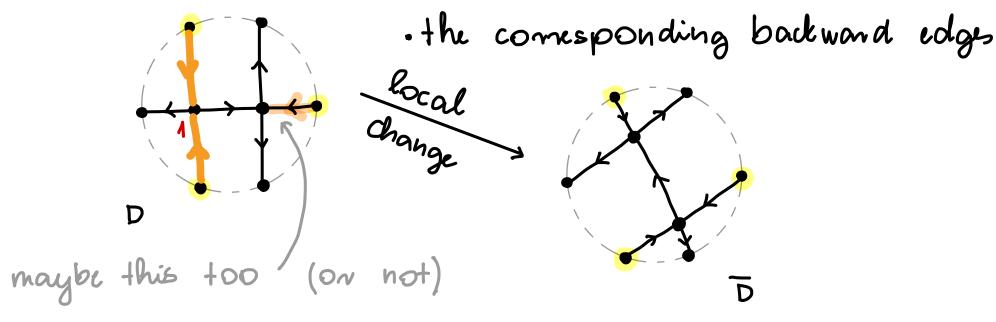
. the corresponding backward edges

Recall: feedback and set of size # faces

2 backward edges

cyclic order of vertices that restricts to a cyclic order on each 2F

· assume D has a cyclic order as above



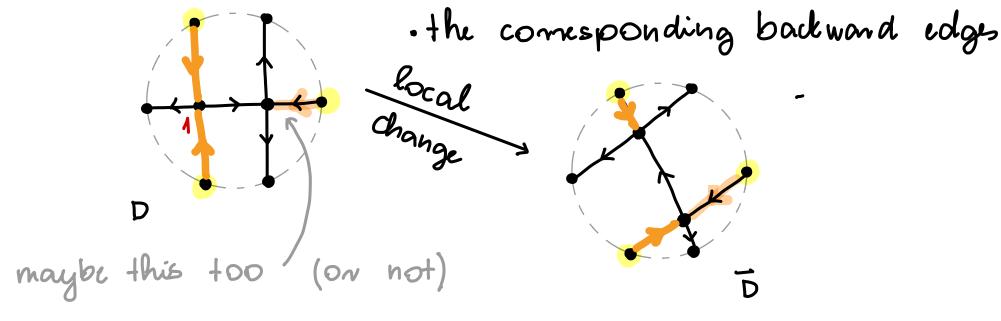
Recall: feedback and set of size # faces

2 backward

cyclic order of vertices that restricts to a

cyclic order on each 2F

· assume D has a cyclic order as above

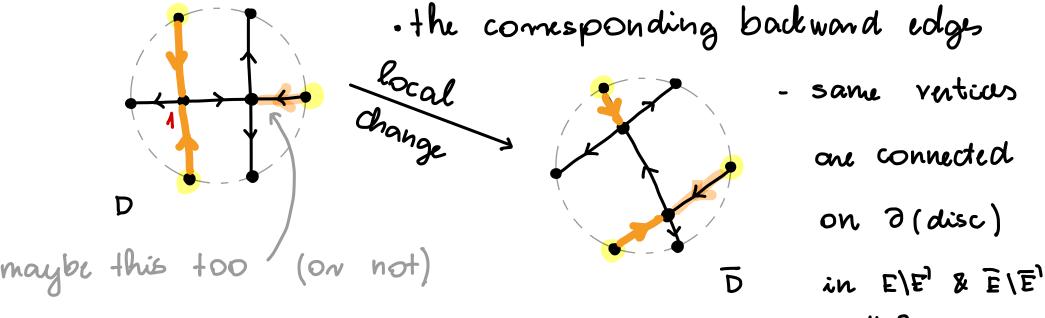


Recall: feedback and set of size # faces

2 backward edges

cyclic order of vertices that restricts to a cyclic order on each 2F

· assume D has a cyclic order as above

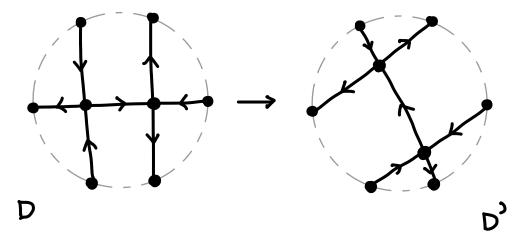


so E' gives a feedback and set fon D of size # faces

#### STRATEGY

D is an INPUT of the problem

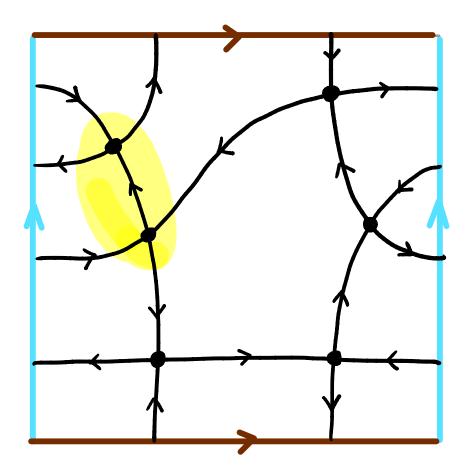
local change:

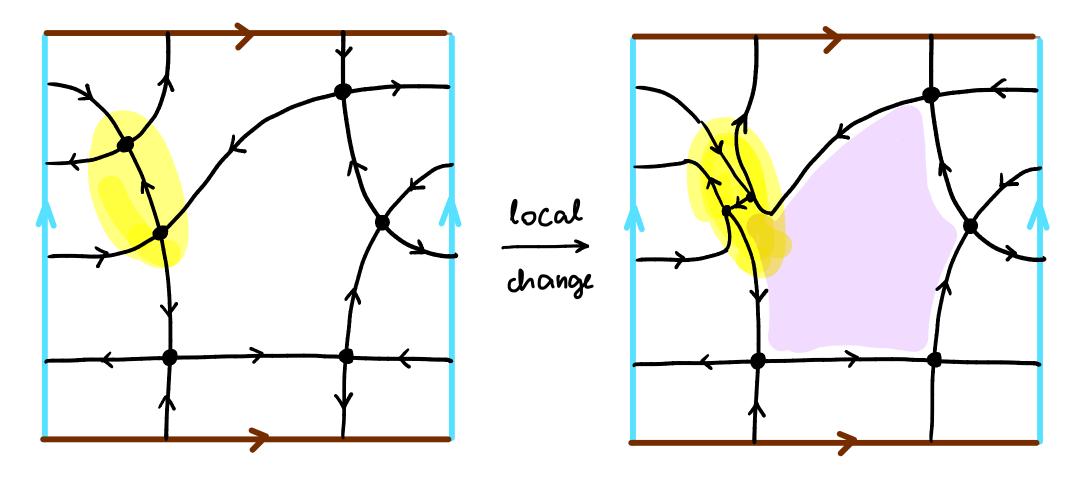


LEHMA: Assume D'is also an "INPUT". Then

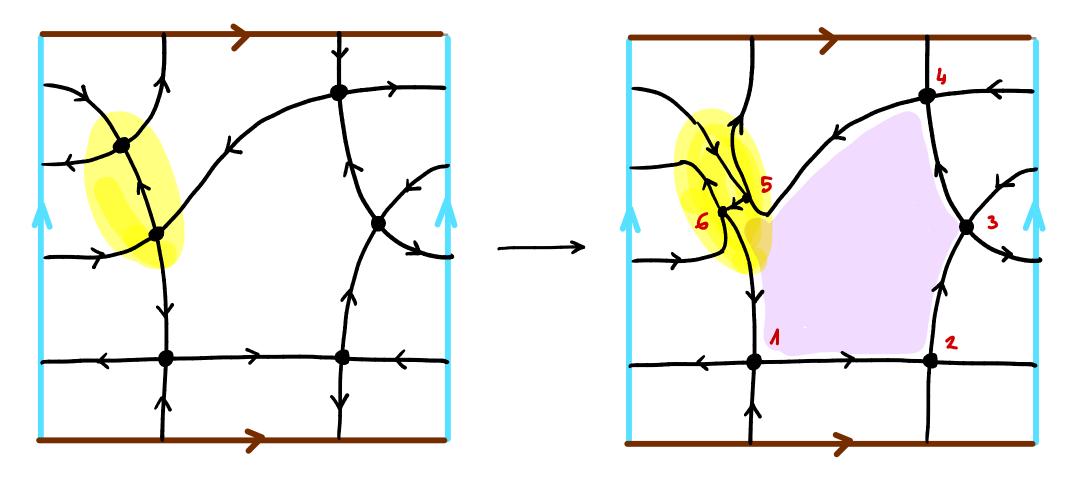
Dhas a feedback and set of size  $\frac{\# \text{ faces}}{2}$ Bhas a feedback and set of size  $\frac{\# \text{ faces}}{2}$ Change Dinto a digraph w/a "big" face (w/ all V)

Then it's easy to tell.

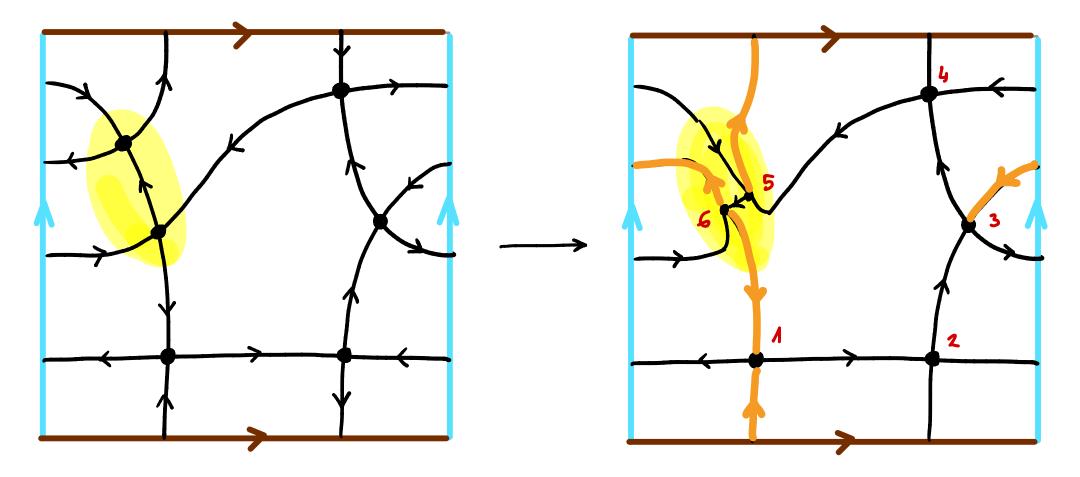




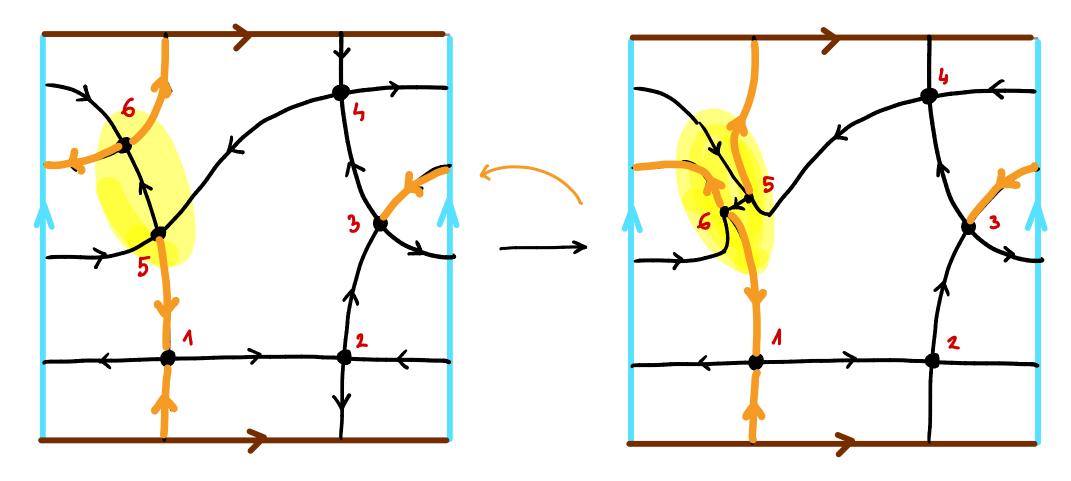
do local changes to get a "big circle"



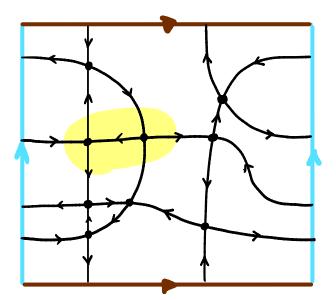
the "big cincle" gives a potential cyclic onder check if it works on not



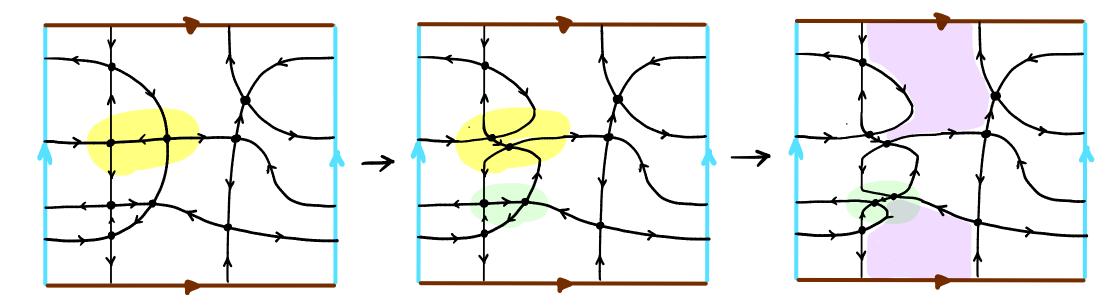
if it works construct a feedback and set == h backwards edges on D'



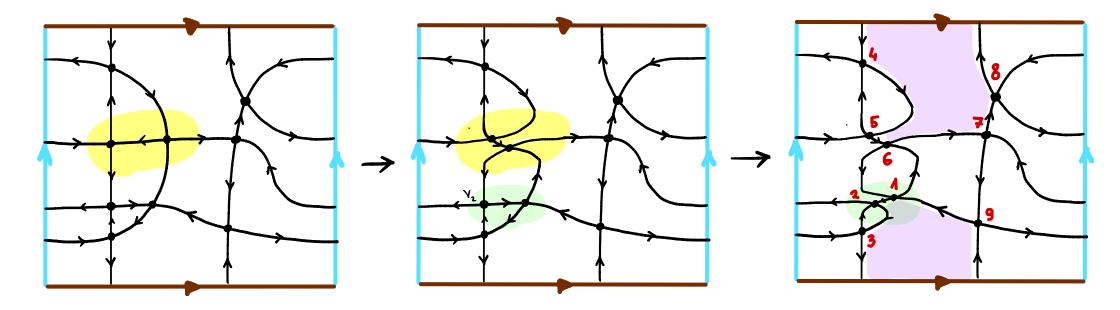
construct a feedback and set on D too & use it to get a cyclic order



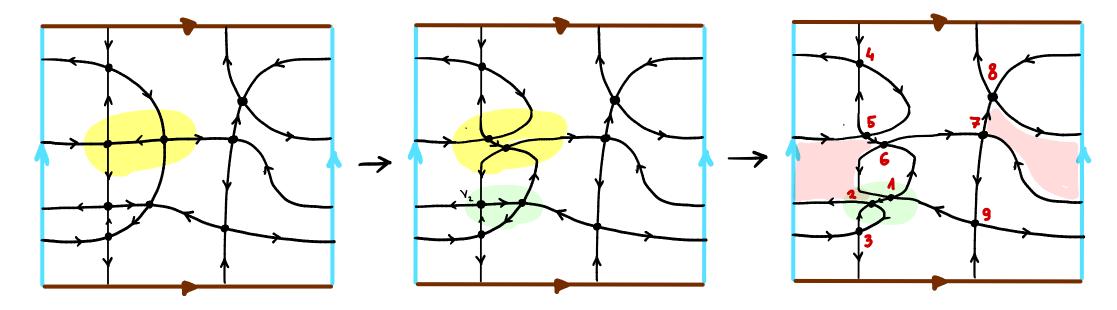
### A BAD EXAMPLE !



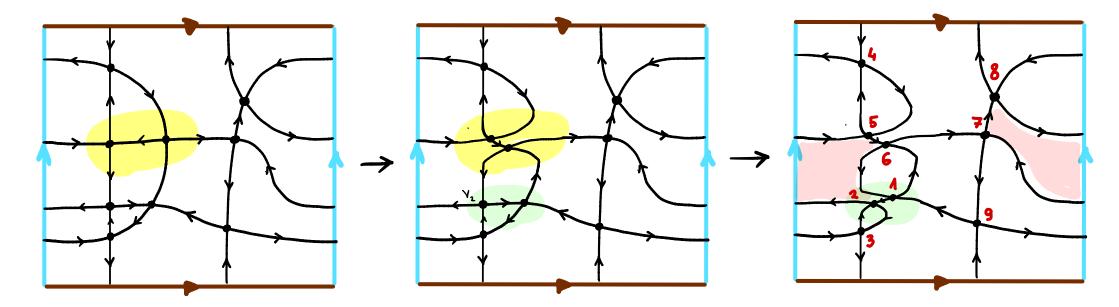
do local changes to get a "big circle"



do local changes to get a "big circle"
the big circle gives a potential cyclic order
check if it works on not



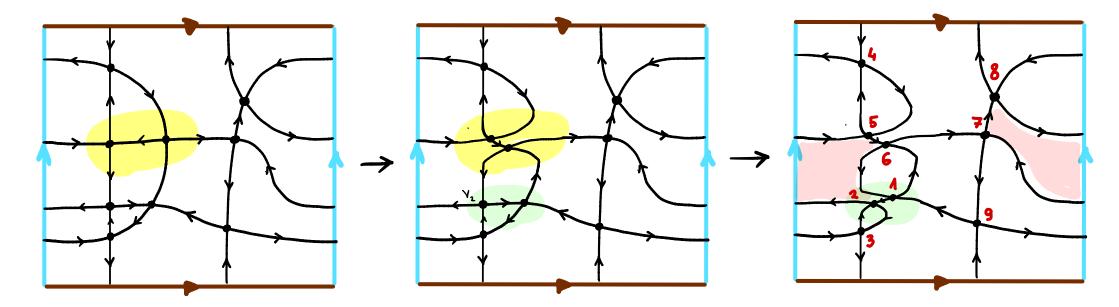
do local changes to get a "big circle"
the big circle gives a potential cyclic order
check if it works on not
! it doesn't work!



do local changes to get a "big circle"
the big circle gives a potential cyclic order
check if it works on not

! it doesn't work!

 $\Rightarrow$  No feedback and set of size  $\frac{\# \text{ faces}}{2}$  for  $\Gamma$ 



do local changes to get a "big circle"
the big circle gives a potential cyclic order
check if it works on not

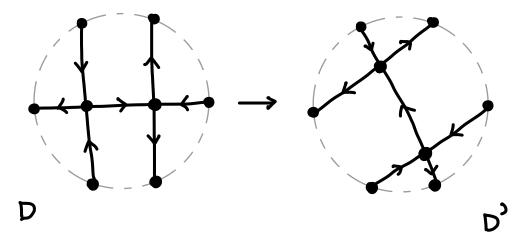
! it doesn't work!

 $\Rightarrow$  No feedback and set of size  $\frac{\# \text{ faces}}{2}$  for  $\Gamma$ 

# STRATEGY

D is an INPUT of the problem

# local change:



LEHMA: Assume D'is also an "INPUT". Then

Dhas a feedback and set of size # faces

Dhas a feedback and set of size # faces

BUT!: We cannot always change D to have a big face...

Kiss - V: still works for low genus ({3, possibly mon)

#### FURTHER DIRECTIONS:

GIVEN: 2 Eulerian & 4-regular digraph  $D_{(v,\vec{E})}$  &  $D_{(v,\vec{E})}$  &  $D_{(v,\vec{E})}$  &  $D_{(v,\vec{E})}$  &  $D_{(v,\vec{E})}$  &  $D_{(v,\vec{E})}$   $D_{(v,\vec{E})}$ 

w/ the usual properties

for each face F

+ the vertices on 2F are all distinct

+ the edges on 2F form an oriented circle

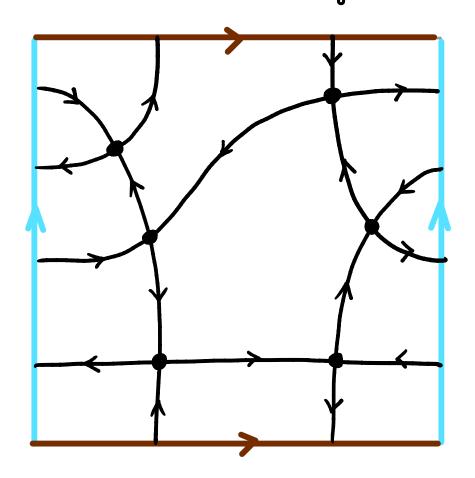
QUESTION: Element any moves

#### ANY NEW IDEAS ?

INPUT: an Eulerian & 4-regular digraph D(V, É)

& a 1-cell embedding  $D(V, \dot{E}) \hookrightarrow Z$  s.t. for each face F

- + the vertices on 2 F one all distinct
- + the edges on 2F form an oriented circle



QUESTION: 3s there a feedback arc set

of size # faces ?

# THANKS FOR YOUR ATTENTION!