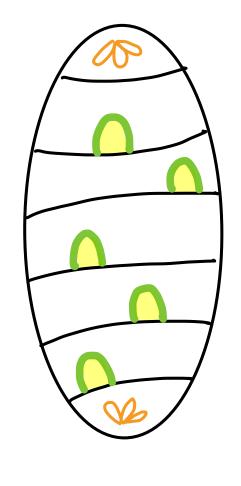
1HF GIROUX CORRESPONDENCE VIA CONVEX SURFACES VERA VÉRTESI



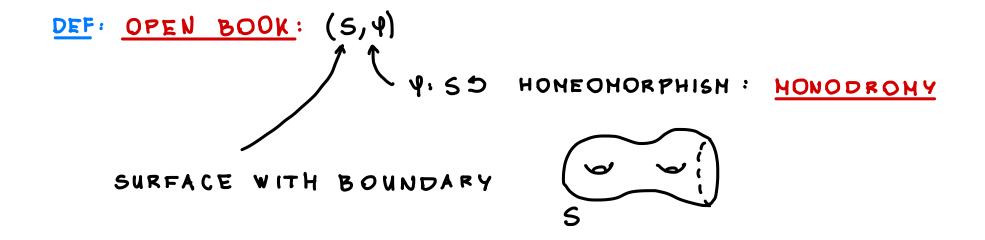
JOINT WORK WITH JOAN LICATA

UNIVERSITY OF VIENNA

1973 VINKELNKEHPER: FIRST USED THE WORD
"OPEN BOOK DECOMPOSITION"

BUT IT WAS ALREADY KNOWN & STUDIED UNDER DIFFERENT NAMES:

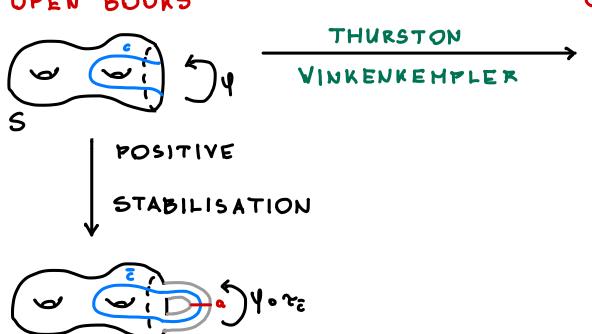
- · GLOBAL POINCARÉ BIRKHOFF SECTION
- · RELATIVE HAPPING TORUS
- · LEFSHETZ/ HILNOR FIBRATION
- . TIBERED LINKS
- · SPINNABLE STRUCTURES

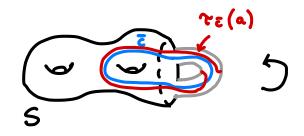


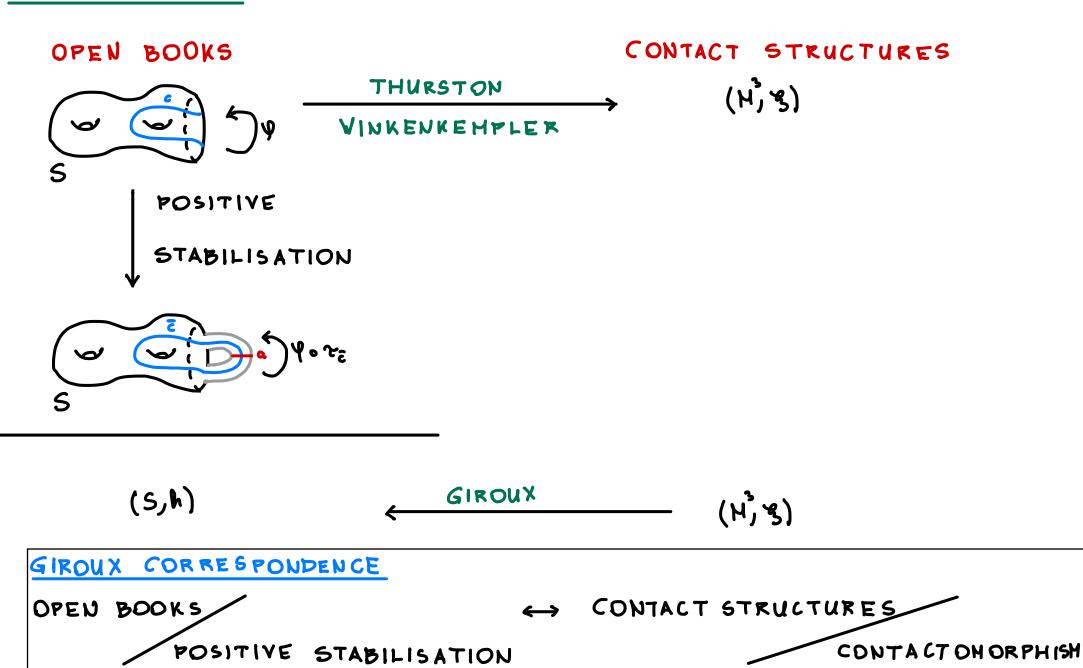
OPEN BOOKS

CONTACT STRUCTURES

(H, 3)







GIROUX CORRESPONDENCE OPEN BOOKS FOSITIVE STABILISATION CONTACT ON ORPHISH

- GC HAS BEEN EXTENSIVELY USED TO PROVE THAS ABOUT CTCT 3-NFDS
- THE ORIGINAL PROOF OF GIRDUX WAS INCOMPLETE

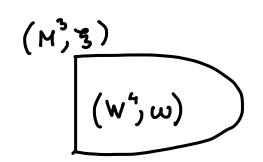
 (HASSOT WROTE DOWN A COMPLETE PROOF BUT DIDN'T)

 PUBLISH IT
- FOR CONTACT STRUCTURES IN ANY ODD DINENSIONS
- 1013 LICATA Y. : PROOF OF THE GIROUX CORRESPONDENCE

 FOR TIGHT CONTACT 3- NANIFOLDS (INDEPENDENT)
- 1024 LICATA V. : EXTENDED OUR PROOF TO WORK FOR ANY CONTACT 3- NANIFOLD

IN CONTACT TOPOLOGY

→ FILLABILITY



GIROUX: TOPOLOGICAL DESCRIPTION OF STEIN-FILLABLE CONTACT 3-MANIFOLDS

ELIASHBERG, ETNYRE: ANY WEAK SYMPLECTIC TILLING OF A

CONTACT 3-MANIFOLD CAN BE EYBEDDED INTO A CLOSED

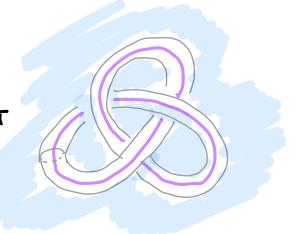
SYMPLECTIC HANIFOLD

* CONTACT SURGERY

WAND: CONTACT SURGERY PRESERVES TIGHTNESS

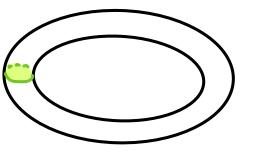
KEGEL- STENHENDE- V-ZUDDAS: CLASSIFICATION OF LEGENDRIAN SURGERY DIAGRAMS DESCRIBING THE SAME CONTACT HANIFOLD

SURGERY: REHOVE NEIGHBOURHOOD OF A KNOT



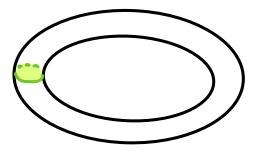
SURGERY: REHOVE NEIGHBOURHOOD OF A KNOT

& GLUE BACK A D2 × SA DIFFERENTLY



SURGERY: REHOVE NEIGHBOURHOOD OF A KNOT

& GLUE BACK A D2 × S4 DIFFERENTLY



KRONHEIHER - HROWKA: EVERY NONTRIVIAL KNOT HAS PROPERTY P

OZSYATH- SZABÓ: THE UNKNOT, TREFOIL & FIGURE-EIGHT KNOT

ARE CHARACTERISED BY THEIR SYRGERIES

OZSYATH- SZABÓ: THE THURGTON NORH IS DETERHINED BY
HEEGAARD FLOER HOHOLOGY

GIROUX - GOODMAN: INDUCTIVE CONSTRUCTION OF FIBERED

KNOTS IN 5°

- · LECTURE 4 : SUBHANIFOLDS OF CONTACT STRUCTURES
- LECTURE 2 : DESCRIBING CONTACT STRUCTURES
- LECTURE 3 : PROOF OF GIROUX CORRESPONDENCE

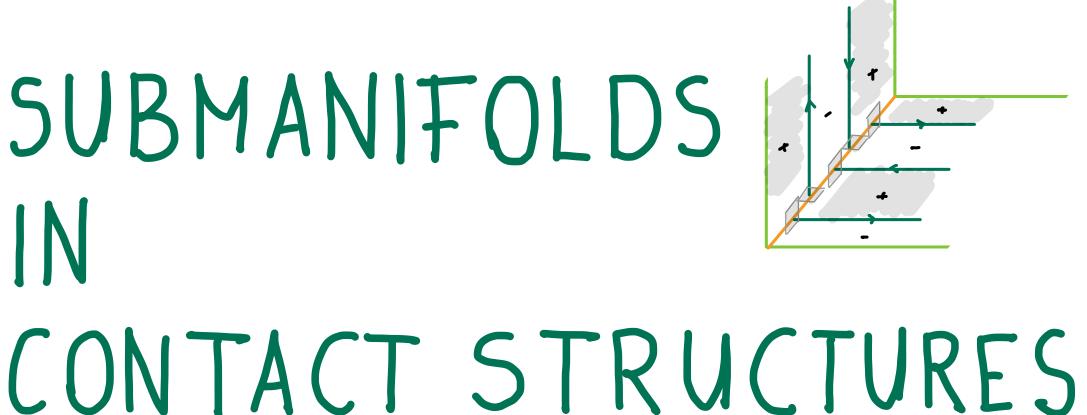
- LECTURE 1 : SUBHANIFOLDS OF CONTACT STRUCTURES
 - CONTACT STRUCTURES
 - -(10) LEGENDRIAN & TRANSVERSE KNOTS , LEGENDRIAN GRAPHS
 - -(20) CONVEX SURFACES
 - NEIGHBOURHOOD THEOREMS
 - TIGHT & OVERTWISTED CONTACT STRUCTURES
- LECTURE 2: DESCRIBING CONTACT STRUCTURES
- LECTURE 3 : PROOF OF GIROUX CORRESPONDENCE

- LECTURE 1: SUBHANIFOLDS OF CONTACT STRUCTURES
- LECTURE 2: DESCRIBING CONTACT STRUCTURES
 - CONTACT CELL DECOMPOSITIONS
 - CONVEX SURFACE THEORY BYPASSES
 - CONTACT HEEGAARD SPLITTINGS (PROOF OF EXISTENCE)
 - OPEN BOOK DECOMPOSITIONS
 - OPEN BOOK DECOMPOSITIONS & CONTACT HEEGAARD SPLITTINGS
- LECTURE 3 : PROOF OF GIROUX CORRESPONDENCE

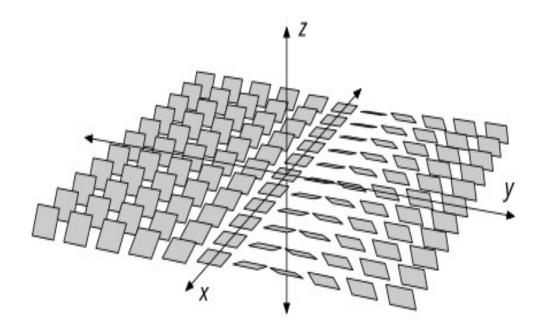
- LECTURE 1 : SUBHANIFOLDS OF CONTACT STRUCTURES
- LECTURE 2: DESCRIBING CONTACT STRUCTURES
- LECTURE 3 : PROOF OF GIROUX CORRESPONDENCE
 - STABILISATION
 - STATEMENT OF GIROUX CORRESPONDENCE
 - IDEA OF PROOF
 - FURTHER DIRECTIONS

LECTURE 1

SUBMANIFOLDS



CONTACT STRUCTURES

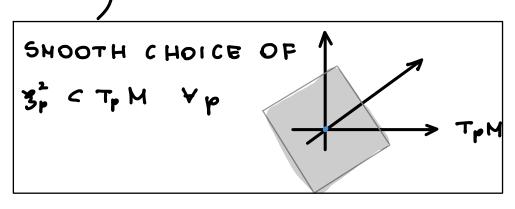


CONTACT STRUCTURES

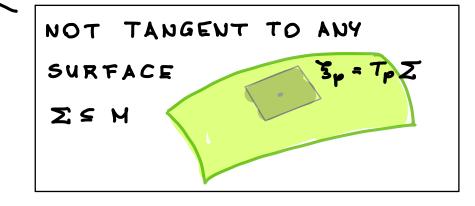
DEF: A CONTACT STRUCTURE ON A CLOSED, ORIENTED SHOOTH

3-MANIFOLD H' IS A TOTALLY NONINTEGRABLE

2-TLANE-DISTRIBUTION 3CTH



LOCALLY: 3 = km & & E 11 (M)



T FROBENIUS

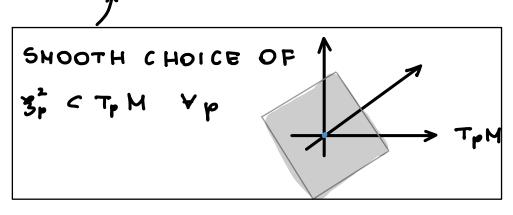
COORIENTED CONTACT STRUCTURE : GLOBAL &

CONTACT STRUCTURES

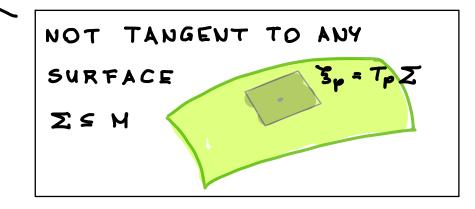
DEF: A CONTACT STRUCTURE ON A CLOSED, ORIENTED SHOOTH

3-MANIFOLD H' IS A TOTALLY NONINTEGRABLE

2-TLANE-DISTRIBUTION 3CTH



LOCALLY: 3 = km & & E 11 (H)



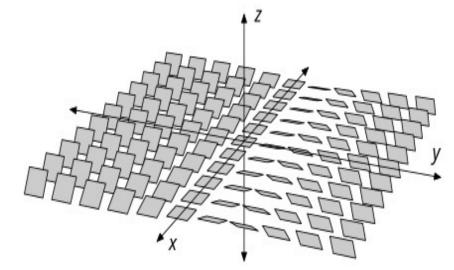
T FROBENIUS

COORIENTED CONTACT STRUCTURE : GLOBAL &

DARBOUX THIM: LOCALLY ANY CONTACT

STRUCTURE IS CONTACT OHORPHIC

DIFFEONORPHISM THAT CARRIES



EQUIVALENCE OF CONTACT STRUCTURES

(H, 3)& (H', 3') CONTACT STRUCTURES

· CONTACTONORPHISH (H, g) = (H', g') IF 3 DIFFEOHORPHISH Φ: H→H'

THAT CARRIES 3 TO 3': Φ, g = 5'

WHEN M= M'

- HOHOTOPY: 3=3 IF 3 1- PARAMETER FAHILY OF CONTACT

 STRUCTURES (3+)+ E[P,A] ON M WITH 3=3. & 3=5.
- · 150TOPY: 多次 当 IF ヨ 1- PARAMETER FAHILY OF SELF: DIFFEOHORPHISM

 (中山(ロー) OF M WITH・中の= ld &
 ・ ま) = (中山 ま) を

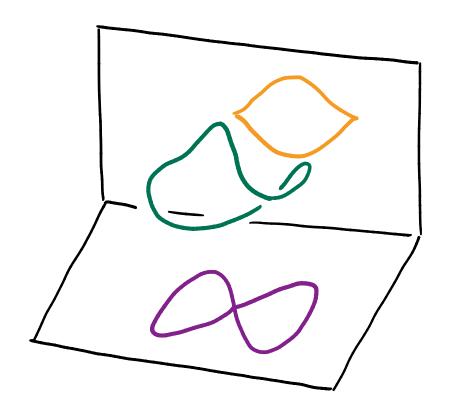
THM (GRAY STABILITY): "HOHOTOPY = 150TOPY"

ANY HOHOTOPY (3_{+})_{$+ \in [D, \Lambda]$} OF CONTACT STRUCTURES IS

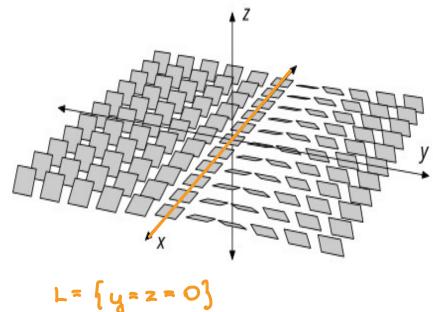
INDUCED BY AN ISOTOPY (ϕ_{+})_{$+ \in [D, \Lambda]$}: • $\phi_{+} = Id$ &

• $3_{+} = (\phi_{+})_{+} 3_{+}$

1-DM: KNOTS



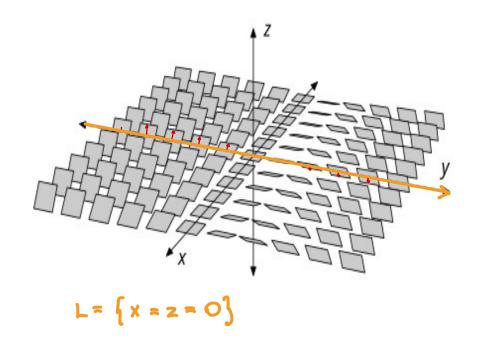
DEF : L'GM IS A LEGENDRIAN KNOT IF TPL < 3p Yp:



DEF: L'GM IS A LEGENDRIAN KNOT

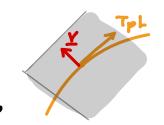
IF Tpl < 3p Yp:

MOTTO: THE CONTACT STRUCTURE
ALWAYS ROTATES
ALONG LEGENDRIANS



THURSTON - BENNEQUIN TRANING .

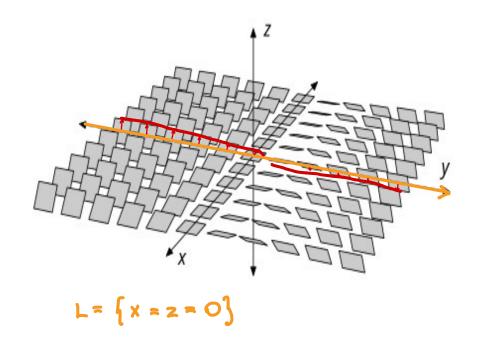
PUSH L IN THE
DIRECTION OF Y
WHERE Y L TPL & y & Sp



DEF: L'GM IS A LEGENDRIAN KNOT

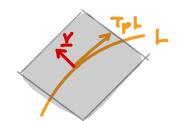
IF Tpl < 3p Yp:

MOTTO: THE CONTACT STRUCTURE
ALWAYS ROTATES
ALONG LEGENDRIANS



THURSTON - BENNEQUIN TRANING .

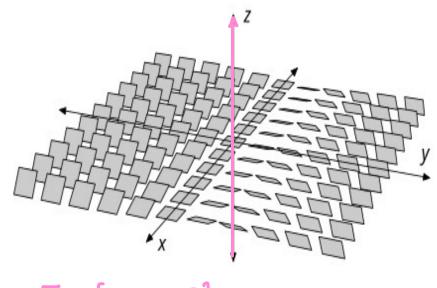
PUSH L IN THE
DIRECTION OF Y
WHERE Y L TPL & y & Sp



DEF: L'GM IS A LEGENDRIAN KNOT

IF Tpl < 3p Yp:

MOTTO: THE CONTACT STRUCTURE
ALWAYS ROTATES
ALONG LEGENDRIANS

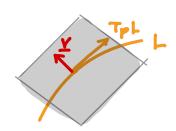


THURSTON - BENNEQUIN FRANING .

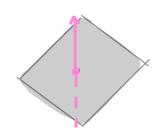
TUSH L IN THE

DIRECTION OF Y

WHERE YPITPL & YPESP



DEF: TGM IS A TRANSVERSE KNOT IF THT A 3p Yp:

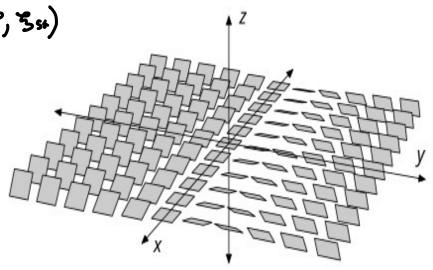


EGENDRIAN APPROXIMATION

THN: ANY KNOT K (M, S) CAN BE C°- APPROXIMATED BY
A LEGENDRIAN KNOT

IDEA OF TROOF : ENOUGH TO APPROXIMATE LOCALLY & BY

DARBOUX THM WE CAN WORK IN (183, 354)



EGENDRIAN APPROXIMATION

THN: ANY KNOT K (H, 5) CAN BE C°- APPROXIMATED BY
A LEGENDRIAN KNOT

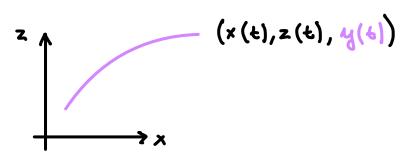
IDEA OF TROOF : ENOUGH TO APPROXIMATE LOCALLY & BY

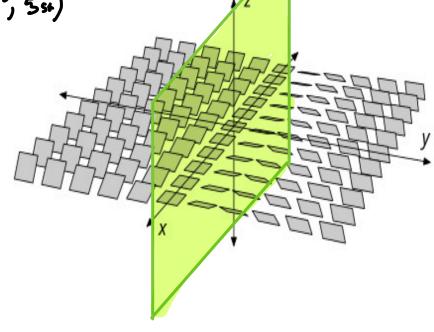
DARBOUX THM WE CAN WORK IN (183, 354)

$$3 = k (dz - y dx) \iff y = \frac{dz}{dx}$$

WE CAN READ OFF 4-COORDINATE FRON THE PROJECTION TO (x,z)-PLANE

· PROJECT K TO THE (x,z) - PLANE





EGENDRIAN APPROXIMATION

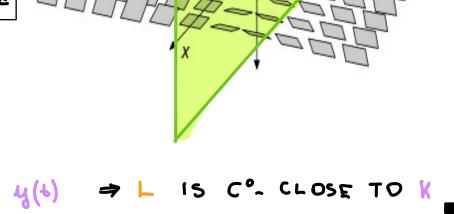
THM: ANY KNOT K (H, S) CAN BE C°- APPROXIMATED BY A LEGENDRIAN KNOT

IDEA OF TROOF : ENOUGH TO APPROXIMATE LOCALLY & BY DARBOUX THM WE CAN WORK IN (183, 354)

$$3 = k (dz - y dx) \iff y = \frac{dz}{dx}$$

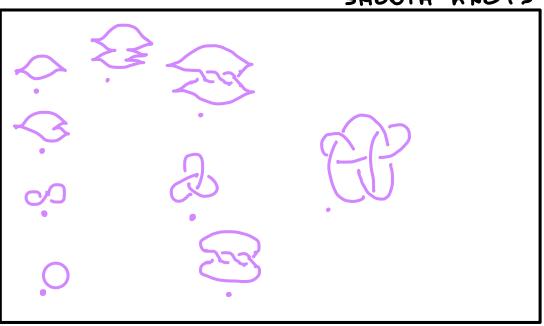
WE CAN READ OFF 4-COORDINATE FRON THE PROJECTION TO (x,z)-PLANE

• PROJECT K TO THE (x,z) - PLANE

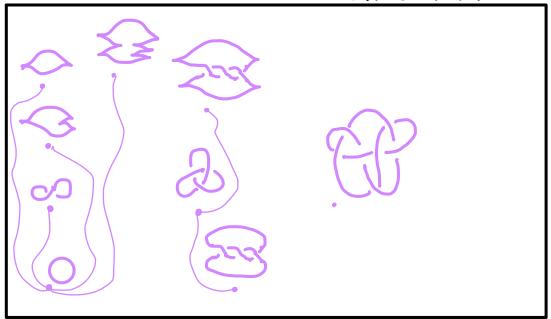


COR: ANY SHOOTH KNOT CAN BE REPRESENTED BY A LEGENDRIAN KNOT

SHOOTH KNOTS

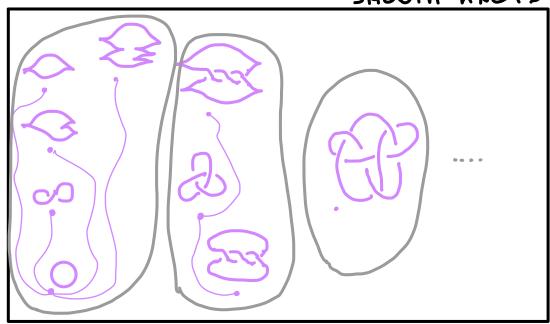


SHOOTH KNOTS



SPACE OF KNOTS

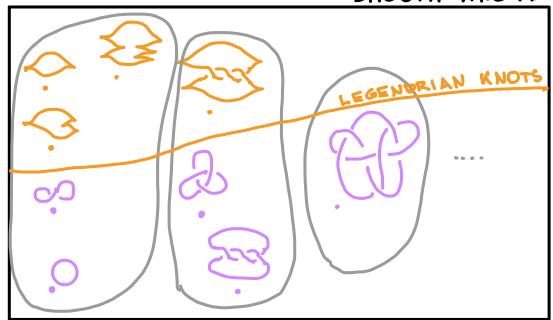
SHOOTH KNOTS



150TOPY: PATH IN THE SPACE OF KNOTS

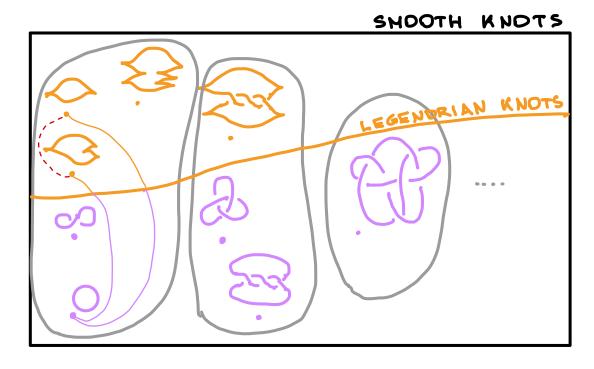
ISOTOPY CLASS : CONNECTED
COMPONENT

SHOOTH KNOTS



SPACE OF KNOTS

ISOTOPY CLASS : CONNECTED
COMPONENT



SPACE OF KNOTS

ISOTOPY CLASS : CONNECTED

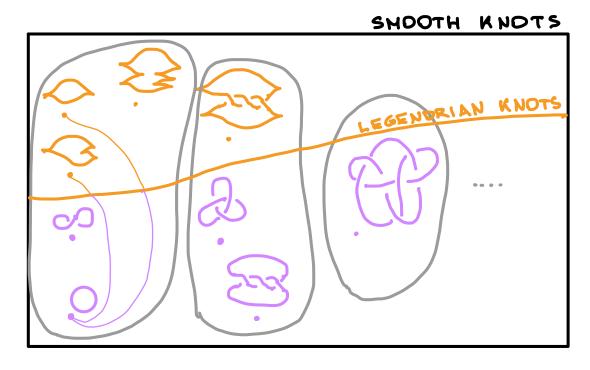
COMPONENT

LEGENDRIAN ISOTOPY PATH

IN THE SPACE OF LEGENDRIAN

KNOTS

IF L ISOTOPIC TO L' IMPLIES L LEGEDRIAN ISOTOPIC TOL'?



SPACE OF KUOTS

COMPONENT

LEGENDRIAN ISOTOPY ' PATH

IN THE SPACE OF LEGENDRIAN

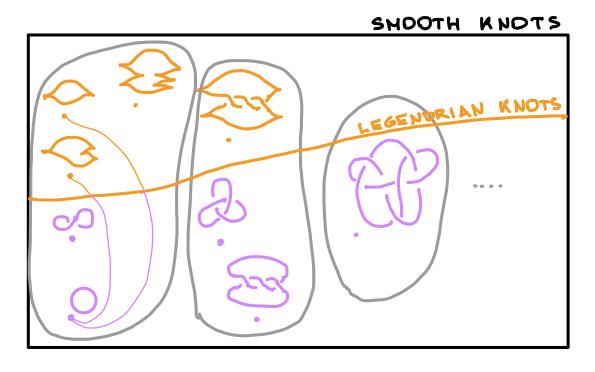
KNOTS

IF L ISOTOPIC TO L' IMPLIES L LEGEDRIAN ISOTOPIC TOL'?

NO! - THE TWISTING OF & (W.R.T THE SEIFERT SURFACE)

DOESN'T CHANGE DURING LEGENDRIAN

150TOPY



SPACE OF KNOTS

COMPONENT

LEGENDRIAN ISOTOPY ' TATH

IN THE SPACE OF LEGENDRIAN

KNOTS

IF L ISOTOPIC TO L' IMPLIES L LEGEDRIAN ISOTOPIC TOL'?

NO! - THE TWISTING OF & (W.R.T THE SEIFERT SURFACE)

DOESN'T CHANGE DURING LEGENDRIAN

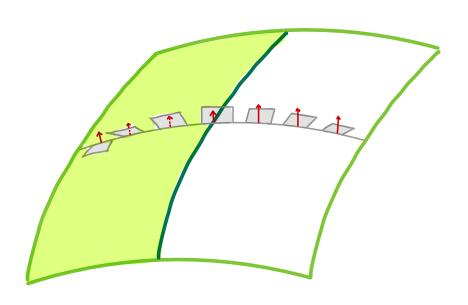
150TOPY

STABILISATION:

CHANGES TWISTING

THM (FUCHS-TABACHNIKOV): L IS ISOTOPIC TO L' - AFTER SONE STABILISATIONS St (L) IS LEGEDRIAN ISOTOPIC TO St (L')

2-DIM: SURFACES



SURFACES IN CONTACT STRUCTURES

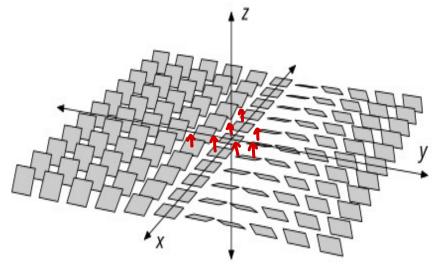
DEF: A CONTACT VECTORFIELD X & X (M)

IS A VECTORFIELD WHOSE FLOW

TRESERVS 3

1

Zx ~ = g ~ FOR SOME g: N→R



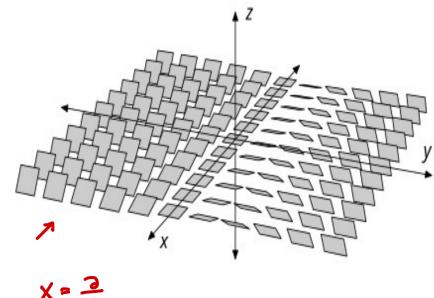
SURFACES IN CONTACT STRUCTURES

DEF: A CONTACT VECTORFIELD X & X (M)

IS A VECTORFIELD WHOSE FLOW

TRESERVS 3

Zx ~ = g ~ FOR SOME g: N→R



SURFACES IN CONTACT STRUCTURES

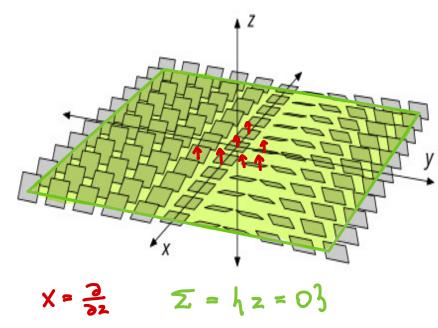
DEF: A CONTACT VECTORFIELD X & X (M)

IS A VECTORFIELD WHOSE FLOW

TRESERVS 3

1

Zx ~ = g ~ FOR SOME g: N→TR



DEF: Z → H IS CONVEX IF 3 X CONTACT VECTORFIELD X \$\(\Delta\) \In \(\Delta\)

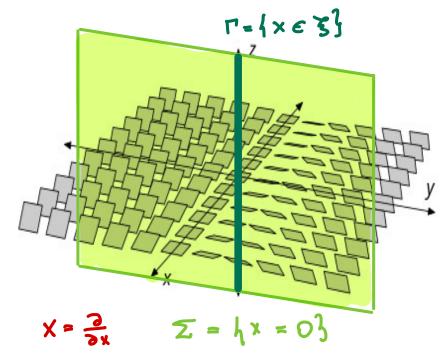
SURFACES IN CONTACT STRUCTURES

DEF: A CONTACT VECTORFIELD X & X (M)

15 A VECTORFIELD WHOSE FLOW

PRESERVS 3

Zx ~ = g ~ FOR SOME g: N→TR



DEF: Z → H IS CONVEX IF 3 X CONTACT VECTORFIELD X \$ Z

EQUIVALENTLY: Z HAS A NEIGHBOURHOOD N(I) = ZxI WITH
I-INVARIANT CONTACT STRUCTURE ₹

~= β + qd+ WHERE B ∈ Ω'(Z) & q: M → TR

FACT (GIROUX): TO UNDERSTAND 3 ON N(X) ONE ONLY NEEDS

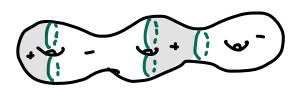
CONVEX SURFACES (GIROUX)

DEF: ZGH IS CONVEX IF & CONTACT VECTORFIELD X: ZAX

DEF: P= (X & 3) = (x(X)=0) CZ IS THE DIVIDING CURVE

TROP' - THE ISOTOPY CLASS OF T IS INDEPENDENT OF THE CHOICE OF X

- Γ DIVIDES Σ INTO TWO PIECES: $\Sigma_+ = \{ \kappa(X) > 0 \}$ $\Sigma_- = \{ \kappa(X) < 0 \}$



THH (THE DIVIDING CURVE DETERHINES & NEAR Z)

 Σ, Σ' CONVEX SURFACES W/ ISOTOPIC DIVIDING CURVES $\Longrightarrow \exists \ N(\Sigma), N(\Sigma')$ NEIGHBOURHOODS THAT ARE CONTACTONORPHIC

THM (CONVEX SURFACES ARE CO-GENERIC): ANY SURFACE I CAN

CONTACT MANIFOLDS WITH BOUNDARY

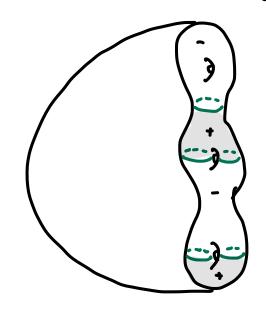
 $\underline{\mathsf{DEF}}: \big(\Sigma_{\mathsf{t}}\big)_{\mathsf{t}\in[0,4]} \quad \mathsf{IS} \quad \mathsf{A} \quad \underline{\mathsf{CONVEX}} \quad \mathsf{ISOTOPY} \quad \mathsf{IF} \quad \Sigma_{\mathsf{t}} \quad \mathsf{IS} \quad \mathsf{CONVEX} \quad \big(\forall \; \mathsf{t} \in [0,4]\big)$

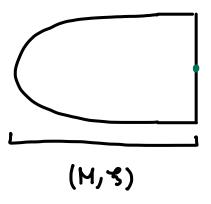
WE WILL WORK WITH

M' 5-HANIFOLD WITH BOUNDARY,

3 CONTACT STRUCTURE ON H, S.T

3 H IS CONVEX





CONTACT MANIFOLDS WITH BOUNDARY

DEF: $(\Sigma_t)_{t \in [0,4]}$ IS A CONVEX ISOTOPY IF Σ_t IS CONVEX $(\forall t \in [0,4])$

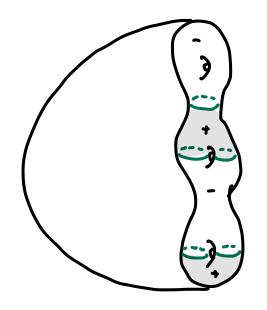
WE WILL WORK WITH

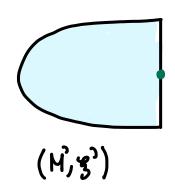
M' 5-HANIFOLD WITH BOUNDARY,

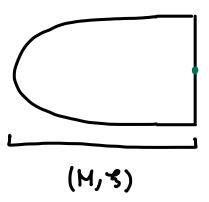
3 CONTACT STRUCTURE ON H, S.T

3 H IS CONVEX

· SAHE FOR (H', 5')







CONTACT MANIFOLDS WITH BOUNDARY

 $\underline{\mathsf{DEF}}: (\Sigma_{\mathsf{t}})_{\mathsf{t} \in [0,4]} \text{ is a } \underline{\mathsf{CONVEX}} \text{ isotopy} \text{ if } \Sigma_{\mathsf{t}} \text{ is convex} \left(\forall \; \mathsf{t} \in [0,4]\right)$

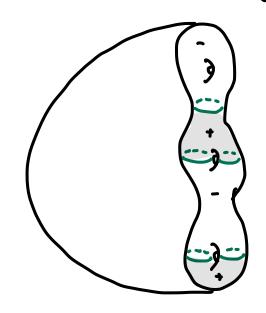
WE WILL WORK WITH

M' 5-HANIFOLD WITH BOUNDARY,

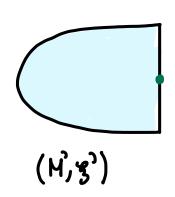
3 CONTACT STRUCTURE ON H, S.T

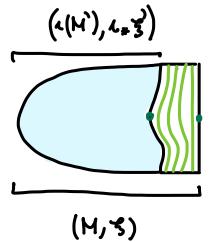
3 H IS CONVEX

· SAHE FOR (H', 5')



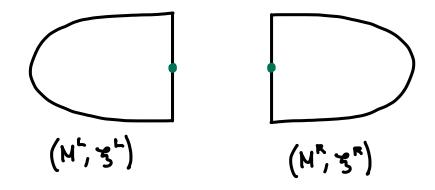
(F,H) FIND DUIDG BE : SIHOTOATHOD YLAND : TAHT HOUR



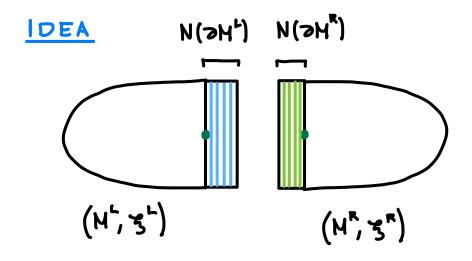


WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES

IDEA

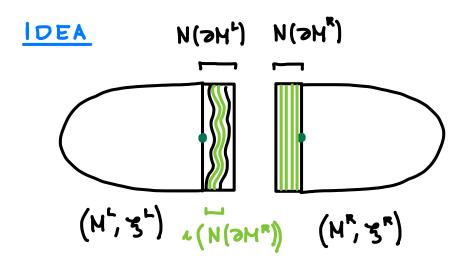


WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES



STEP 1: ADD I - INVARIANT PART TO EACH

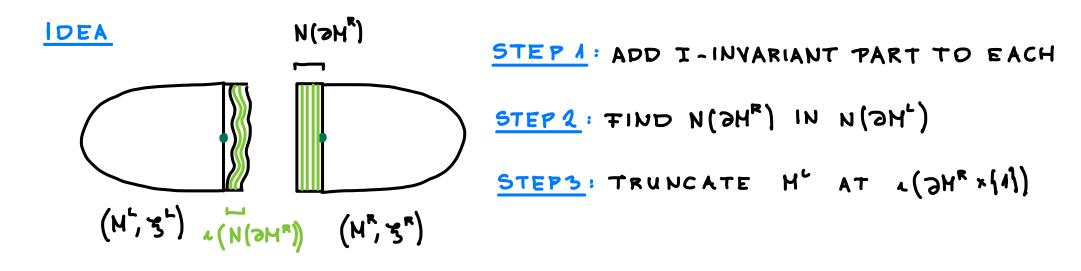
WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES



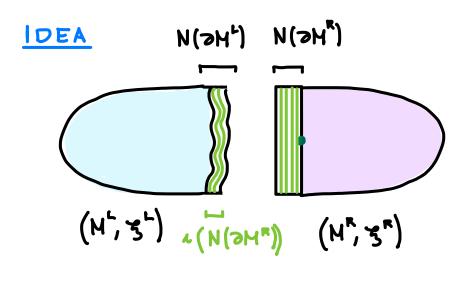
STEP 1: ADD I - INVARIANT PART TO EACH

STEP 2: FIND N(3HR) IN N(3HL)

WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES



WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH MATCHING DIVIDING CURVES

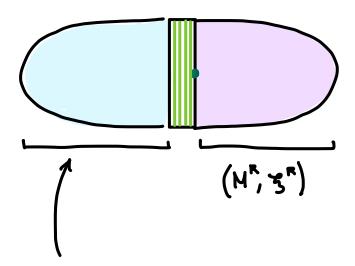


STEP 1: ADD I - INVARIANT PART TO EACH

STEP (TIND N(3HR) IN N(3HL)

STEPS: TRUNCATE H' AT L(3HR x(1))

STEP4: OVERLAP & (N(OMR)) WITH N(OMR)



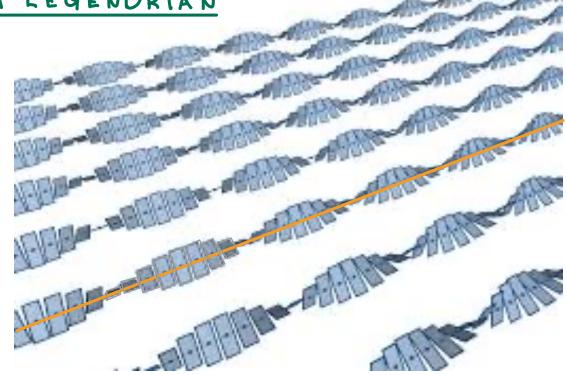
THE OBTAINED CONTACT MANIFOLD

IS (N', 3") U (N', 3")

& IT IS WELL DEFINED UP TO CONTACTOMORPHISM

WEAKLY CONTACT ISOTOPIC TO (HL, 3)

STANDARD NEIGHBOURHOOD OF A LEGENDRIAN E. 6: 3 = kw (cos(z) dx - sin(z) dy) (ISOTOPIC TO 3+)



STANDARD NEIGHBOURHOOD OF A LEGENDRIAN

E.6:3 = kw (cos(z) dx - sin(z) dy)

(ISOTOPIC TO 3 st)

IDENTIFY (x,y,z)~ (x,y,z+2TM)

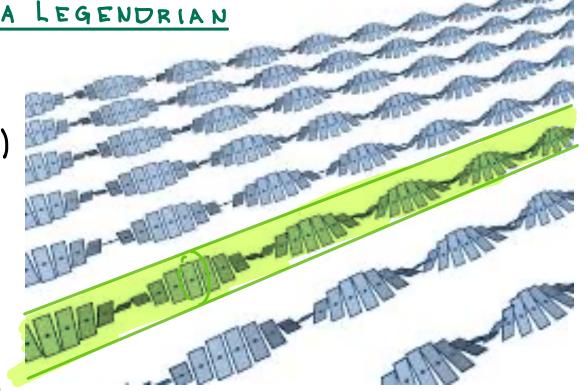
~> CONTACT STRUCTURE

ON TR2 x 5

WITH LEGENDRIAN KNOT

L= (0,0) x 5' C TR' x 5'

NEIGHBOURHOOD N(L)-D2 + 51



STANDARD NEIGHBOURHOOD OF A LEGENDRIAN

 $\underline{E.6}$: 3 = kw (cos(z) dx - sin(z) dy)

(ISOTOPIC TO 3 st)

IDENTIFY (x,y,z)~ (x,y,z+2Tin)

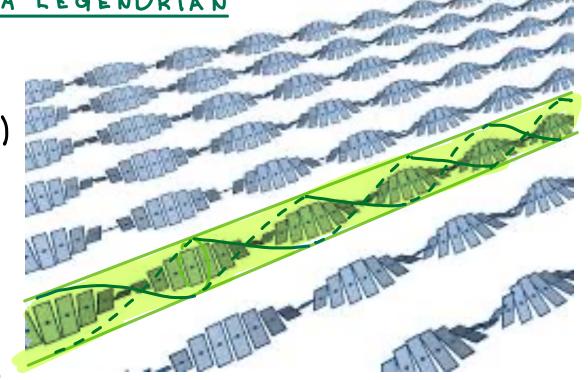
CONTACT STRUCTURE

ON R2 × S'

WITH LEGENDRIAN KNOT

L= (0,0) × S' CR2 × S'

NEIGHBOURHOOD N(L)-D2 x 5



THIS GIVES THE THURSTON - BENDEQUIN FRAHING

STANDARD NEIGHBOURHOOD OF A LEGENDRIAN

E.6: 3 = kw (cos(z) dx - sin(z) dy)

(ISOTOPIC TO 3 st)

IDENTIFY (x,y,z)~ (x,y,z+276n)

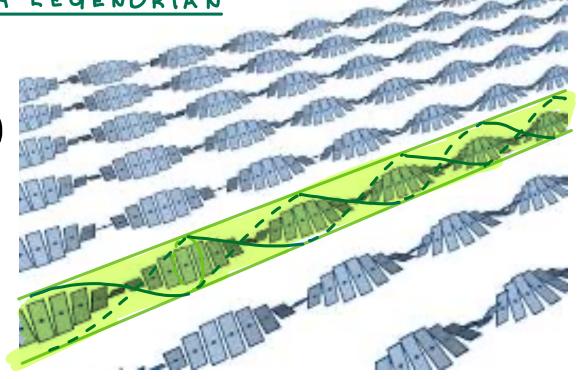
CONTACT STRUCTURE

ON R2 × S'

WITH LEGENDRIAN KNOT

L= (0,0) × S' CR2 × S'

NEIGHBOURHOOD N(L)-D2 + 5'



THIS GIVES THE THURSTON BY A CO-SHALL ISOTOPY

THE TO (SINCE PARALLEL TO (SINCE), COS(2), Z)

THM: ANY LEGENDRIAN KNOT LG (H, 3) HAS A NEIGHBOURHOOD N(L)
CONTACTOMORPHIC TO N(L.)

LEGENDRIANS ON CONVEX SURFACES

DET CC(Z,P) IS AN ISOLATING CURVE, IF SOME COMPONENT

OF Z/C IS DISTOINT TROM T:

THY (LEGENDRIAN REALISATION PRINCIPLE)

(Z,T) CONVEX SURFACE, CCI NON-ISOLATING CURVE

 \Longrightarrow Σ can be isotoped through convex surfaces $\Psi_{\bullet}(\Sigma)$ s.t. after the isotopy $\Psi_{\bullet}(c) \subset \Psi_{\bullet}(\Sigma)$ is legendrian

LEGENDRIANS ON CONVEX SURFACES

DET CC (Z,P) IS AN ISDLATING CURVE, IF SOME COMPONENT

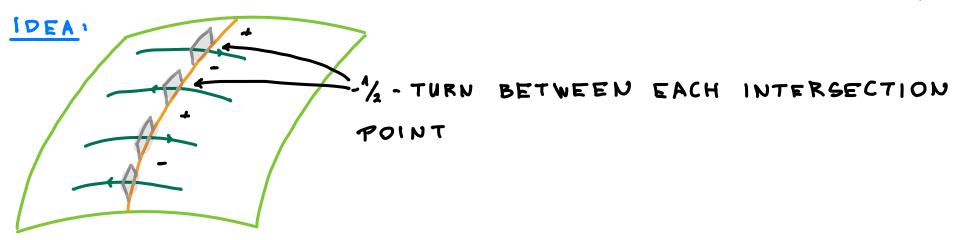
OF Z/C IS DISTOINT TROM T:

THY (LEGENDRIAN REALISATION PRINCIPLE)

(I,T) CONVEX SURFACE, CCI NON-ISOLATING CURVE

 \Longrightarrow Σ can be isotoped through convex surfaces $\Psi_{\epsilon}(\Sigma)$ s.t. after the isotopy $\Psi_{\epsilon}(c) \in \Psi_{\epsilon}(\Sigma)$ is legendrian

THE TWISTING OF & W.R.T. TZ ALONG C = - 1/2 COP



CONVEX SURFACES WITH LEGENDRIAN BOUNDARY

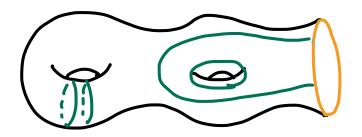
THM (KANDA): Z SURFACE WITH LEGENDRIAN BOUNDARY L CAN
BE ISOTOPED REL 3 TO BE CONVEX

1

TWISTING OF & W.R.T. Z ALONG L IS 40

• THE ISOTOPY CAN BE ASSUMED TO BE C°- SHALL (C° - SHALL IF Z IS ALREADY CONVEX NEAR ∂Z)

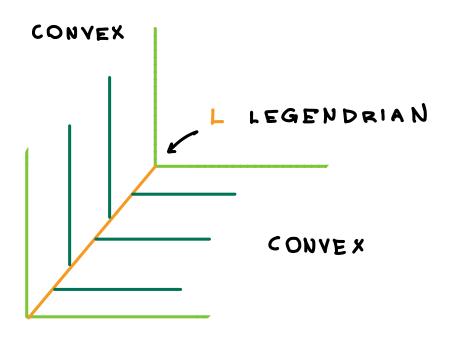
RMK: AFTER THE ISOTOPY



TWISTING OF & W.R.T. I ALONG L = - 1/2 POL

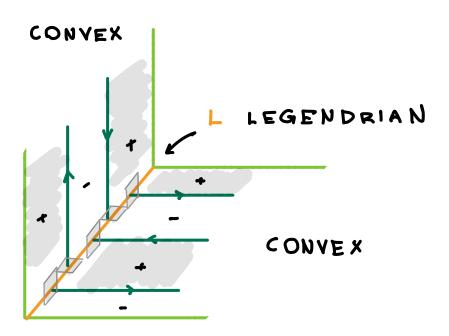
ROUNDING EDGES

IN R I CONVEX SURFACES WITH CONHON LEGENDRIAN BOUNDARY L



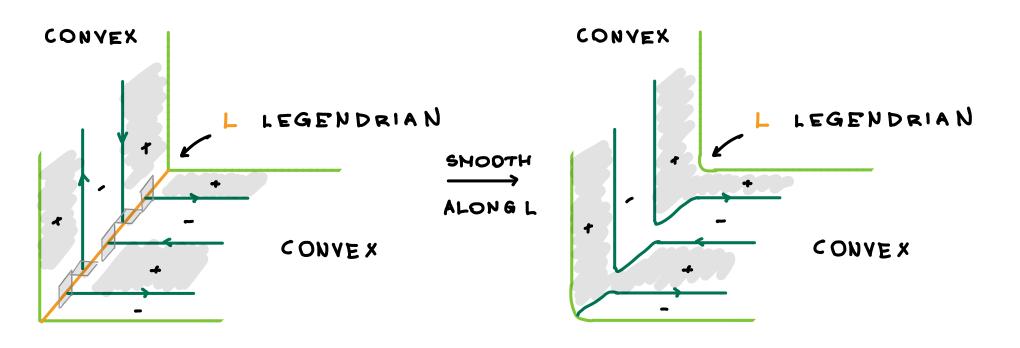
ROUNDING EDGES

IN R I CONVEX SURFACES WITH CONHON LEGENDRIAN BOUNDARY L



ROUNDING EDGES

Z, & Z, CONVEX SURFACES WITH CONHON LEGENDRIAN BOUNDARY L
THEN THE EDGE L CAN BE ROUNDED & WE GET A NEW
SHOOTH CONVEX SURFACE Z WITH DIVIDING CURVE AS BELDW

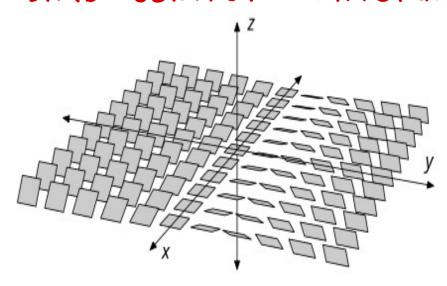


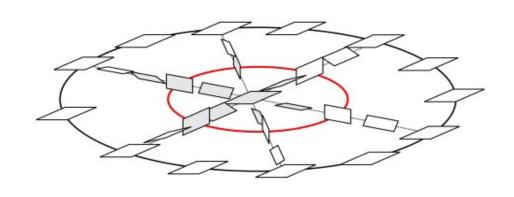
TIGHI OVERTWISTED)

TWO CONTACT STRUCTURES

STANDARD CONTACT STRUCTURE

OVERTWISTED CONTACT STRUCTURE

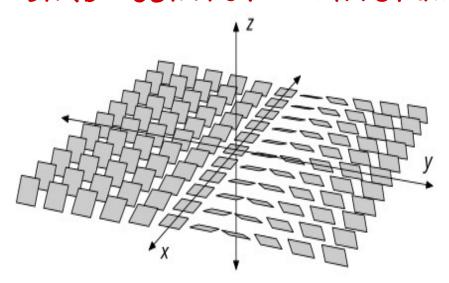


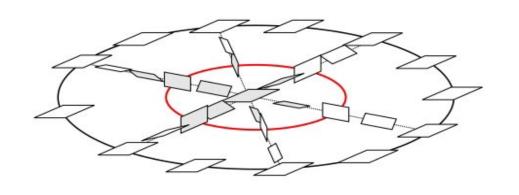


ARE 3 14 & 300 ISOTOPIC/CONTACTOMORPHIC ?

TWO CONTACT STRUCTURES

STANDARD CONTACT STRUCTURE OVERTWISTED CONTACT STRUCTURE





ARE 34 & 300 ISOTOPIC/CONTACTOMORPHIC ?

DEF D CH (H,3) IS AN OVERTWISTED DISK IF TD 30 = 3 30

RMK ENOUGH TWISTING OF & ALONG PO WAT D IS O

DEF . . 3 IS OVERTWISTED IF 3 CONTAINS AN OVERTWISTED DISK

· Y IS TIGHT IF IT IS NOT OVERTWISTED

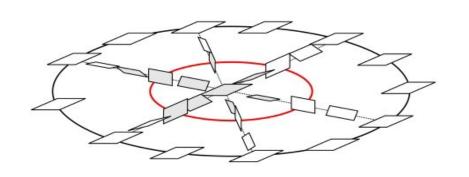
OVERTWISTED CONTACT STRUCTURES

THM (FLIASHBERG) 为,为 OVERTWISTED

CONTACT STRUCTURES 及

3~ 对 AS PLANEFIELDS

\$ \$ \$ \$



THM (LUTZ-HARTINEZ) ANY HONOTOPY CLASS OF PLANEFIELDS

15 REPRESENTED BY A(N OVERTWISTED) CONTACT STRUCTURE

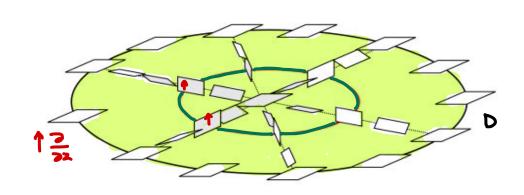
OVERTWISTED CONTACT STRUCTURES CAN BE UNDERSTOOD THROUGH ALGEBRAIC TOPOLOGICAL INVARIANTS : de, de

THK: TIGH CONTACT STRUCTURES ARE HARDER TO CLASSIFY

- · ELIASHBERG: 5 ADMITS A UNIQUE TIGHT CONTACT STRUCTURE
- · GIROUX · 3 LY HANY 3-HAUIFOLDS WITH LY MANY
 TIGHT CONTACT STRUCTURES
- · ETNYRE: I(1,3,5) ADMITS NO TIGHT CONTACT STRUCTURES

• ..,

RECOGNISING OVERTWISTED CONTACT STRUCTURES



DIS <u>CONVEX</u>: $x = \frac{2}{32}$ IS A CONTACT VECTORFIELD, $X \neq D$ $P = \left(\frac{2}{32} \in \mathcal{F}\right) = \left(\gamma = \pi \right) \times \{0\}$

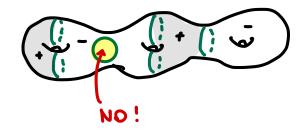
307 = ken (cos(1) dz + r sin(1) d2)

THH (GIROUX'S CRITERION): Z'-> (H, 3) CONVEX SURFACE ADHITS

A TIGHT NEIGHBOURHOOD $(N(\Sigma), 3|_{N(\Sigma)})$ IFF

· I + 5 & NO COMPONENT OF P BOUNDS A DISC

OR

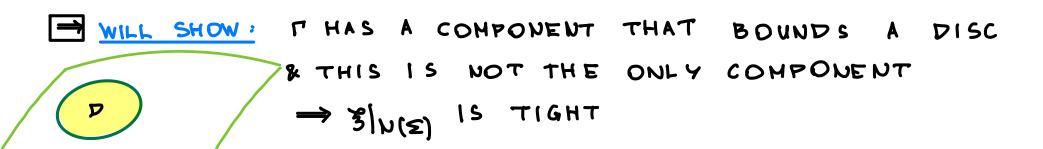


DEA OF PROOF

THH (GIROUX'S CRITERION): $\Sigma \hookrightarrow (H, \S)$ CONVEX SURFACE ADMITS

A TIGHT NEIGHBOURHOOD $(N(\Sigma), \S|_{N(\Sigma)})$ IFF

• $Z = S^2$ & $|\Gamma| = 1$ • $Z \neq S^2$ & NO COMPONENT OF Γ BOUNDS A DISC



DEA OF PROOF

THH (GIROUX'S CRITERION): Z'-> (H, Z) CONVEX SURFACE ADHITS

A TIGHT NEIGHBOURHOOD (N(E), 3 N(E)) IFF

- · Z = 52 & |r|=1
- I + 5 & NO COMPONENT OF P BOUNDS A DISC

WILL SHOW: I HAS A COMPONENT THAT BOUNDS A DISC D

& THIS IS NOT THE ONLY COMPONENT

→ 3/N(E) IS TIGHT

CONSIDER: C ENCAPSULATING P

C IS NON-ISOLATING

LEGENDRIAN REALISATION PRINCIPLE

WE CAN ISOTOPE & INSIDE N(E) SUCH THAT C IS LEGENDRIAN

DEA OF PROOF

THH (GIROUX'S CRITERION): Z' (H, 3) CONVEX SURFACE ADHITS

A TIGHT NEIGHBOURHOOD (N(E), 3/N(E)) IFF

• I + 52 & NO COMPONENT OF T BOUNDS A DISC

WILL SHOW: I HAS A COMPONENT THAT BOUNDS A DISC D

& THIS IS NOT THE ONLY COMPONENT

→ 3/U(E) IS TIGHT

CONSIDER: C ENCAPSULATING P

C IS NON-ISOLATING

LEGENDRIAN REALISATION PRINCIPLE

WE CAN ISOTOPE Ξ INSIDE $N(\Xi)$ SUCH THAT C IS LEGENDRIAN THEN TWISTING OF $\frac{\pi}{3}$ ALONG C W.R.T. Ξ = $\frac{\pi}{2}|\Gamma \cap C|$

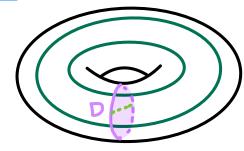
SO D' IS AN OVERTWISTED DISC/

₩ UNIVERSAL COVER OF I ...

THM (ELIASHBERG): D'ADMITS A UNIQUE TIGHT CONTACT
STRUCTURE WITH CONNECTED DIVIDING CURVE ON 5':

THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E.G. : M = 02 × 54 GIVEN ANY CONTACT STRUCTURE & ON H

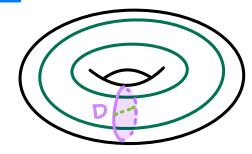


• STEP 1: BY THE LEGENDRIAN REALISATION PRINCIPLE
WE CAN ASSUME 3D IS LEGENDRIAN

THM (ELIASHBERG): D'ADMITS A UNIQUE TIGHT CONTACT
STRUCTURE WITH CONNECTED DIVIDING CURVE ON 5':

THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E.G. : H = D2 × 54 GIVEN ANY CONTACT STRUCTURE & ON H



• STEP 1: BY THE LEGENDRIAN REALISATION PRINCIPLE
WE CAN ASSUME 3D IS LEGENDRIAN

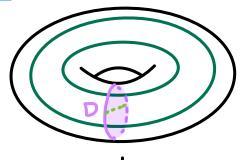
* STEP 2: ISOTOPE D REL. > TO BE CONVEX:

THE DIVIDING CURVE ON D IS A SINGLE ARC

THM (ELIASHBERG): D'ADMITS A UNIQUE TIGHT CONTACT
STRUCTURE WITH CONNECTED DIVIDING CURVE ON 5':

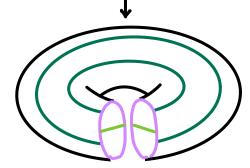
THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E.G.: H = D2 × S4 GIVEN ANY CONTACT STRUCTURE & ON H



• STEP 1: BY THE LEGENDRIAN REALISATION PRINCIPLE
WE CAN ASSUME 3D IS LEGENDRIAN

THE DIVIDING CURVE ON D IS A SINGLE ARC

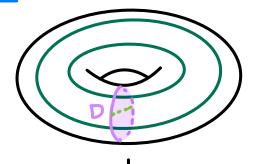


· STEP 3 : CUT H ALONG D

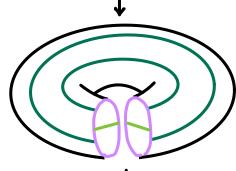
THM (ELIASHBERG): D'ADMITS A UNIQUE TIGHT CONTACT
STRUCTURE WITH CONNECTED DIVIDING CURVE ON 5':

THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E.G. : H = 02 × 54 GIVEN ANY CONTACT STRUCTURE & ON H



• STEP 1: BY THE LEGENDRIAN REALISATION PRINCIPLE
WE CAN ASSUME 3D IS LEGENDRIAN

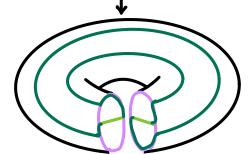


· STEP 3 : CUT H ALONG D

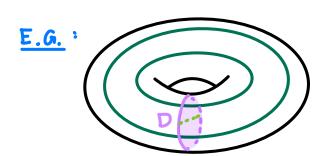
*STEP4: ROUND THE EDGES: WE GET A DOWNICH HAS A UNIQUE CONTACT STRUCTURE 3.

ANY 3 CAN BE OBTAINED FROM 3.

BY GLUEING => 3 IS UNIQUE TOO



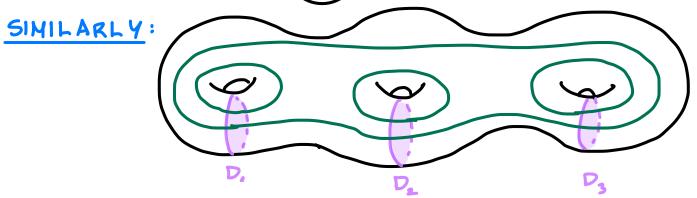
THM (ELIASHBERG): D'ADMITS A UNIQUE TIGHT CONTACT
STRUCTURE WITH CONNECTED DIVIDING CURVE ON 52:



ADMITS A UNIQUE TIGHT CONTACT STRUCTURE

- . WHAT DID WE USE IN THE PROOF?
- . THAT POOR = 2 THUS THE DIVIDING CURVE ON D WAS WELL

AFTER CUTTING AND ROUNDING



ADMITS A UNIQUE TIGHT CONTACT STRUCTURE

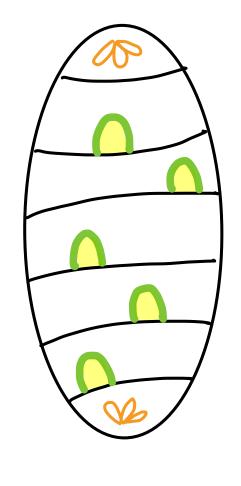
DEF: PRODUCT DISC DECOMPOSABLE

TO BE CONTINUED ...

LECTURE 2: DESCRIBING CONTACT STRUCTURES

- CONTACT CELL DECOMPOSITIONS
- CONVEX SURFACE THEORY BYPASSES
- CONTACT HEEGAARD SPLITTINGS (PROOF OF EXISTENCE)
- OPEN BOOK DECOMPOSITIONS
- OPEN BOOK DECOMPOSITIONS & CONTACT HEEGAARD SPLITTINGS

1HF GIROUX CORRESPONDENCE VIA CONVEX SURFACES VERA VÉRTESI



JOINT WORK WITH JOAN LICATA

UNIVERSITY OF VIENNA

DESCRIBING CONTACT STRUCTURES

- CONTACT CELL DECOMPOSITIONS
- CONVEX SURFACE THEORY BYPASSES
- CONTACT HEEGAARD SPLITTINGS (PROOF OF EXISTENCE)
- OPEN BOOK DECOMPOSITIONS
- OPEN BOOK DECOMPOSITIONS & CONTACT HEEGAARD SPLITTINGS

LAST TIME (GIROUX)

• Z → M IS CONVEX IF & CONTACT VECTORFIELD X : Z + X

- → GENERIC Z -> H IS CONVEX
- →3 N(E) IS DETERHINED BY PCZ
- (N,3) OVERTWISTED \iff \exists $Z \Leftrightarrow$ \forall CONVEX \forall \forall \forall \forall \forall \forall \forall CONTAINING A DISC

TIGHT + OVERTWISTED

. 3! TIGHT CONTACT STRUCTURE ON D3 WITH CONVEX BORY:

-DECOMPOSITIONS

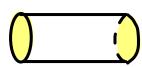
O-HANDLE 1-HANDLE

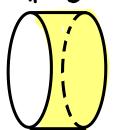
2-HANDLE 3-HANDLE

 $h^{\circ} = D^{\circ} \times D^{3}$

 $h^4 = D^4 \times D^2$

 $h^2 = D^2 \times D^4$ $h^3 = D^3 \times D^9$



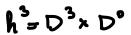


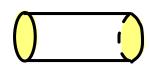
THM (MORSE): ANY 3-MANIFOLD CAN BE OBTAINED VIA SUCCESIVELY ATTACHING HANDLES ONTO EACH OTHER ALONG DECOMPOSITION

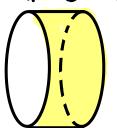
O-HANDLE 1-HANDLE 2-HANDLE 3-HANDLE

$$h^{\circ} = D^{\circ} \times D^{3}$$

$$h^4 = D^4 \times D^2$$





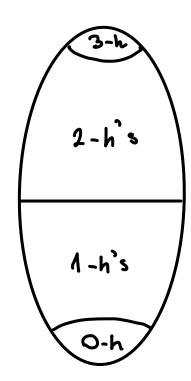


THM (MORSE): ANY 3-MANIFOLD CAN BE OBTAINED VIA

SUCCESIVELY ATTACHING HANDLES ONTO EACH OTHER

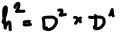
ALONG DECOMPOSITION

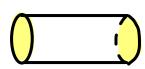
MOREOVER THE INDICES OF HANDLES CAN BE ASSUMED TO BE IN INCREASING ORDER

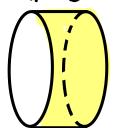


O-HANDLE 1-HANDLE 2-HANDLE 3-HANDLE

$$h^{\circ} = D^{\circ} \times D^{3}$$







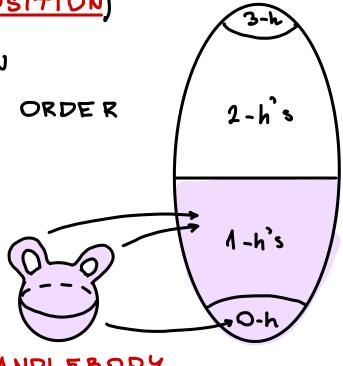
THM (MORSE): ANY 3-MANIFOLD CAN BE OBTAINED VIA

SUCCESIVELY ATTACHING HANDLES ONTO EACH OTHER

ALONG 30" × 03-0 (HANDLE DECOMPOSITION)

MOREOVER THE INDICES OF HANDLES CAN

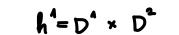
BE ASSUMED TO BE IN INCREASING ORDER

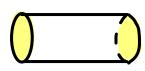


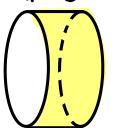
HANDLEBODY

O-HANDLE 1-HANDLE 2-HANDLE 3-HANDLE

$$h^{\circ} = D^{\circ} \times D^{3}$$







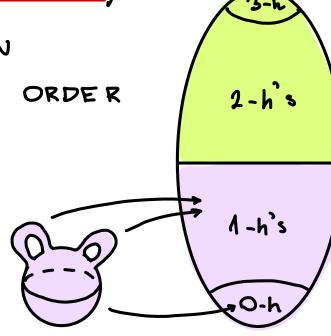
THM (MORSE): ANY 3-MANIFOLD CAN BE OBTAINED VIA

SUCCESIVELY ATTACHING HANDLES ONTO EACH OTHER

ALONG 30" × 03-" (HANDLE DECOMPOSITION)

MOREOVER THE INDICES OF HANDLES CAN

BE ASSUMED TO BE IN INCREASING ORDER



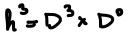
HANDLEBODY

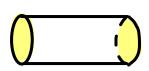
O-HANDLE 1-HANDLE 2-HANDLE 3-HANDLE

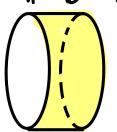
$$h^{\circ} = D^{\circ} \times D^{3}$$

$$h^4 = D^4 \times D^2$$









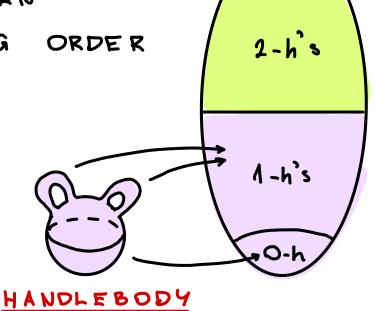
THM (MORSE): ANY (3) MANIFOLD CAN BE OBTAINED VIA SUCCESIVELY ATTACHING HANDLES ONTO EACH OTHER

ALONG 30" × 03-0 (HANDLE DECOMPOSITION)

MOREOVER THE INDICES OF HANDLES CAN

BE ASSUMED TO BE IN INCREASING ORDER

EVERY 3- HANJFOLD ADMITS A HEEGAARD DECOMPOSITION



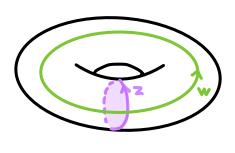
HEEGAARD DECOMPOSITIONS

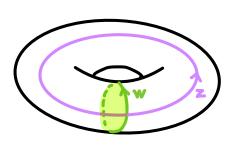
THM (ALEXANDER) EVERY 3- MANIFOLD ADMITS A HEEGAARD DECOMPOSITION

M= U u V

HANDLE BODIES:

•
$$5^3 = \{|z|^2 + |w|^2 = 1\} \subseteq \mathbb{C}^2$$





ORIGIN - MORSE TUNCTIONS : M SHOOTH (3-)MANIFOLD

OFF.: f: M - TR SHOOTH FUNCTION IS HORSE IF ALL

CRITICAL POINTS OF f ARE NONDEGENERATE NONDEGENERATE

Vf +0

ORIGIN - MORSE TUNCTIONS : M SHOOTH (3-) MANIFOLD OFF.: f: M - TR SMOOTH FUNCTION IS MORSE IF ALL CRITICAL POINTS OF f ARE NONDEGENERATE NONDEGENERATE FACTS: MORSE FUNCTIONS ARE Co-GENERIC LOCAL MODEL NEAR A MORSE - CRITICAL POINT: INDEX - \(\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} \frac{1}{4} \times \frac{1}{4} \times

→ FLOW OF Vf

ORIGIN - MORSE TUNCTIONS : M SHOOTH (3-)MANIFOLD DEF.: f: M - TR SMOOTH FUNCTION IS MORSE IF ALL CRITICAL POINTS OF f ARE NONDEGENERATE NONDEGENERATE TACTS: • MORSE FUNCTIONS ARE C°- GENERIC • LOCAL MODEL NEAR A MORSE - CRITICAL POINT:

• LOCAL MODEL NEAR A HORSE - CRITICAL POINT:

- \(\frac{1}{2} \) \(\text{X}_{\frac{1}{2}}^{\frac{1}{2}} \) \(\text{X}_{\frac{1}{2}}^{\frac{1}{2}} \) \(\text{Y}_{\frac{1}{2}}^{\frac{1}{2}} \) \(\text{V}_{\frac{1}{2}}^{\frac{1}{2}} \) \(\text{V}_{\frac{1}{2}}^{\frac{1}{2}} \) \(\text{V}_{\frac{1}{2}}^{\frac{1}{2}} \) \(\text{CORE} \)

· INDEX - & CRITICAL POINTS ~ hi = Di x D" - i - HANDLES

ORIGIN - MORSE TUNCTIONS : M SHOOTH (3-) MANIFOLD DEF.: f: M - TR SMOOTH FUNCTION IS MORSE IF ALL CRITICAL POINTS OF f ARE NONDEGENERATE NONDEGENERATE FACTS: MORSE FUNCTIONS ARE Co-GENERIC LOCAL MODEL NEAR A MORSE - CRITICAL POINT: INDEX - TX X; + TX X;

THOW OF ∇f $x_{241/..., x_{3}}$ $x_{4,..., x_{4}}$ $x_{4,..., x_{4}}$

• INDEX - ¿ CRITICAL POINTS ~ hoving INDEX ¿-HANDLES

REARRANGING CRITICAL POINTS: MOVING INDEX &-HANDLES UNDER
INDEX &7-HANDLES

USES TRANSVERSALITY & THAT Dim (CORE) + Dim (COCORE) 43

んくむ

CONTACT HANDLES

0-HANDLE

 $D_o \times D_3$

h°

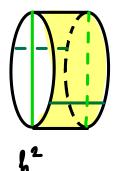
1-HANDLE

 $D^4 \times D^2$

h⁴

2-HANDLE

D2 × D4



3- HANDLE

 $D^3 \times D^0$

h³

ATTER ROUNDING THE EDGES EACH BECOMES

& BY ELIASHBERG'S THM THIS ADMITS A UNIQE TIGHT CONTACT STRUCTURE

CONTACT HANDLES

0-HANDLE

 $D_o \times D_3$

(h°, 3°)

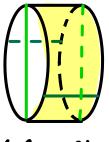
1-HANDLE

 $D^4 \times D^2$

(h', 3')

2-HANDLE

D2 × D4



(h², 3°)

3- HANDLE

D3x D°

(h3, 33)

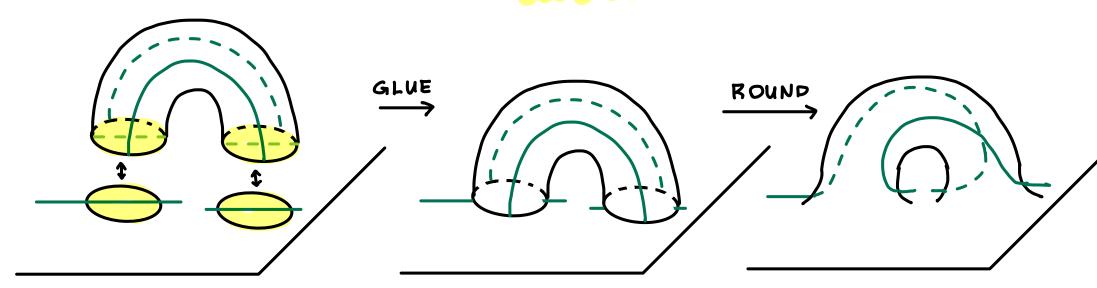
ATTER ROUNDING THE FDGES EACH BECOMES

& BY ELIASHBERG'S THY THIS ADMITS A UNIQE TIGHT CONTACT STRUCTURE

 \sim UP TO ISOTOPY WE GET WELL DEFINED CONTACT STRUCTURES ON THE \mathbf{h}^{2}

ATTACHING CONTACT HANDLES

WE CAN CONSTRUCT CONTACT MANIFOLDS BY SUCCESIVELY GLUING HANDLES ALONG 30° × 03-4 :

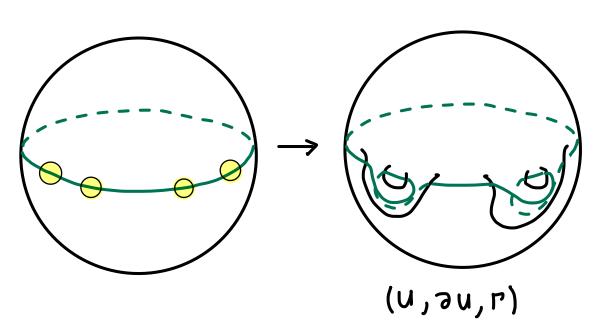


CONTACT HANDLEDECOMPOSITION

THM (GIROUX) ANY CONTACT 3-MANIFOLD ADMITS A CONTACT HANDLEDECOMPOSITION

CONTACT HANDLEBODY

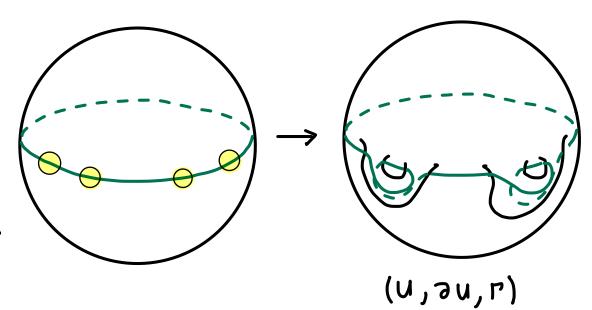
O-HANDLE U SONE 1-HANDLES E.G.



CONTACT HANDLEBODY

O-HANDLE U SONE 1-HANDLES

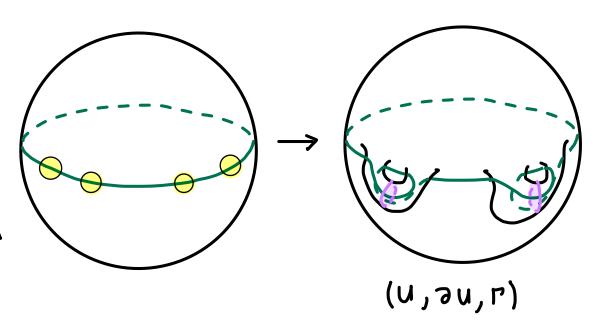
NEIGHBOURHOOD OF A LEGENDRIAN GRAPH:



CONTACT HANDLEBODY

O-HANDLE U SONE 1-HANDLES

NEIGHBOURHOOD OF A LEGENDRIAN GRAPH:



NOTE: CONTACT HANDLEBODIES ARE PRODUCT DISC DECOMPOSABLE

RECALL: A PRODUCT DISC DECOMPOSABLE HANDLEBODY & ADMITS
A UNIQUE TIGHT CONTACT STRUCTURE WITH DIVIDING
CURVE P ON DU.

THUS

THM: A PRODUCT DISC DECOMPOSABLE HANDLEBODY U WITH TIGHT CONTACT STRUCTURE 3 15 A CONTACT HANDLEBODY

REARRANGING CONTACT HANDLES

JUST AS IN THE SHOOTH CASE

IN A CONTACT HANDLE DECOMPOSITION ONE CAN ASSUME THAT:

- CONTACT O-h'S ARE ATTACHED FIRST
- CONTACT 3-h'S ARE ATTACHED LAST

REARRANGING CONTACT HANDLES

JUST AS IN THE SHOOTH CASE

IN A CONTACT HANDLE DECOMPOSITION ONE CAN ASSUME THAT:

- CONTACT O-h's ARE ATTACHED FIRST
- CONTACT 3-h'S ARE ATTACHED LAST

BUT CONTACT 1-h'S CANNOT ALWAYS BE ATTACHED
BEFORE CONTACT 2-h'S

INTERLUDE - CONTACT MORSE FUNCTIONS

```
(M) 3) CONTACT MANIFOLD

DEF: f: M→1R MORGE FUNCTION IS CONTACT IF 3 X CONTACT

VECTORFIELD THAT IS AN ALMOST GRADIENT FOR f

RMK: NONCRITICAL LEVELSETS ARE

CONVEX

DEF: CRITICAL SUBHANIFOLD: C={X € }}

(> UNION OF DIVIDING CURVES OF LEVELSETS)
```

INTERLUDE - CONTACT MORSE FUNCTIONS

```
(M, 3) CONTACT MANIFOLD
```

DEF: f: H - TR HORSE FUNCTION IS CONTACT IF 3 X CONTACT

VECTORFIELD THAT IS AN ALMOST GRADIENT FOR F

TMK: NONCRITICAL LEVELSETS ARE CONVEX

M TO LEVEL SETS
& "LIKE" Of NEAR
CRITICAL POINTS

DEF: CRITICAL SUBHANIFOLD: C= (X & 3)

(= UNION OF DIVIDING CURVES OF LEVELSETS)

THM (GIROUX): $f|_{C:C \longrightarrow TR}$ IS ALSO HORSE WITH THE SAME CRITICAL POINTS AS f WITH INDICES

f	f c
0	0
4	1
2	1
3	2

INTERLUDE - CONTACT MORSE FUNCTIONS

```
(M, 3) CONTACT HANIFOLD
```

DEF: f: H - TR HORGE FUNCTION IS CONTACT IF 3 X CONTACT

VECTORFIELD THAT IS AN ALHOST GRADIENT FOR F

TMK: NONCRITICAL LEVELSETS ARE CONVEX

TO LEVEL SETS

& "LIKE" Of NEAR

CRITICAL POINTS

DEF: CRITICAL SUBMANIFOLD: C= (X & 3)

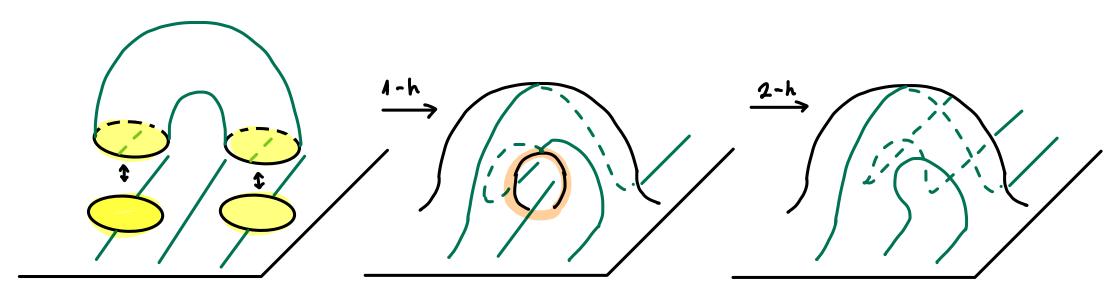
(= UNION OF DIVIDING CURVES OF LEVELSETS)

THM (GIROUX): $f|_{C:C} \longrightarrow \mathbb{R}$ IS ALSO HORSE WITH THE SAME CRITICAL POINTS AS f WITH INDICES fTHIS EXPLAINS WHY WE CANNOT HOVE

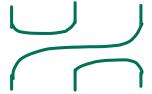
1-HANDLES UNDER 2-HANDLES

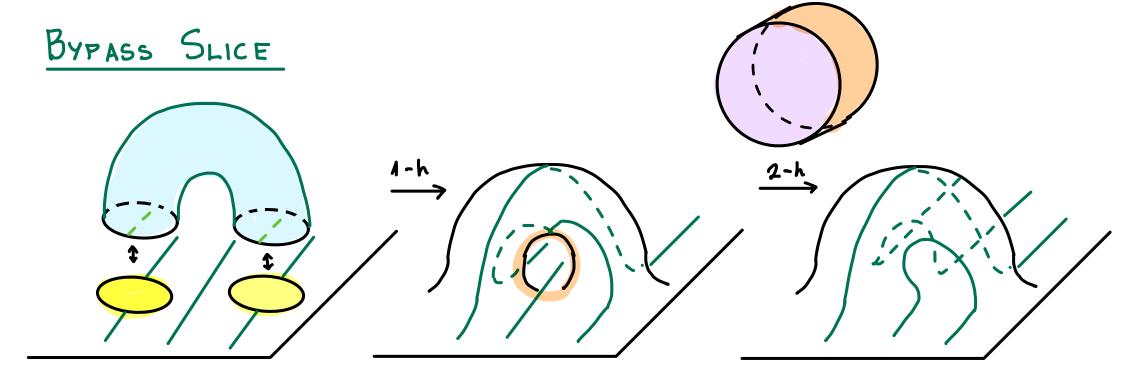
(THEY ARE BOTH 1- HANDLES FOR C)

BYPASS SLICE



FROM THE TOP





FROM THE TOP

THE ABOVE PAIR OF CONTACT 1-82-10 CAN BE
ATTACHED TO ANY CONVEX SURFACE (Z,T) ALONG ANY
ARC C INTERSECTING P AS C

WILL SEE: BYPASSES ARE BASIC BUILDING BLOCKS OF CONTACT STRUCTURES ON Z × I

O-PARAMETER

RECALL (GIROUX): CONVEX SURFACES ARE C - GENERIC

1-PARAMETER

THM (GIROUX, COLIN, REPHRASED BY HONDA) ANY 1- PARAMETER FAHILY OF SURFACES (Σ_{t})_{$t \in [D, 1]$} WITH Σ_{o} , Σ_{t} CONVEX CAN BE ISOTOPED TO (Σ_{t}^{2})_{$t \in [D, 1]$} SO THAT • $\Xi_{t} = Z_{t}^{2}$ NEAR t = 0 & 1

O-PARAMETER

RECALL (GIROUX): CONVEX SURFACES ARE C - GENERIC

1-PARAMETER

THM (GIROUX, COLIN, REPHRASED BY HONDA) ANY 1- PARAMETER FAMILY OF SURFACES (Σ_t) $_{t\in[D,T]}$ WITH Σ_0 , Σ_1 CONVEX CAN BE ISOTOPED TO (Σ_t^2) $_{t\in[D,T]}$ SO THAT

- · 7 = 2 NEAR t= 0 & 1
- · Z' IS CONVEX EXCEPT AT DISCRETE TIMES (t., .. , t.) [O,1]

O-PARAMETER

RECALL (GIROUX): CONVEX SURFACES ARE C - GENERIC

1-PARAMETER

THM (GIROUX, COLIN, REPHRASED BY HONDA) ANY 1- PARAMETER FAMILY OF SURFACES (Σ_t) $_{t\in[0,1]}$ WITH Σ_0 , Σ_1 CONVEX CAN BE ISOTOPED TO (Σ_t^2) $_{t\in[0,1]}$ SO THAT

- · 7 = 2 NEAR t= 0 & 1
- · Z' IS CONVEX EXCEPT AT DISCRETE TIMES (t.,.,t.) [O,1]
- · I'LLE & I'LLE COBOUND A BYPASS SLICE (i=1.. k)

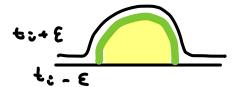
O-PARAMETER

RECALL (GIROUX): CONVEX SURFACES ARE C - GENERIC

1-PARAMETER

THM (GIROUX, COLIN, REPHRASED BY HONDA) ANY 1- PARAMETER FAMILY OF SURFACES (Σ_t) $_{t\in[D,1]}$ WITH Σ_0 , Σ_i CONVEX CAN BE ISOTOPED TO (Σ_t^2) $_{t\in[D,1]}$ SO THAT

- · 7 7 NEAR t= 0 & 1
- · Z' IS CONVEX EXCEPT AT DISCRETE TIMES (t.,.,t.) [O,1]
- · I'LLE & I'LLE COBOUND A BYPASS SLICE (i=1.. k)



O-PARAMETER

RECALL (GIROUX): CONVEX SURFACES ARE C - GENERIC

1-PARAMETER

THM (GIROUX, COLIN, REPHRASED BY HONDA) ANY 1- PARAMETER FAMILY OF SURFACES (Σ_t) $_{t\in[0,1]}$ WITH Σ_0 , Σ_i CONVEX CAN BE ISOTOPED TO (Σ_t^2) $_{t\in[0,1]}$ SO THAT

- · 7 = 2 NEAR t= 0 & 1
- · Zt IS CONVEX EXCEPT AT DISCRETE TIMES (t., .. , t.) [O,1]
- · I'LLE & I'LLE COBOUND A BYPASS SLICE (i=1.. k)

THN (GIROUX REPHRASED BY HONDA)

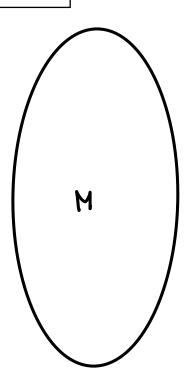
ANY CONTACT STRUCTURE ON ZXI IS

CONTACTONORPHIC TO A STACK OF BYPASS SLICES

T - INVARIANT

THM (GIROUX): ANY CONTACT 3-MANIFOLD (M,3) ADMITS A CONTACT HEEGAARD DECOMPOSITION

PROOF (LICATA - V)

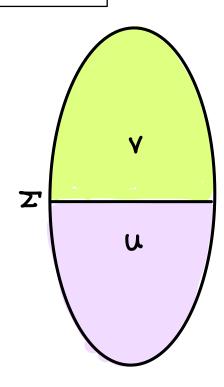


THM (GIROUX), ANY CONTACT 3- MANIFOLD (M,3) ADMITS A
CONTACT HEEGAARD DECOMPOSITION

PROOF (LICATA - V)

STEP 1: TAKE ANY SHOOTH HEEGAARD

DE COMPOSITION OF M: M = U UV



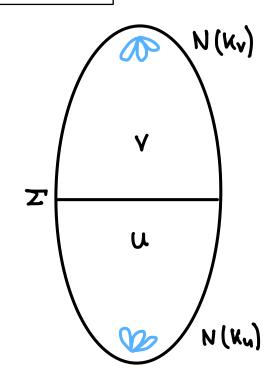
THM (GIROUX), ANY CONTACT 3- MANIFOLD (M,3) ADMITS A CONTACT HEEGAARD DECOMPOSITION

PROOF (LICATA - V)

STEP 1: TAKE ANY SHOOTH HEEGAARD

DE COMPOSITION OF M: M = U UV

STEP 2: TAKE SPINES Ky CU & Ky CV



THM (GIROUX), ANY CONTACT 3- MANIFOLD (M,3) ADMITS A CONTACT HEEGAARD DECOMPOSITION

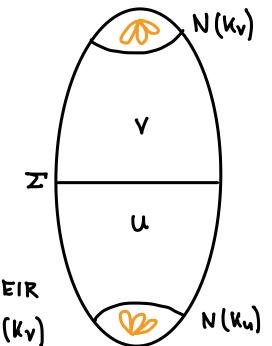
PROOF (LICATA - V)

STEP 1: TAKE ANY SHOOTH HEEGAARD

DE COMPOSITION OF M: M = U UV

STEP 2: TAKE SPINES Ky CU & Ky CV

STEP 3: LEGENDRIAN REALISE Ku & Kv & TAKE THEIR STANDARD CONTACT NEIGHBOURHOODS N(Ku) & N(Kv)



THM (GIROUX), ANY CONTACT 3- MANIFOLD (M,3) ADMITS A CONTACT HEEGAARD DECOMPOSITION

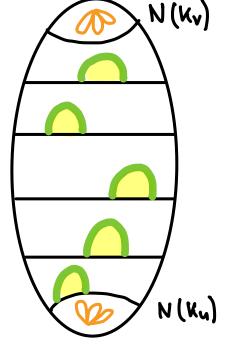
PROOF (LICATA - V)

STEP 1: TAKE ANY SHOOTH HEEGAARD

DE COMPOSITION OF M: M = U UV

STEP 2: TAKE SPINES Ky CU & Ky CV

STEP 3: LEGENDRIAN REALISE Ku & Kv & TAKE THEIR STANDARD CONTACT NEIGHBOURHOODS N(Ku) & N(Kv)



STEP 4: X=H-(N(Ku)UN(Kv)) = Z x I = 3/X CAN BE WRITTEN
AS A STACK OF BYPASS-SLICES = h Uh2

(AWAY FROM THE HANDLES & IS I-INVARIANT)

THM (GIROUX), ANY CONTACT 3- MANIFOLD (M,3) ADMITS A CONTACT HEEGAARD DECOMPOSITION

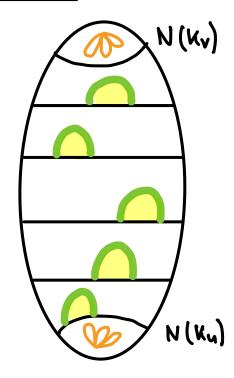
```
PROOF (LICATA - V)

STEP 4: X = H - (N(Ku) UN(Kv)) = I x I => 3/X

CAN BE WRITTEN AS A STACK

OF BYPASS - SLICES = h U h U

(AWAY FROM THE HANDLES & IS I-INVARIANT)
```



THM (GIROUX), ANY CONTACT 3- MANIFOLD (M,3) ADMITS A CONTACT HEEGAARD DECOMPOSITION

```
PROOF (LICATA - V)

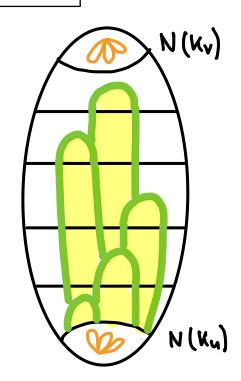
STEP 4: X=H-(N(Ku)UN(Kv)) = Z*I => 3/X

CAN BE WRITTEN AS A STACK

OF BYPASS-SLICES = h,U h2

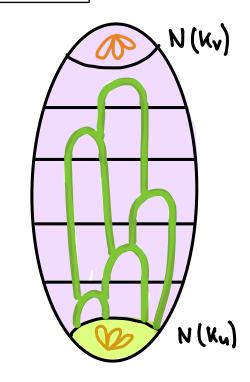
(AWAY FROM THE HANDLES & IS I-INVARIANT)

STEP 5: USE THIS FLOW TO EXTEND THE HANDLES
```



THM (GIROUX), ANY CONTACT 3- HANIFOLD (N,Z) ADMITS A CONTACT HEEGAARD DECOMPOSITION

```
PROOF (LICATA - V)
 STEP 4: X=H-(N(Ku)UN(Kv)) = Z * I => 3/x
  CAN BE WRITTEN AS A STACK
  OF BYPASS-SLICES = h, u h2
  (AWAY FROM THE HANDLES & IS I-INVARIANT)
 STEP 5: USE THIS FLOW TO EXTEND THE HANDLES
 CONSIDER: Û = N(Ku) U (Uhi)
                         CONTACT 1-HANDLES
        CONTACT HANDLEBODY
           → Û IS A CONTACT HANDLEBODY
```



THM (GIROUX), ANY CONTACT 3- MANIFOLD (M,3) ADMITS A CONTACT HEEGAARD DECOMPOSITION

```
PROOF (LICATA - V)
                                                       N(k_v)
 STEP 4: X= M- (N(Ku) UN(Kv)) = Z x I => 3/x
  CAN BE WRITTEN AS A STACK
  OF BYPASS-SLICES = h, u h2
  (AWAY FROM THE HANDLES & IS I-INVARIANT)
 STEP 5: USE THIS FLOW TO EXTEND THE HANDLES
 CONSIDER: Û = N(Ku) U (Uhi)
                                                        N(Ku)
                       CONTACT 1-HANDLES
        CONTACT HANDLEBODY
           - Û IS A CONTACT HANDLEBODY
 UPSIDE DOWN: V= H\ Û = N(K,) U (Uhi) IS A CONTACT HANDLEBODY
 → H=Û U V IS A CONTACT HEEGAARD DECOMPOSITION
```

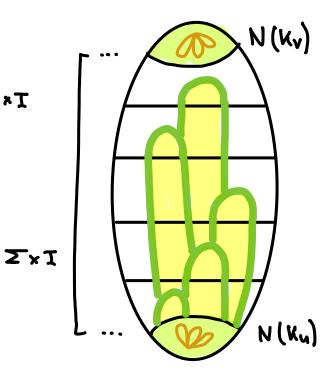
BRIDGING

$$H = U \cup V \xrightarrow{\text{BRIDGING}} H = \hat{U} \cup \hat{V} \xrightarrow{\text{BRIDGE}} \text{WHERE } \cdot \hat{U} = N(K_u) \cup (\cup h_{\hat{k}}^{\Lambda})$$

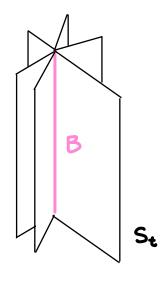
$$\hat{\mathcal{H}}$$

NOTE: THE BRIDGE DEPENDS ON

- · 4
- · Ky & Ky
- . THE BYPASSES & BUILDING UP \$ IXI



OPEN BOOK DECOMPOSITIONS



OPEN BOOK DECOMPOSITIONS

DEF: PAIR (Bix), WHERE

- B \hookrightarrow M EMBEDDED A-MANIFOLD: BINDING

- π : M - B \longrightarrow S¹ FIBRATION SUCH THAT

+ Y t \in S¹ S_i:= π -¹(t) IS A SEIFERT SURFACE FOR B

+& ON N(B) \cong B \times D 2 π = Augle

DEF: Si-T (t) ARE THE PAGES OF (B,T)

OPEN BOOK DECOMPOSITIONS

DEF: PAIR (BIT), WHERE

- BC- M ENBEDDED A-MANIFOLD: BINDING

- T: H-B - 5 TIBRATION SUCH THAT

+ Y t ∈ S S S = T - (t) IS A SEIFERT SURFACE FOR B

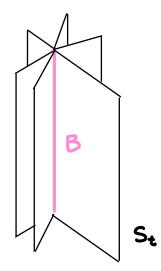
+& ON N(B)=B×D2 X = ANGLE

DEF: Si'= x" (t) ARE THE PAGES OF (B,x)

E.G.
$$H = S^3 = \{|z|^2 + |w|^2 = 1\} \le C^2$$

$$B = \{|z| = 0\} \cong S^4, \quad \pi : S^3 \setminus B \longrightarrow S^4$$

$$(z,w) \longmapsto \frac{z}{|z|}$$



OPEN BOOK DECOMPOSITIONS

DEF: PAIR (Bit), WHERE

- BC H ENBEDDED A-MANIFOLD: BINDING

-
$$\pi$$
: H-B \longrightarrow S' TIBRATION SUCH THAT

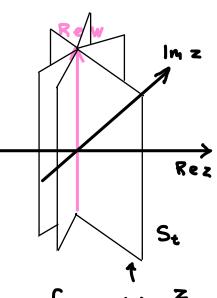
+ \forall t \in S' S_{i} := π^{-i} (t) IS A SEIFERT SURFACE FOR B

E.G.
$$N = S^3 = \{|z|^2 + |w|^2 = 4\} \le C^2$$

$$B = \{|z| = 0\} \cong S^4, \quad \pi : S^3 \setminus B \longrightarrow S^4$$

$$(z,w) \longmapsto \frac{z}{|z|}$$
ON \mathbb{R}^3 WITH COORDINATE $S: \frac{A}{A - \operatorname{Im} w} (\underline{z}, \operatorname{Re} w)$

$$\{\alpha n q(z) = \frac{z}{|z|} = \xi\}$$

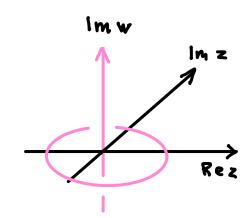


OPEN BOOK DECOMPOSITIONS - ANOTHER EXAMPLE

E.G.
$$H = S^3 = \{|z|^2 + |w|^2 = 4\} \le C^2$$

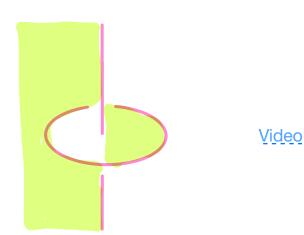
$$B = \{|z| = 0\} \perp |w| = 0\} \qquad \pi : S^3 \setminus B \longrightarrow S^4$$

$$(z,w) \longmapsto \frac{zw}{|zw|}$$
ON \mathbb{R}^3 WITH COORDINATE $S: \frac{1}{1 - |w|} (\underline{z}, \operatorname{Re} w)$



HERE B = S' M S'

S' S' x I A f



THM (ALEXANDER): ANY 3-HANIFOLD ADMITS AN OPEN BOOK DECOMPOSITION

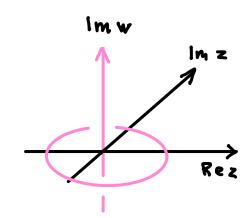
PROOF LATER

OPEN BOOK DECOMPOSITIONS - ANOTHER EXAMPLE

E.G.
$$H = S^3 = \{|z|^2 + |w|^2 = 4\} \le C^2$$

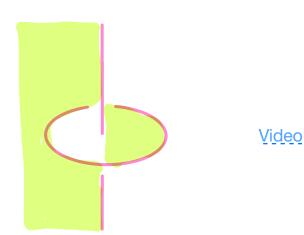
$$B = \{|z| = 0\} \perp |w| = 0\} \qquad \pi : S^3 \setminus B \longrightarrow S^4$$

$$(z,w) \longmapsto \frac{zw}{|zw|}$$
ON \mathbb{R}^3 WITH COORDINATE $S: \frac{1}{1 - |w|} (\underline{z}, \operatorname{Re} w)$



HERE B = S' M S'

S' S' x I A f



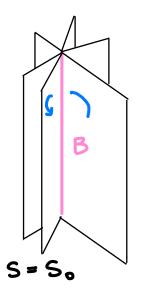
THM (ALEXANDER): ANY 3-HANIFOLD ADMITS AN OPEN BOOK DECOMPOSITION

PROOF LATER

FIX S:= S. & LOOK AT THE FIRST RETURN-MAP OF $\pi: H-B \rightarrow S' \longrightarrow GET (5,4)$ WHERE

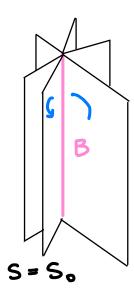
- S IS AN ORIENTED SURFACE WITH BOUNDARY
- & 4:555 HOMEOMORPHISM THAT FIXES N(DS)

DEF: THE PAIR (S,4) IS AN ABSTRACT OPEN BOOK



FIX S:= S. & LOOK AT THE FIRST RETURN-MAP OF T: H-B -> S' ~ GET (5,4) WHERE

- & 4:555 HOMEOMORPHISM THAT FIXES N(DS)

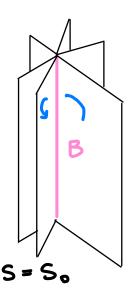


DEF! THE PAIR (S,4) IS AN ABSTRACT OPEN BOOK

E.G.: THE PREVIOUS EXAMPLE GIVES

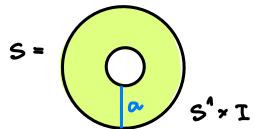
FIX S:= S. & LOOK AT THE FIRST RETURN - MAP OF $\pi: H-B \rightarrow S' \sim GET (S,Y)$ WHERE

- & 4:555 HOMEOMORPHISM THAT FIXES N(OS)

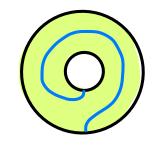


DEF: THE PAIR (S,4) IS AN ABSTRACT OPEN BOOK

E.G.: THE PREVIOUS EXAMPLE GIVES



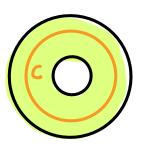
& 4 HAPPING a TO 4(a)



(THIS DETERMINES & UP TO ISDTOPY)

DEF: THE ABOVE MAP IS A RIGHT HANDED DEHN-TWIST

ALONG C



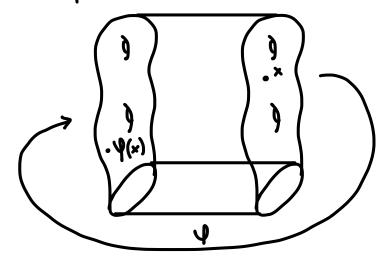
CONVERSALY: AN ABSTRACT OB (S,4) DETERMINES A 3-MANIFOLD

M TOGETHER WITH AN OPEN BOOK DECOMPOSITION

PROOF: . TAKE THE HAPPING TORUS OF Y:

$$M_{\Psi} = \frac{S \times I}{(x, \Lambda)} \sim (\Psi(x), 0)$$

$$\cdot (AS \ \Psi \ FIXES \ 3S) \ 3M_{\Psi} = 3S \times S^{\Lambda}$$



CONVERSALY: AN ABSTRACT OB (5,4) DETERMINES A 3-MANIFOLD M TOGETHER WITH AN OPEN BOOK DECOMPOSITION

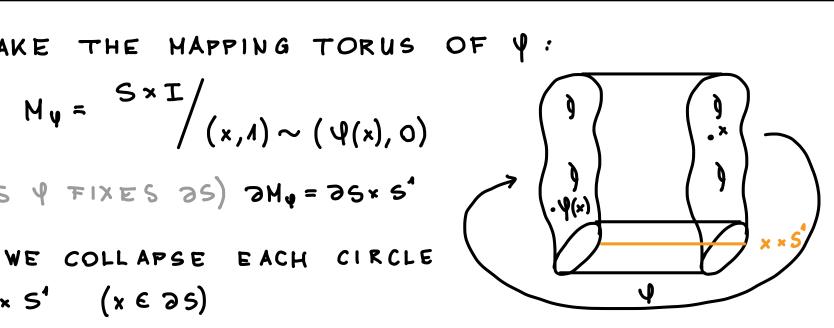
TROOP: . TAKE THE MAPPING TORUS OF 4:

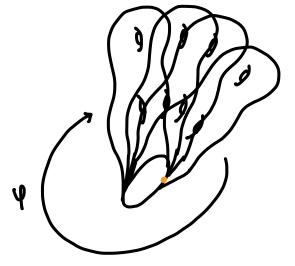
$$M_{\Psi} = \frac{S \times I}{(x, \Lambda)} \sim (\Psi(x), 0)$$

· & WE COLLAPSE EACH CIRCLE $x \times 5^4 \quad (x \in 35)$

$$x : M - B \rightarrow S'$$

$$(x,t) \rightarrow t$$
GIVES AN OBD





POVER OF OPEN BOOKS: TO DESCRIBE CTCT STRUCTURES

WE WEED TO UNDERSTAND $\{ \psi : S \longrightarrow S : \psi \}_{\partial S} = id \} / = :HCG(s)$ (MAPPING CLASS GROUP)

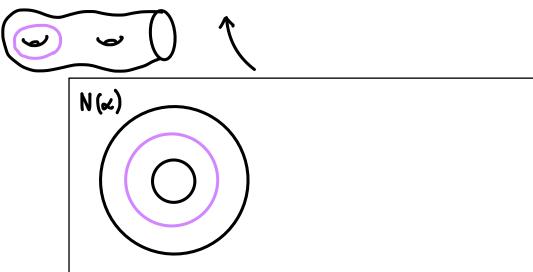
POVER OF OPEN BOOKS: TO DESCRIBE CTCT STRUCTURES

WE NEED TO UNDERSTAND \[\psi: 5 \rightarrow S: \psi]_{\pis} = id \frac{1}{\lightarrow} = : \text{HCG(s)} \]

(\frac{\text{MAPPING CLASS GROUP}}{\text{MAPPING CLASS GROUP}}

THM (DEHN): NCG(5) IS GENERATED BY DEHN TWISTS ALONG

SIMPLE CLOSED CURVES &



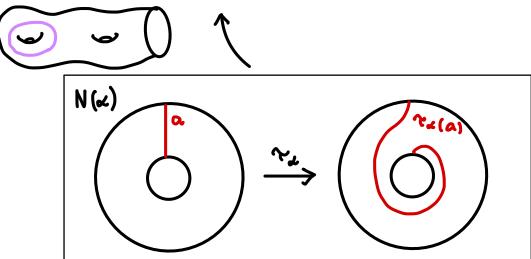
POVER OF OPEN BOOKS: TO DESCRIBE CTCT STRUCTURES

WE NEED TO UNDERSTAND \[\psi: S \rightarrow S: \psi|_\text{\gamma_S} = id \frac{1}{150TOPY} \]

(\frac{MAPPING CLASS GROUP}{\text{APPING CLASS GROUP}}

THM (DEHN): NCG(S) IS GENERATED BY DEHN TWISTS ALONG

SIMPLE CLOSED CURVES &



POVER OF OPEN BOOKS: TO DESCRIBE CTCT STRUCTURES

WE NEED TO UNDERSTAND \[\q \cdot S \rightarrow S : \q \rightarrow \]

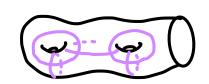
150TOPY

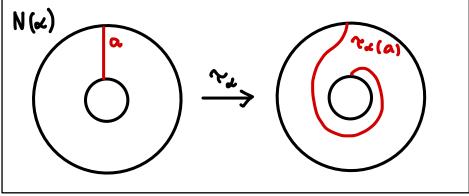
(MAPPING CLASS GROUP)

THM (DEHN): NCG(S) IS GENERATED BY DEHN TWISTS ALONG
SIMPLE CLOSED CURVES &

THM (LICKORISH) NCG(S)IS GENERATED

BY DEHN TWISTS ALONG





WE CAN REPHRASE SOLVE PROBLEMS ABOUT CTC STRUCTURES COMBINATORIALLY (CURVES ON A SURFACE)

TOVER OF OPEN BOOKS: TO DESCRIBE CTCT STRUCTURES

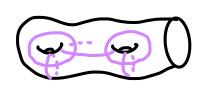
WE NEED TO UNDERSTAND \[\q \cdot S \rightarrow S : \q \rightarrow S = id \] \/ \[\tau \rightarrow S \rig

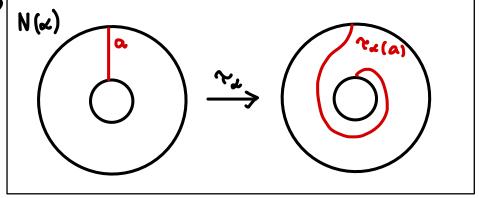
(MAPPING CLASS GROUP)

THM (DEHN): NGG(S) IS GENERATED BY DEHN TWISTS ALONG
SIMPLE CLOSED CURVES &

THM (LICKORISH) NCG(S)IS GENERATED

BY DEHN TWISTS ALONG





WE CAN REPHRASE SOLVE PROBLEMS ABOUT CTC STRUCTURES COMBINATORIALLY (CURVES ON A SURFACE)

GIR OUX CORRESPONDANCE ALLOWS US TO USE OPEN BOOKS
TO DEFINE INVARIANTS OF CTC STRUCTURES

OPEN BOOKS & CONTACT STRUCTURES

DEF: AN OBD (B,π) SUPPORTS A CONTACT STRUCTURE IF

• B IS TRANSVERSE (TB \$ 50

• dα TS, >0

π-1(t) POSITIVE AREA FORH ON St.:

* NEVER GETS = TS.

OPEN BOOKS & CONTACT STRUCTURES

DEF, AN OBD (B,π) SUPPORTS A CONTACT STRUCTURE IF

• B IS TRANSVERSE (TB \$ 3) : α 3 > 0

• dα TS, > 0

π-(t) POSITIVE AREA FORH ON St.:

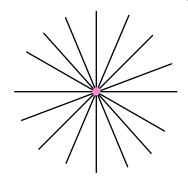
* NEVER GETS = TS.

WE WILL HAVE A MORE TOPOLOGICAL DEF LATER

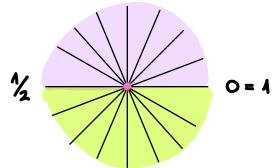
CONSTRUCTION (THURSTON - VINKENKEMPLER): ANY OBD SUPPORTS
A CONTACT STRUCTURE THAT IS UNIQUE UP TO
ISOTOPY

. + LOCAL CONSTRUCTION NEAR BINDING

GIVEN AN OBD (B,TC)



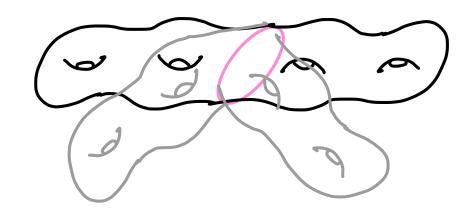
GIVEN AN OBD (B,TC) ~> CONSIDER M=UUV



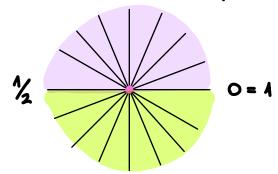
$$U = \pi^{-1}([0, \frac{1}{2}])$$
 $V = \pi^{-1}([\frac{1}{2}, 1])$

HERE Z = Sou Sa

TROP: U & V ARE HANDLEBODIES



GIVEN AN OBD (B,T) ~> CONSIDER M= U U, V WHERE

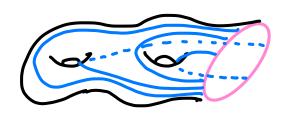


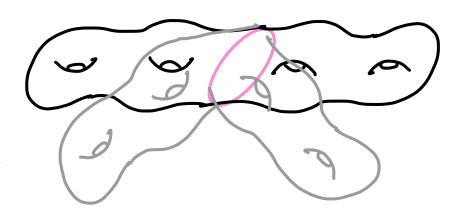
HERE Z = Sou Sa

TROP: U & V ARE HANDLEBODIES

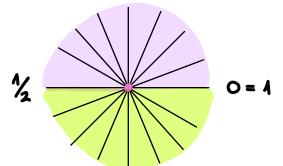
PROOF: FOR U:

· LET a,,..., a 29+6 BE ARCS ON 6 SUCH THAT Sava; = D2





GIVEN AN OBD (B,T) ~> CONSIDER M=UUV WHERE

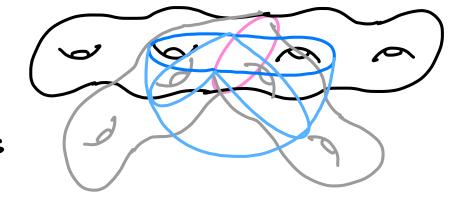


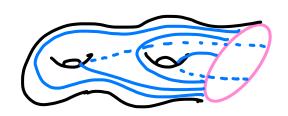
HERE Z = Sou Sa

TROP: U & V ARE HANDLEBODIES

PROOF: FOR U:

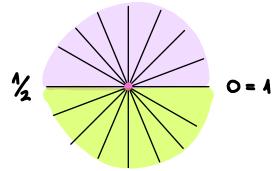
· LET a1) Ja29+6 BE ARCS ON S SUCH THAT S- Ua; = D2







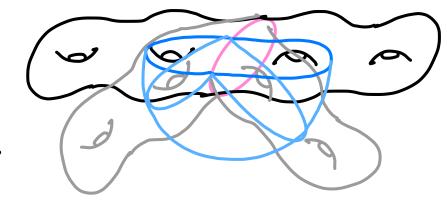
GIVEN AN OBD (B,TC) ~> CONSIDER M= U UV WHERE

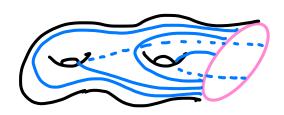


TROP: U & V ARE HANDLEBODIES

PROOF: FOR U:

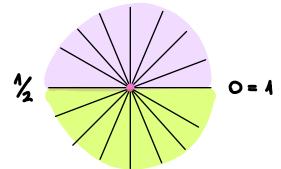
· LET a,,..., a 29+6 BE ARCS ON S SUCH THAT S- ua; = D2





$$\cdot \& \quad \mathsf{U} - \mathsf{U} \, \mathsf{D}_{c} = \left(\mathsf{S} - \mathsf{U} \, \mathsf{a}_{c} \right) \times \left[\mathsf{O}_{c} \, \frac{1}{2} \right] / \cong \mathsf{D}^{2} \times \left[\mathsf{O}_{c} \, \frac{1}{2} \right] / \cong \mathsf{D}^{3}$$

GIVEN AN OBD (B,TC) ~> CONSIDER M= U UV WHERE

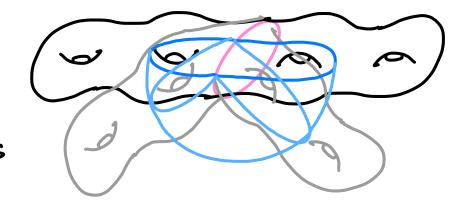


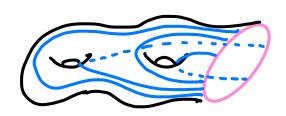
HERE Z = Sou Sa

TROP: U & V ARE HANDLEBODIES

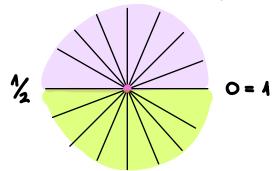
PROOF: FOR U:

• LET a,,..., a 23+6 BE ARCS ON 5 SUCH THAT S-Ua; = D2





GIVEN AN OBD (B,TC) ~> CONSIDER M= U U,V WHERE

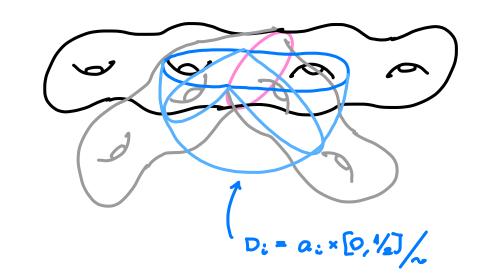


HERE Z = Sou Sa

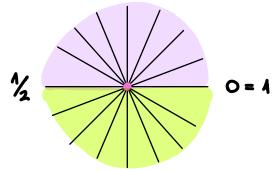
TROP: U & V ARE HANDLEBODIES

NOREOVER! (U, Z, F = B) IS

PRODUCT DISC DECOMPOSABLE



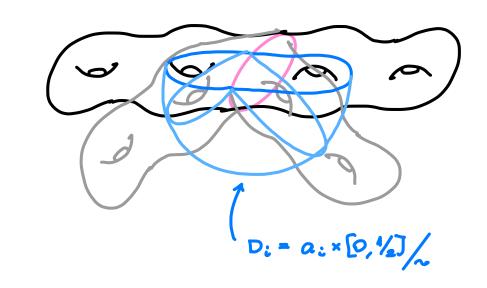
GIVEN AN OBD (B,TC) ~> CONSIDER M=UUV WHERE



TROP: U & V ARE HANDLEBODIES

NOREOVER! (U, Z, F = B) IS

PRODUCT DISC DECOMPOSABLE



WE HAVE SEEN: AN OPEN BOOK DECOMPOSITION DEFINES A HEEGAARD DECOMPOSITION WITH PRODUCT DECOMPOSABLE HANDLEBODIES

WARNING: NEED P ON Z

THM: AN OPEN BOOK DECOMPOSITION DEFINES A HEEGAARD
DECOMPOSITION WITH PRODUCT DECOMPOSABLE HANDLEBODIES

$$(B,\pi) \longrightarrow M = U \cup_{(\Sigma,\Gamma)} V$$

LET'S LOOK AT THE CONTACT STRUCTURE SUPPORTED BY (B,T)

THM (TORISU): THE SURFACE Z IS CONVEX WITH DIVIDING CURVE P. THE CONTACT STRUCTURES 3/4 & 3/4 ARE TIGHT.

THM: AN OPEN BOOK DECOMPOSITION DEFINES A HEEGAARD
DECOMPOSITION WITH PRODUCT DECOMPOSABLE HANDLEBODIES

$$(B,\pi)$$
 \longrightarrow $M=UU_{(\Sigma,\Gamma)}$

LET'S LOOK AT THE CONTACT STRUCTURE SUPPORTED BY (B,T)

THM (TORISU): THE SURFACE Z IS CONVEX WITH DIVIDING CURVE P, THE CONTACT STRUCTURES 3/4 & 3/4 ARE TIGHT.

50: (N, 3u) & (V, 3v) ARE CONTACT HANDLEBODIES

THUS M= U U(E,P) V IS A CONTACT HEEGAARD DECOMPOSITION

THM: AN OPEN BOOK DECOMPOSITION DEFINES A HEEGAARD
DECOMPOSITION WITH PRODUCT DECOMPOSABLE HANDLEBODIES

$$(B,\pi)$$
 \longrightarrow $M=UU_{(\Sigma,\Gamma)}$

LET'S LOOK AT THE CONTACT STRUCTURE SUPPORTED BY (B, T)

THM (TORISU): THE SURFACE Z IS CONVEX WITH DIVIDING CURVE P. THE CONTACT STRUCTURES 3/4 & 3/4 ARE TIGHT.

50: (N, 3,) & (V, 3,) ARE CONTACT HANDLEBODIES

THUS M= U U(E,P) V IS A CONTACT HEEGAARD DECOMPOSITION

THIS GIVES RISE TO AN EQUIVALENT DEFINITION:

DEF: 3 IS SUPPORTED BY THE OPEN BOOK (B,元) IF

THE HEEGARD DECOMPOSITION DEFINED BY (B元) IS A

CONTACT HEEGARD DECOMPOSITION

HEEGAARD DECOMPOSITIONS ~> OPEN BOOK DECOMPOSITIONS

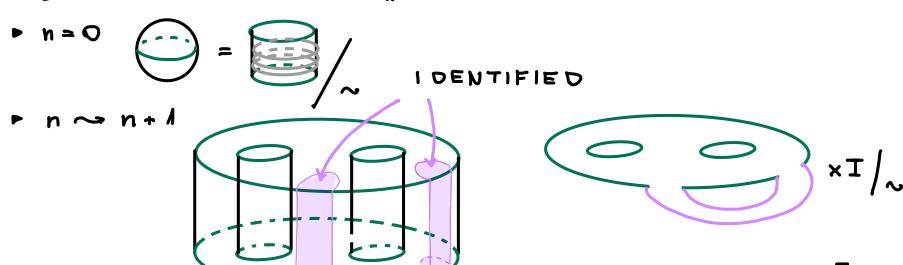
$$\frac{PROP}{(U,\Gamma)}$$
 PRODUCT DISC DECOMPOSABLE HANDLEBODY

 $\Rightarrow U = S \times I/(x,t) \sim (x,t^2) \times C = S, t^2 \in I$

SUCH THAT $\partial U = S \times O \cup_{\Gamma} S \times A$

& $\Gamma = \partial S/\sim$

IDEA: INDUCTION ON THE # OF PRODUCT DISCS



HEEGAARD DECOMPOSITIONS ~ OPEN BOOK DECOMPOSITIONS

TROP:
$$(U,\Gamma)$$
 PRODUCT DISC DECOMPOSABLE HANDLEBODY

$$\Rightarrow U = S \times T/(x,\xi) \sim (x,\xi^2) \quad x \in \partial S, \ \xi,\xi^2 \in T$$
SUCH THAT $\partial U = S \times O \cup_{\Gamma} S \times A$

& $\Gamma = \partial S/_{\sim}$

GIVEN A CONTACT HEEGAARD DECOMPOSITION M=U U(E,P)

HEEGAARD DECOMPOSITIONS ~ OPEN BOOK DECOMPOSITIONS

```
TROP: (U,\Gamma) PRODUCT DISC DECOMPOSABLE HANDLEBODY

\Rightarrow U = S \times T/(x,t) \sim (x,t^2) \quad x \in 3S, \ t, t^2 \in T

SUCH THAT 3U = S \times 0 \cup_{\Gamma} S \times 4

\xi \Gamma = 3S/
```

GIVEN A CONTACT HEEGAARD DECOMPOSITION M=U U(E,P) 5×0 -5× 1/2 $V = S \times [\frac{1}{2}, \Lambda] \qquad \forall = -\Sigma = -R_+ \cup_R R_-$ -5×1 5× // = GLUES TO A FULL FIBRATION (B, T)

GIVEN BY PROJECTION ONTO [0, 1/2, 1]

OPEN BOOK - & CONTACT HEEGAARD DECOMPOSITIONS

SO WE GET A DNE-TO-ONE CORRESPONDANCE

SO WE CAN WORK WITH WHICHEVER IS MORE CONVENIENT

RECALL :

THM: FVERY CONTACT MANIFOLD (M, 5) ADHITS A
CONTACT HEEGAARD DECOMPOSITION

COR: FVERY CONTACT MANIFOLD (M, 5) ADHITS AN OPEN BOOK DECOMPOSITION

COMING UP:

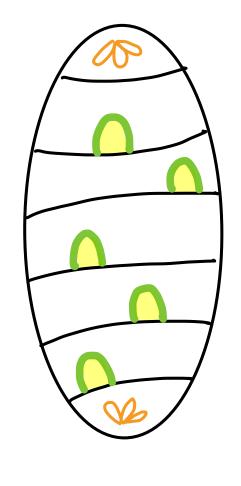
- STABILISATION
- STATEMENT OF GIROUX CORRESPONDENCE
- IDEA OF PROOF

SRNI - LECTURE 3

PROOF OF GIROUX CORRESPONDENCE

- STABILISATION
- STATEMENT OF GIROUX CORRESPONDENCE
- IDEA OF PROOF
- FURTHER DIRECTIONS

1HF GIROUX CORRESPONDENCE VIA CONVEX SURFACES VERA VÉRTESI



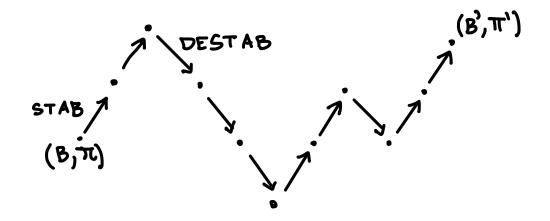
JOINT WORK WITH JOAN LICATA

UNIVERSITY OF VIENNA

LECTURE 3

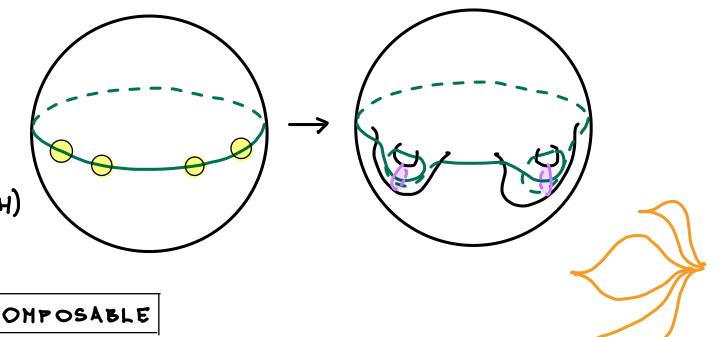
PROOF OF GIROUX'S CORRESPONDENCE

- STABILISATION
- STATEMENT OF GIROUX CORRESPONDENCE
- IDEA OF PROOF
- -FURTHER DIRECTIONS



LAST TIME

- · CONTACT HANDLEBODY:
 - CTCT O-h u 1-h's
 - N (LEGENDRIAN GRAPH)



- CONTACT HEEGAARD DECOMPOSITION H= UUS Y
 - → I CONVEX
 - >U & V CONTACT HANDLEBODY
- . OPEN BOOK DECOMPOSITION

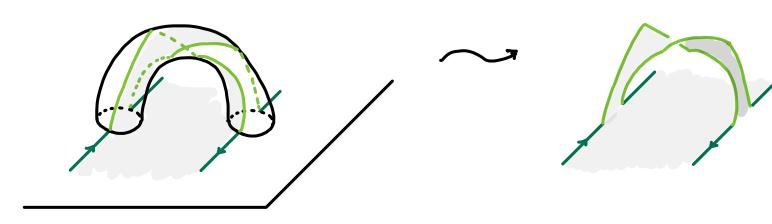
STABILISATION

OF

HEEGAARD DECOMPOSITIONS

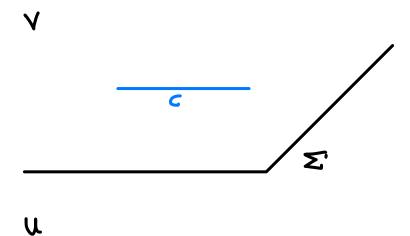
- SH00TH
 - CONTACT

OPEN BOOK DECOMPOSITIONS



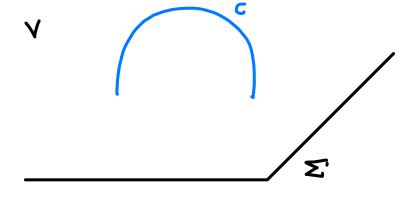
H= UUV HEEGAARD DECOMPOSITION

· c ARC ON Z



H= UUV HEEGAARD DECOMPOSITION

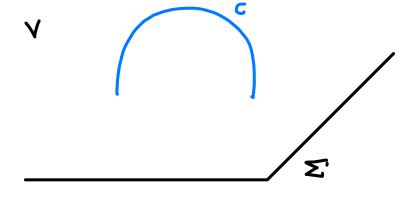
- · c ARC ON Z
- · ISOTOPE C INTO Y



U

H= UUV HEEGAARD DECOMPOSITION

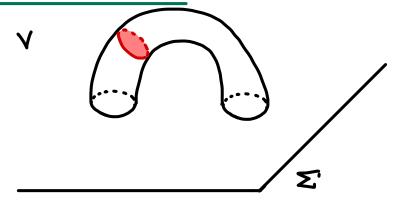
- · c ARC ON Z
- · ISOTOPE C INTO Y



U

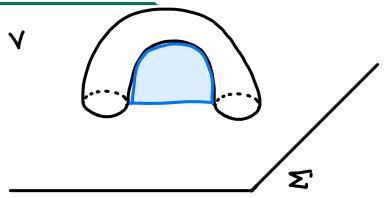
H= UUV HEEGAARD DECOMPOSITION

- · C ARC ON Z
- · ISOTOPE C INTO Y



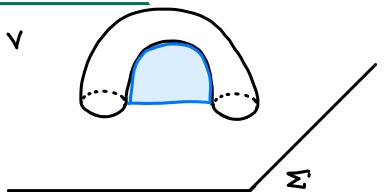
H= UUV HEEGAARD DECOMPOSITION

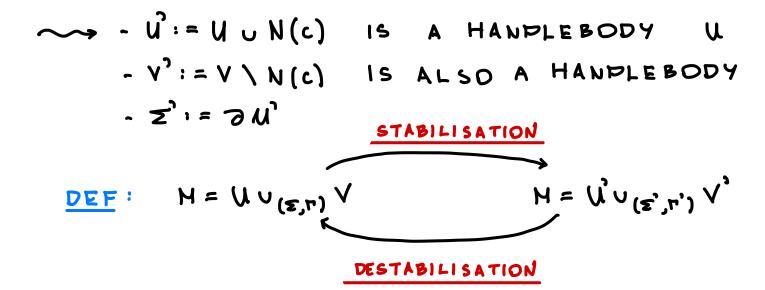
- · C ARC ON Z
- · ISOTOPE C INTO V



H= UUV HEEGAARD DECOMPOSITION

- · c ARC ON Z
- · ISOTOPE C INTO Y





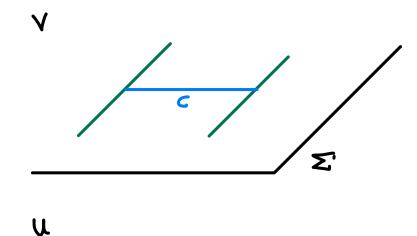
RELATED BY STABILISATIONS & DESTABILISATIONS

(M, 3) CONTACT 3-MANIFOLD

H= (U(E,r)) V CONTACT HD

• C LEGENDRIAN ARC ON Z

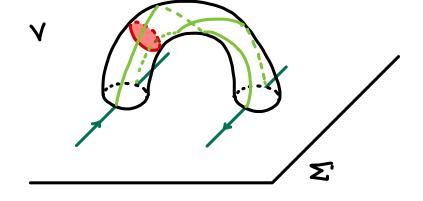
WITH TW(3,TZ)=-1/2



(M, Z) CONTACT 3-MANIFOLD

H= UU(E,T) V CONTACT HD

· C LEGENDRIAN ARC ON Z
WITH TW(g,TZ)=- %



U

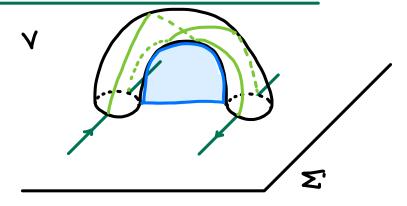
· LEGENDRIAN ISOTOPE C INTO Y

~ - U:= U U N(c) IS A CONTACT HANDLEBODY

(M, Z) CONTACT 3-MANIFOLD

H= UU(E,T) V CONTACT HD

· C LEGENDRIAN ARC ON Z
WITH TW(g,TZ)=- %



U

· LEGENDRIAN ISOTOPE & INTO V

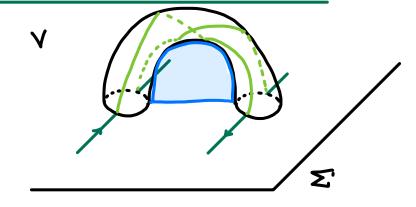
- V':= V \ N(c) IS A CONTACT HANDLEBODY

- V':= V \ N(c) IS ALSO A CONTACT HANDLEBODY

- Z':= 3 M'

(M, 3) CONTACT 3-MANIFOLD

· C LEGENDRIAN ARC ON Z
WITH TW(3,TZ) = - 1/2



U

· LEGENDRIAN ISOTOPE & INTO V

- V':= U U N(c) IS A CONTACT HANDLEBODY

- V':= V \ N(c) IS ALSO A CONTACT HANDLEBODY

- Z':= OU'

CONTACT STABILISATION

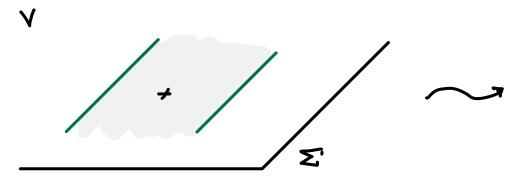
DEF: H = UU(E,T) V

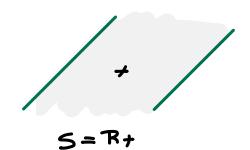
CONTACT DESTABILISATION

RECALL: CONTACT HEEGAARD

DECOMPOSITION

OPEN BOOK
DECOMPOSITION

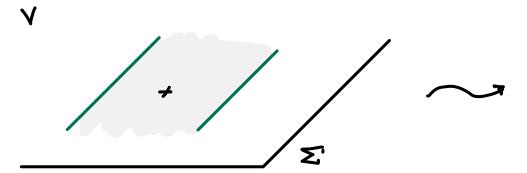


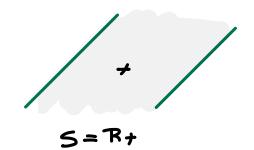


RECALL: CONTACT HEEGAARD

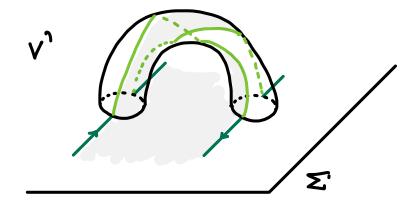
DECOMPOSITION

OPEN BOOK
DECOMPOSITION



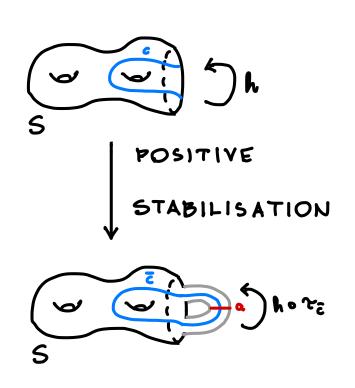


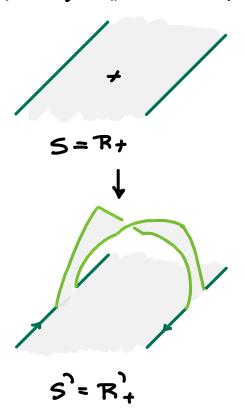
U STABILISATION



RECALL : CONTACT HEEGAARD BOOK OPEN DECOMPOSITION DECOMPOSITION (S=R+,4) H=UU(E,T) Y ٧ 5=R+ U STABILISATION 5 = R+

THE HONODROHIES CAN ALSO BE READ OFF & WE GET





50 UNDER THE CORRESPONDENCE

CONTACT HEEGAARD OPEN BOOK

DECOMPOSITION

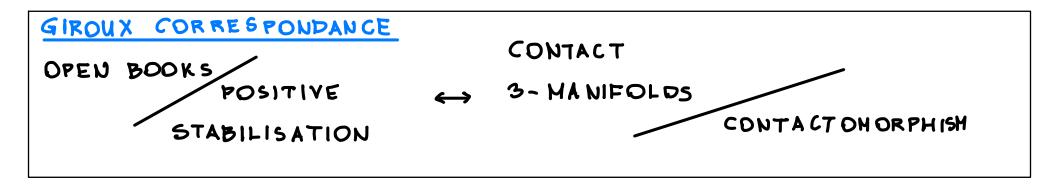
DECOMPOSITION

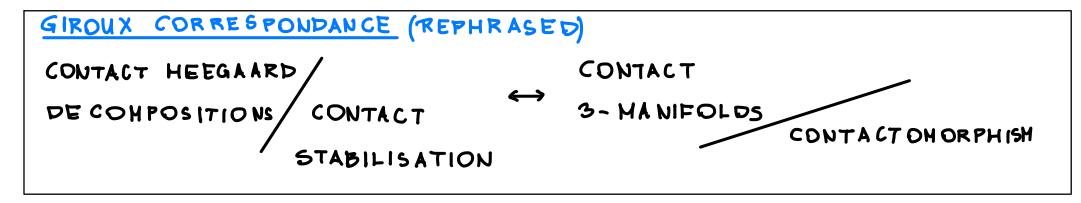
STABILISATION

POSITIVE STABILISATION

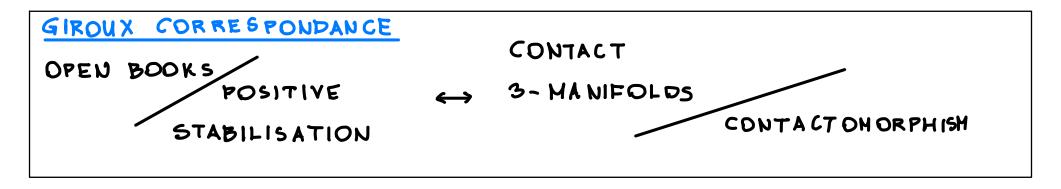
(RE)STATEMENT S hore (IRRESPONDENCE

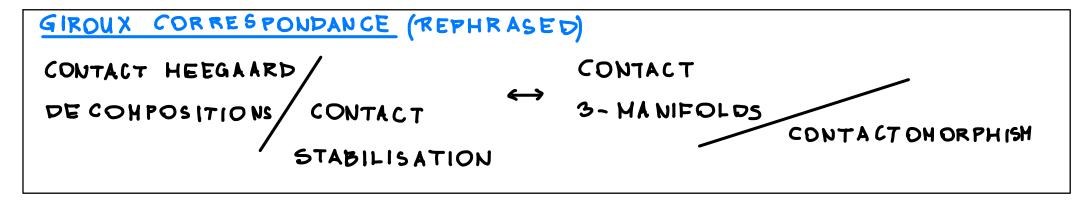
GIROUX CORRESPONDENCE - REPHRASED



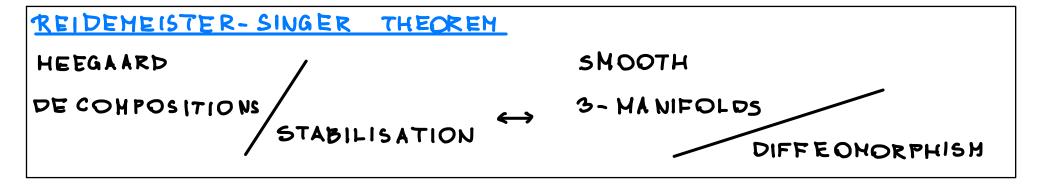


GIROUX CORRESPONDENCE - REPHRASED

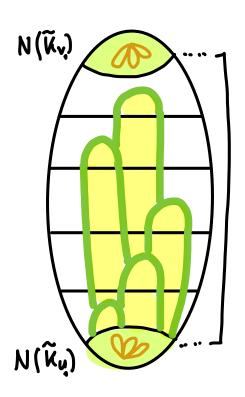


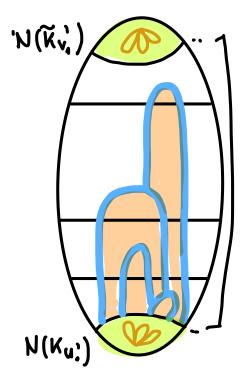


TROM SHOOTH TOPOLOGY:

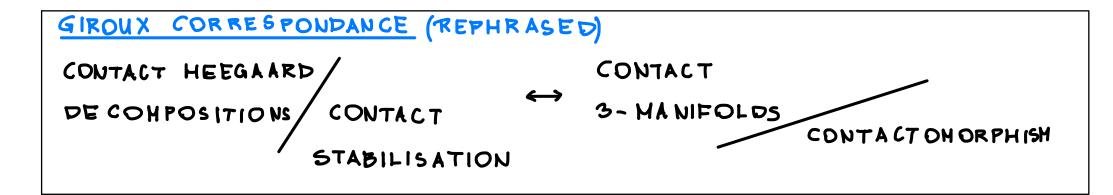


IDEA OF PROOF

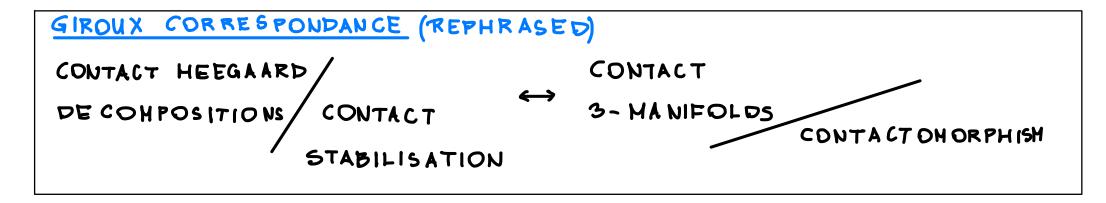




WHAT DOWE WANT TO PROVE?



WHAT DO WE WANT TO PROVE?

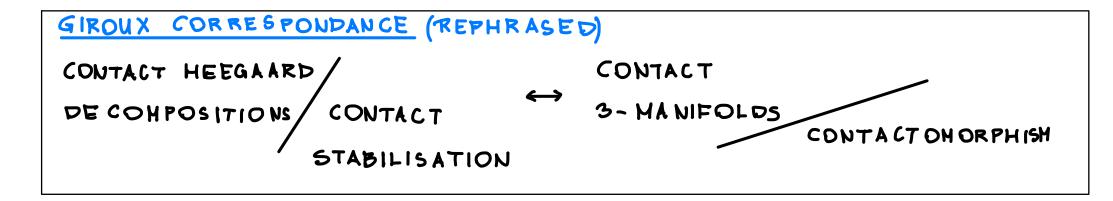


HORE PRECISELY: GIVEN TWO CONTACT HEEGAARD DECOMPOSITIONS

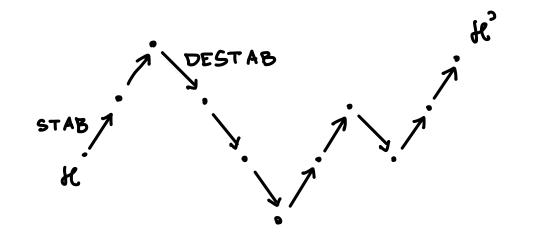
H3

K

WHAT DO WE WANT TO PROVE?



HORE PRECISELY: GIVEN TWO CONTACT HEEGAARD DECOMPOSITIONS



THEN THERE IS A SEQUENCE
OF CONTACT STABILISATIONS
& CONTACT DESTABILISATIONS
CONNECTING THEY

DEA OF PROOF

IN THREE STEPS WE HAKE THEM MORE & MORE SIMILAR

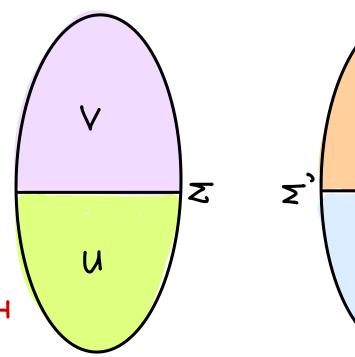
GIVEN TWO CTCT HD'S

$$\frac{H = U \cup_{z} V}{H} = \frac{H'}{U \cup_{z} V}$$

REIDEHEISTER

SINGER

H& H'ADHITS
A CONHON SHOOTH
STABILISATION



STEP 1 GIVEN T

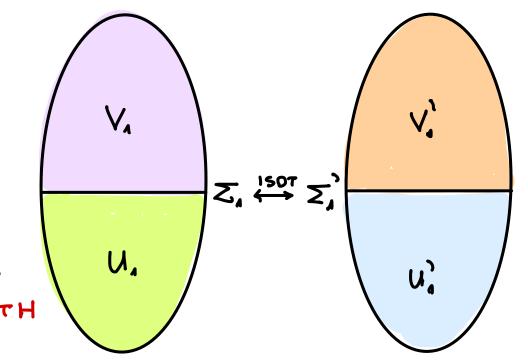
GIVEN TWO CTCT HD'S

$$H = H \cap^{z} A \qquad \qquad M_{s} = H_{s} \cap^{z} A_{s}$$

$$M = H \cap^{z} A \qquad \qquad M_{s} = H_{s} \cap^{z} A_{s}$$

REIDEHEISTER

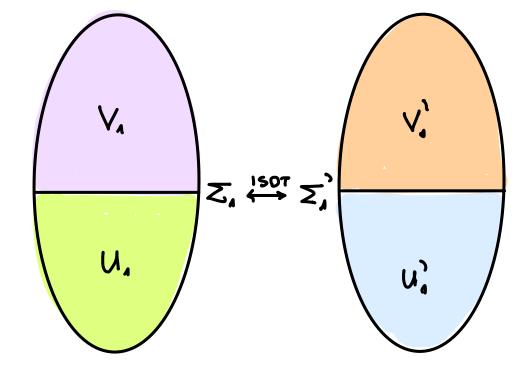
SINGER

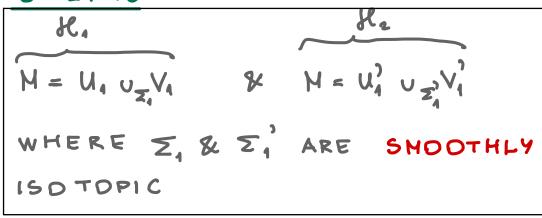


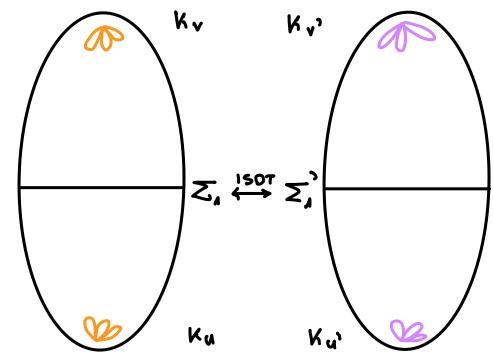
REALISE THESE STABILISATIONS WITH CTCT STABILISATIONS

ARE SHOOTHLY ISO TOPIC

APPLY THE EXISTENCE PROOF

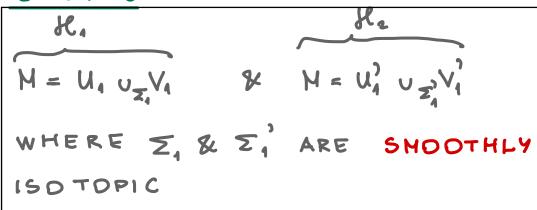


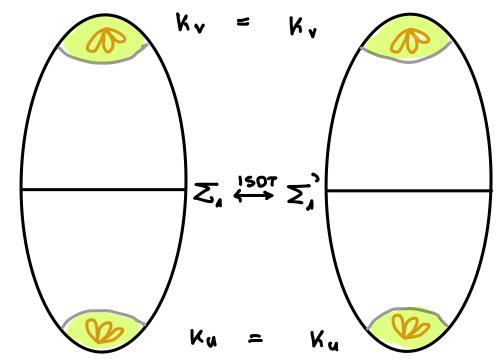




APPLY THE EXISTENCE PROOF

. TAKE LEGENDRIAN SKELETONS FOR THE HANDLEBODIES



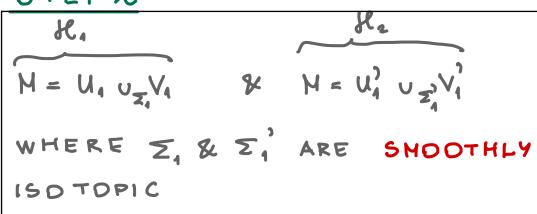


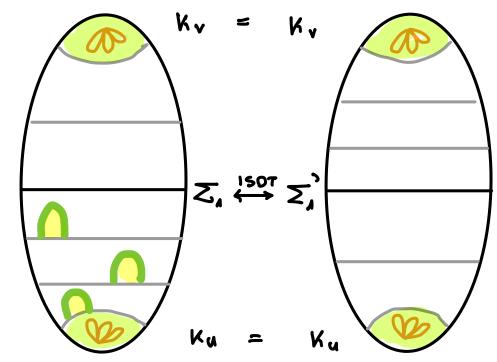
APPLY THE EXISTENCE PROOF

. TAKE LEGENDRIAN SKELETONS FOR THE HANDLEBODIES

TUCHS - TABACHNIKOV: ATTER SUFFICIENTLY MANY LEGENDRIAN STAB. WE CAN ASSUHE $K_u = K_{u'}$ & $K_v = K_{v'}$

. TAKE THE STANDARD NEIGHBOURHOOD N(Ku), N(Kv)



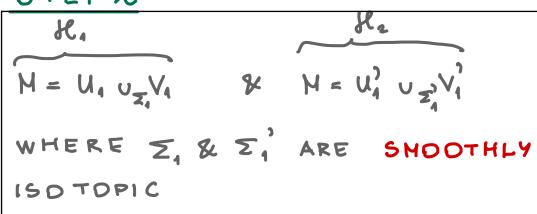


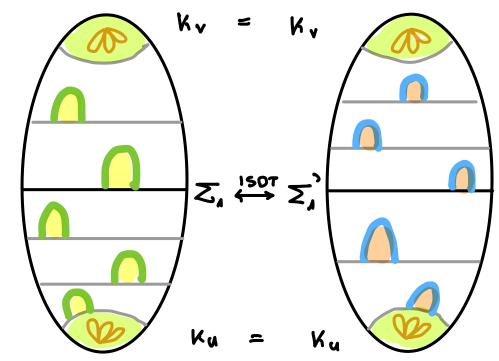
APPLY THE EXISTENCE PROOF

. TAKE LEGENDRIAN SKELETONS FOR THE HANDLEBODIES

THE SUFFICIENTLY HANY LEGENDRIAN STAB, WE CAN ASSUME $K_u = K_{u'}$ & $K_v = K_{v'}$

- . TAKE THE STANDARD NEIGHBOURHOOD N(Ku), N(Kv)
- · U\N(Ku) & V\N(KV) ARE = Z, xI HONDA = STACKS OF BYPASSES



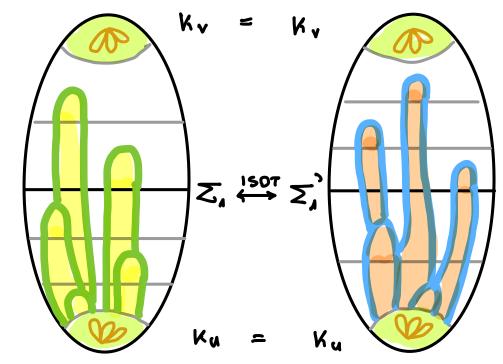


APPLY THE EXISTENCE PROOF

. TAKE LEGENDRIAN SKELETONS FOR THE HANDLEBODIES

THE SUFFICIENTLY HANY LEGENDRIAN STAB, WE CAN ASSUME $K_u = K_{u'}$ & $K_v = K_{v'}$

- . TAKE THE STANDARD NEIGHBOURHOOD N(Ku), N(Kv)
- · U\N(Ku) & V\N(KV) ARE = Z, xI \HONDA = STACKS OF BYPASSES

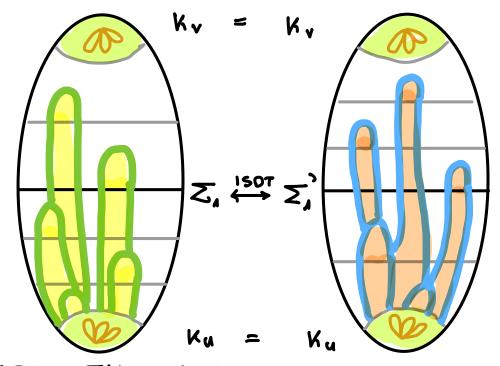


APPLY THE EXISTENCE PROOF

. TAKE LEGENDRIAN SKELETONS FOR THE HANDLEBODIES

TUCHS - TABACHNIKOV: ATTER SUFFICIENTLY MANY LEGENDRIAN STAB. WE CAN ASSUME $K_u = K_{u'}$ & $K_V = K_{V'}$

- . TAKE THE STANDARD NEIGHBOURHOOD N(Ku), N(Kv)
- · U\N(Ku) & V\N(KV) ARE \$\mathbb{Z}_4 \times I \frac{HONDA}{model} = STACKS OF BYPASSES
- · EXTEND THE HANDLES



APPLY THE EXISTENCE PROOF

. TAKE LEGENDRIAN SKELETONS FOR THE HANDLEBODIES

TUCHS - TABACHNIKOV: ATTER SUFFICIENTLY MANY LEGENDRIAN STAB. WE CAN ASSUME $K_u = K_{u'}$ & $K_v = K_{v'}$

- . TAKE THE STANDARD NEIGHBOURHOOD N(Ku), N(Kv)
- · U\N(Ku) & V\N(KV) ARE = Z x I HONDA = STACKS OF BYPASSES
- · EXTEND THE HANDLES

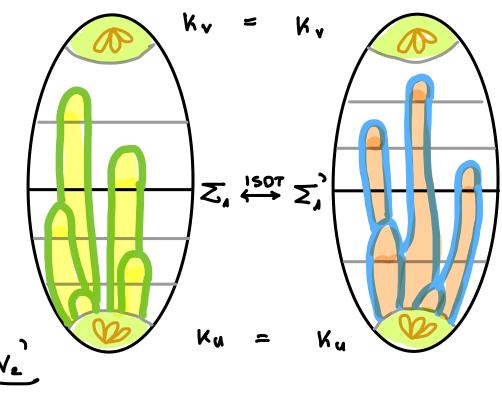
$$U_2:=N(U_K)\cup(A-h'_5)$$
 $V_2=M\setminus U_2$

$$\longrightarrow \underbrace{H = U_2 \cup V_2}_{H_2} \qquad \underbrace{R = U_2 \cup V_2}_{H_2^2}$$

· U\N(Ku) & V\N(KV) ARE = Z, xI

· EXTEND THE HANDLES

$$\longrightarrow \underbrace{\mathsf{H} = \mathsf{H}_2 \cup \mathsf{V}_2}_{\mathsf{H}_2} \; \mathcal{R} \qquad \underbrace{\mathsf{H} = \mathsf{H}_2^2 \cup \mathsf{V}_2^2}_{\mathsf{H}_2^2}$$



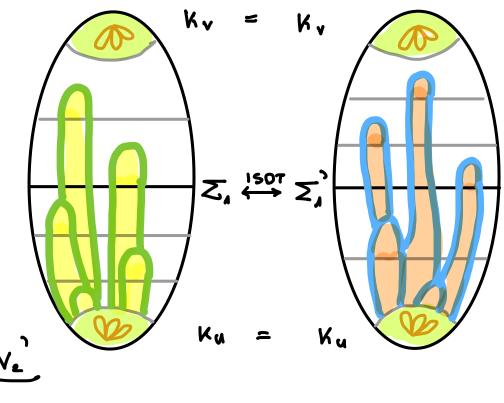
PROP (L-V) H2 CAN BE OBTAINED FRON H4 YIA A SEQUENCE OF CONTACT STAB & DESTAB

· U\N(Ku) & V\N(KV) ARE = Z, xI

· EXTEND THE HANDLES

$$U_{2}^{1} := N(U_{K}) \cup (1 - h^{2})$$
 $V_{2}^{1} = M \setminus U_{2}^{1}$

$$\longrightarrow \underbrace{H = U_2 \cup V_2}_{\mathcal{H}_2} & \underbrace{H = U_2 \cup V_2}_{\mathcal{H}_2}$$



TROP (L-V) H, CAN BE OBTAINED FRON H, YIA A
SEQUENCE OF CONTACT STAB & DESTAB

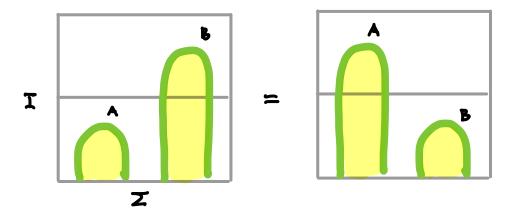
BEFORE NEXT STEP NOTICE

$$\mathcal{H}_2 = \hat{\mathcal{H}} \left(U_K, V_K, \mathcal{B} \right) \qquad \mathcal{H}_2^2 = \hat{\mathcal{H}} \left(U_K, V_K, \mathcal{B}' \right)$$

WHERE B&B' ARE DIFFERENT DECOMPOSITIONS OF 3/H-(U(Uk)UV(Vk) AS BYPASS STACKS

THE FOLLOWING HOVES DO NOT CHANGE &

COMMUTATION

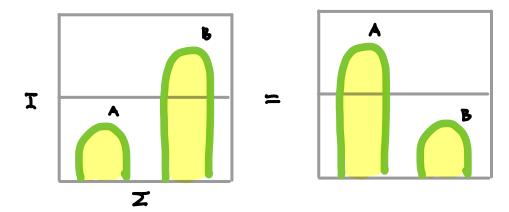


FROM TOP

TRIVIAL BYPASS

THE FOLLOWING HOVES DO NOT CHANGE 3

COMMUTATION



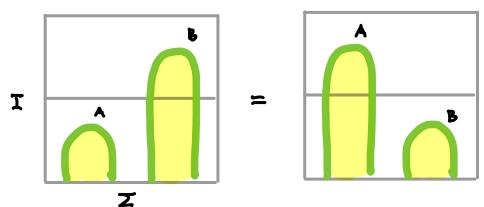
FROM TOP

TRIVIAL BYPASS

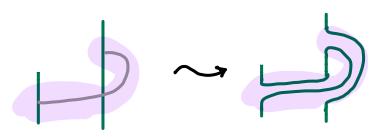


THE FOLLOWING HOVES DO NOT CHANGE &

COMMUTATION

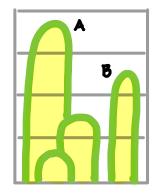


TRIVIAL BYPASS



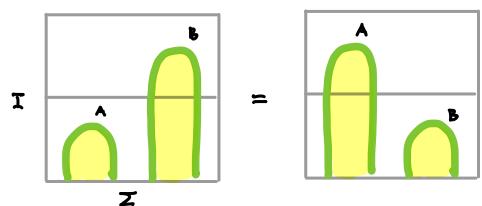
FROM TOP

E.G. 3

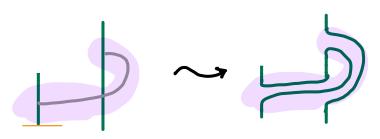


THE FOLLOWING HOVES DO NOT CHANGE &

COMMUTATION

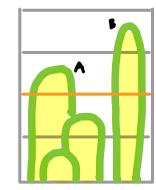


TRIVIAL BYPASS



FROM TOP

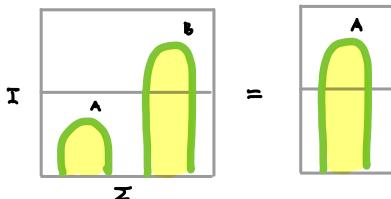
E.G. 3



THE FOLLOWING HOVES DO NOT CHANGE &

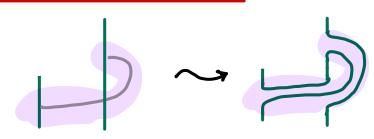
COMMUTATION

FROM



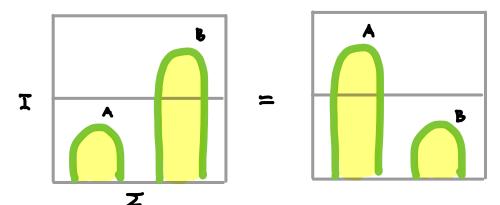
TOP

TRIVIAL BYPASS



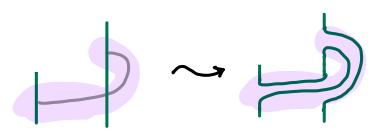
THE FOLLOWING HOVES DO NOT CHANGE &

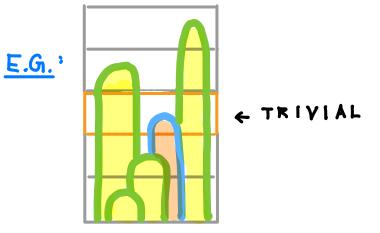
COMMUTATION



FROM TOP

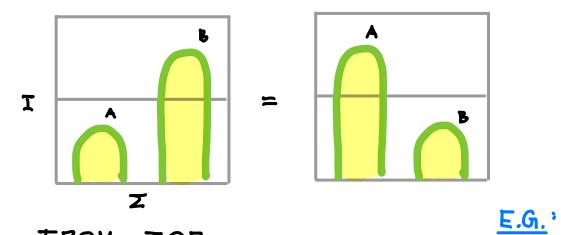
TRIVIAL BYPASS





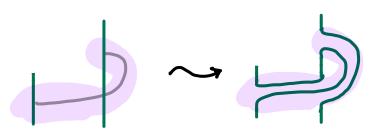
THE FOLLOWING HOVES DO NOT CHANGE &

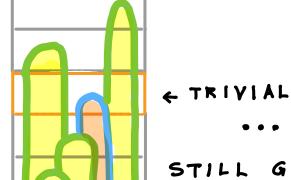
COMMUTATION



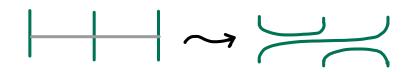
FROM TOP

TRIVIAL BYPASS



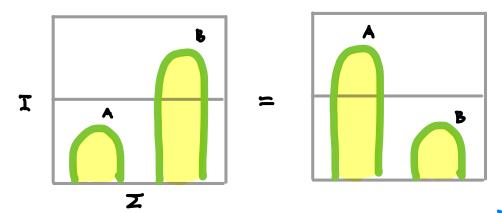


STILL GET SAME 3

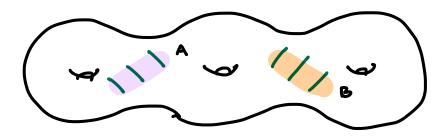


THE FOLLOWING HOVES DO NOT CHANGE &

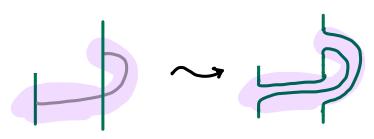
COMMUTATION

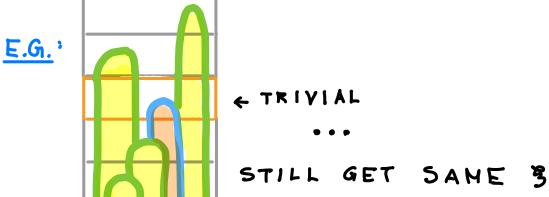


FROM TOP



TRIVIAL BYPAGS

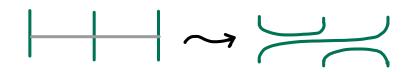




THM (TIAN, BREEN - HONDA - HUANG) ON Z XI ANY TWO DECOMPOSITION

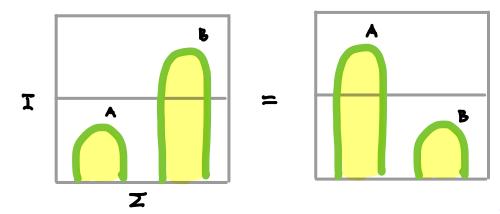
OF & INTO STACKS OF BYPASS SLICES ARE RELATED VIA

- . ADDING A TRIVIAL BYPASS
- . COMMUTING DISTOINT BYPASSES



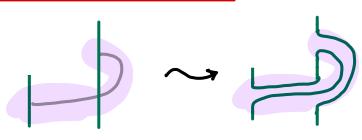
THE FOLLOWING HOVES DO NOT CHANGE &

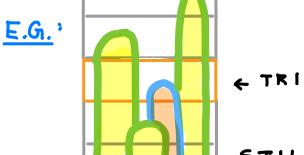
COMMUTATION



FROM TOP

TRIVIAL BYPAGS





- TRIVIAL

STILL GET SAME 3

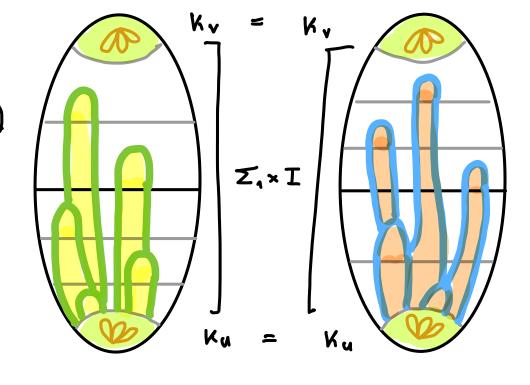
THM (TIAN, BREEN - HONDA - HUANG) ON Z x I ANY TWO DECOMPOSITION OF & INTO STACKS OF BYPASS SLICES ARE RELATED VIA

- . ADDING A TRIVIAL BYPASS
- · CONHUTING DISTOINT BYPASSES

$$\mathcal{H}_{2} = \hat{\mathcal{H}} \left(U_{K}, V_{K}, \mathcal{B} \right) \quad \mathcal{H}_{2}^{2} = \hat{\mathcal{H}} \left(U_{K}, V_{K}, \mathcal{B}^{2} \right)$$

WHERE B & B ARE TWO
BYPASS - DECOMPOSITIONS
OF 3 H- (U(U), U)(V)

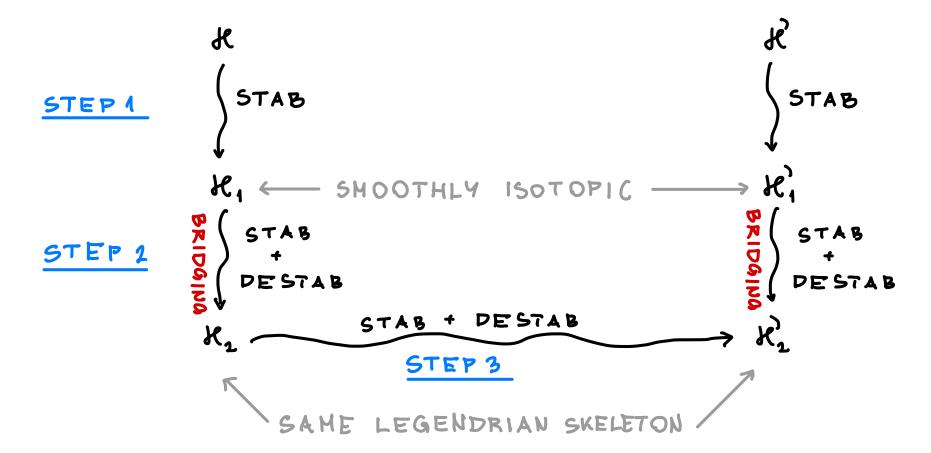
$$\mathcal{B} = \mathcal{B}_0 \sim \mathcal{B}_1 \sim \dots \sim \mathcal{B}_k = \mathcal{B}^k$$



$$\mathcal{L}(U_{K}, V_{K}, \mathcal{B}) \xrightarrow{\text{STAB+DESTAB}} \mathcal{L}(U_{K}, V_{K}, \mathcal{B}_{1}) \longrightarrow \cdots \xrightarrow{\text{STAB+DESTAB}} \mathcal{L}(U_{K}, V_{K}, \mathcal{B}_{1})$$

$$\mathcal{H}_{2}$$

SUMMARY



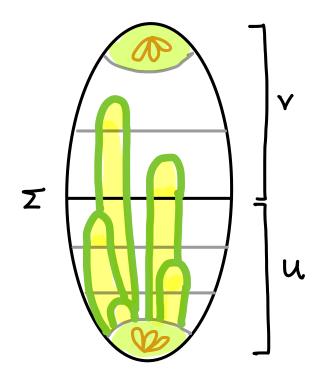
SUMMARY



→ H & H' ARE RELATED YIA A SEQUENCE OF CONTACT STAB. & DESTAB

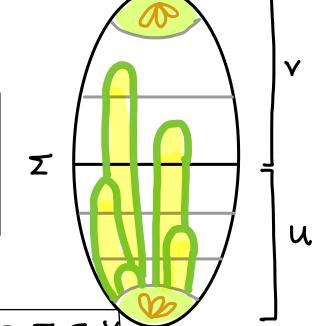
IN STEP 2 WE NEEDED:

THM (L-V): K CTCT HD - THE BRIDGE &
OF K IS CONNECTED TO K VIA CTCT
STAB'S & DESTAB'S



IN STEP 2 WE NEEDED:

THM (L-V): R CTCT HD -> THE BRIDGE R OF R IS CONNECTED TO R VIA CTCT STAB'S & DESTAB'S



AN ELEMENTARY STEP IN THE PROOF

TROP (L-V): K (H=UUV) CTCT HD, B BYPASS ONTO Z < V

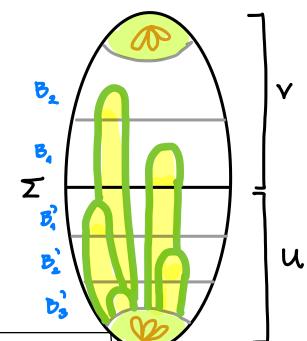
THEN FOR . U'= U 0 1-h

THE CTCT HD K'(H= U'UV')
IS CONNECTED TO K VIA CTCT
STAB'S & DESTAB'S

PROP => THM:

IN STEP 2 WE NEEDED:

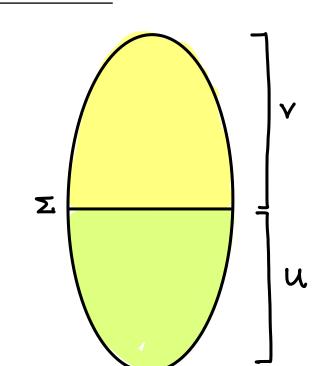
THM (L-V): R CTCT HD -> THE BRIDGE R
OF R 15 CONNECTED TO R VIA CTCT
STAB'S & DESTAB'S



TROP (L-V): K (H=UUV) CTCT HD, B BYPASS ONTO Z <

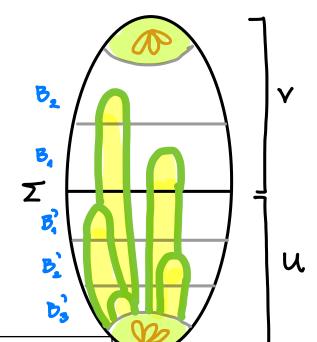
THE CTCT HD K'(H= U'UV')
IS CONNECTED TO K VIA CTCT
STAB'S & DESTAB'S

PROP - THM: START FROM &



IN STEP 2 WE NEEDED:

THM (L-V): R CTCT HD -> THE BRIDGE R OF R 15 CONNECTED TO R VIA CTCT STAB'S & DESTAB'S



TROP (L-V) : K (H=UUV) CTCT HD, B BYPASS ONTO Z <

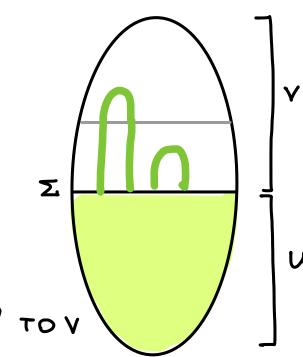
THEN FOR . U'= U 0 1-h

THE CTCT HD &'(H= U'UV')
IS CONNECTED TO & VIA CTCT

STAB'S & DESTAB'S

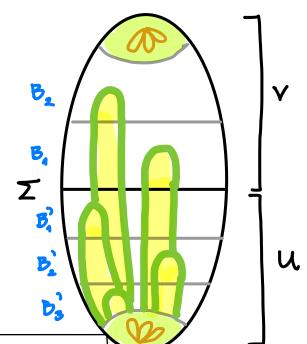
PROP - THM: START FROM K

- · ATTACH THE 1-h OF By & By TO U
- TURN UPSIDE DOWN & ATTACH THE 2-H OF B. TOV



IN STEP 2 WE NEEDED:

THM (L-V): R CTCT HD -> THE BRIDGE R
OF R 15 CONNECTED TO R VIA CTCT
STAB'S & DESTAB'S



PROP (L-V): K (H=UUV) CTCT HD, B BYPASS ONTO Z <

THEN FOR . U'= U U 1-h

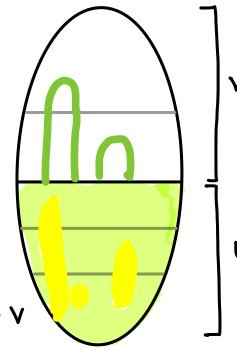
THE CTCT HD &'(H= U'UV')

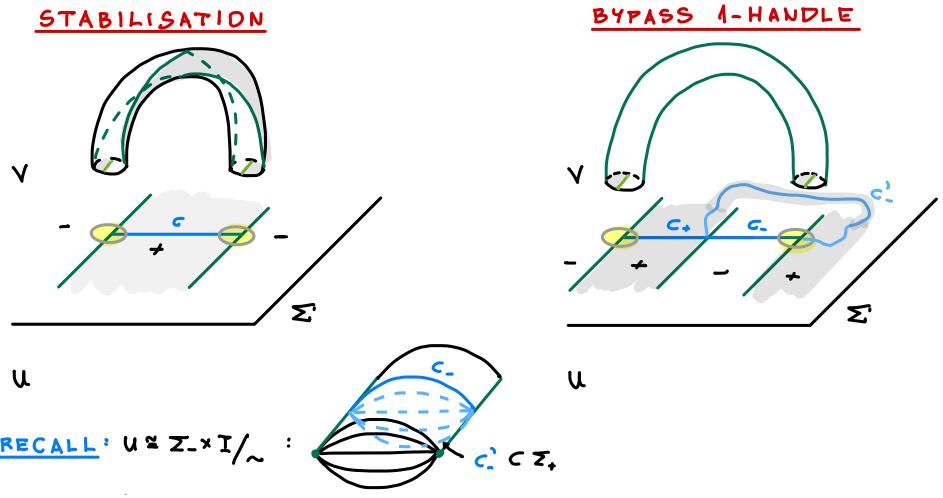
IS CONNECTED TO & VIA CTCT STAB'S & DESTAB'S

PROP - THM: START FROM K

- · ATTACH THE 1-h OF By & By TO U
- TURN UPSIDE DOWN & ATTACH THE 2-H OF B. TO V

~~ GET K' ■



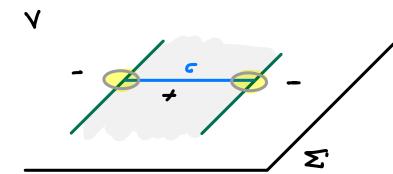


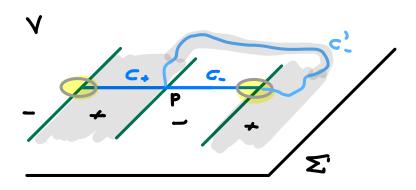
THE BYPASS A-HANDLE ADDITION ALONG C+ 0 C_ = STAB ALONG

STABILISATION ALONG C+ 0 C.

STABILISATION

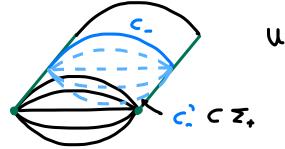
BYPASS 1-HANDLE





u

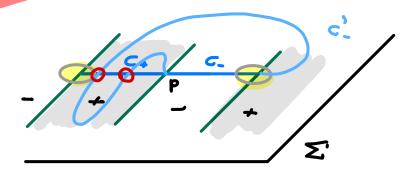
RECALL: U = Z_x I/~



50 THE BYPASS A-HANDLE ADDITION ALONG C+ 0 C_ = STAB ALONG

STABILISATION ALONG C. UC.

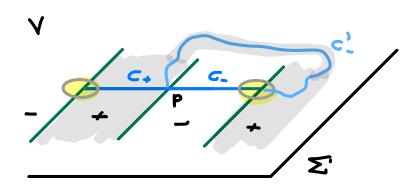
ONLY WORKS IF C' n C+ = p



STABILISATION

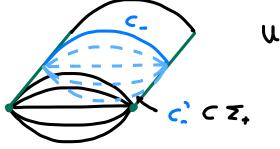
BYPASS 1-HANDLE

Y - 6 - / -



u

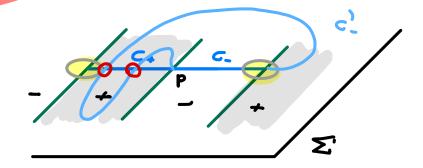
RECALL: UZ Z_xI/~



50 THE BYPASS A-HANDLE ADDITION ALONG C+ 0 C_ = STAB ALONG

STABILISATION ALONG C. UC.

ONLY WORKS IF C' n C+ = p



WE SHOW: AFTER HORE (DE) STAB WE CAN HAKE SURE CON C. - P

WE GET

THEN FOR . U'= U U 1-N

. Y'= H-U'

THE CTCT HD &'(H=U'V) IS CONNECTED TO &

VIA CTCT STAB'S & DEGTAB'S

COR (L-V): K (H=UVV) CTCT HD, B BYPASS DUTO Z < V

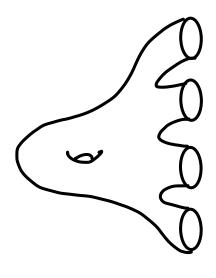
IF U'= U UB IS TIGHT, THEN FOR V'= H-U

THE CTCT HD K'(H=U'V') IS CONNECTED TO K

VIA CTCT STAB'S & DESTAB'S

THIS GIVES A SIMPLER PROOF FOR GIROUX CORRESPONDENCE FOR TIGHT CONTACT STRUCTURES

FURTHER DIRECTIONS



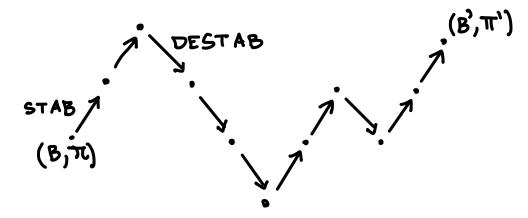
FEELS LIKE END OF A LONG STORY
BUT AS ALWAYS THERE IS A LOT TO DO:

. (HOPEFULLY) MINOR ISSUE :

COMMON STABILISATION VS. SEQUENCE OF (DE) STABILISATIONS

WHAT WE PROVED: DESTAB (B, TC) USE. WHAT SONE OF THE APPLICATIONS (Box) ARE THEY EQUIVALENT?

. HOW MANY STABILISATIONS DO WE NEED?



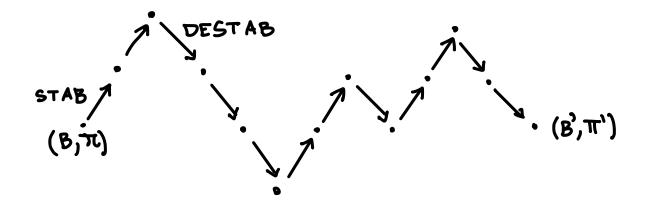
- ETNYRE: DOES EVERY CONTACT STRUCTURE HAVE
 A GENUS 1 OPEN BOOK?
 - OVERTWISTED CONTACT STRUCTURES HAVE PLANAR (= GENUS O) OPEN BOOKS (FTNYRE)
 - THERE ARE CONTACT STRUCTURES THAT DO NOT HAVE PLANAR OPEN BOOKS (FINGRE)
 - POSSIBLE COUNTEREX AMPLE (HASSOT)

THM (WAND): LEGENDRIAN SURGERY PRESERVS TIGHTNESS

- THE PROOF RELIES ON AN EQUIVALENT CHARACTERISATION OF TIGHTNESS IN TERMS OF OPEN BOOKS
- THIS CHARACTERISATION IS GIVEN IN A SEQUENCE OF COMBINATORIAL DEFINITIONS THAT TAKE UP MULTIPLE PAGES

IS THERE A SIMPLER PROOF USING CONTACT HEEGAARD

• MOVES BETWEEN OPEN BOOKS OF THE SAME GENUS/ EULER CHARACTERISTIC

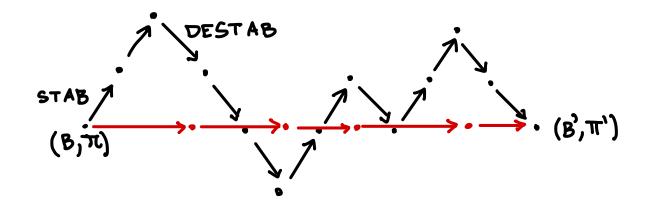


THM (WAND): LEGENDRIAN SURGERY PRESERVS TIGHTNESS

- THE PROOF RELIES ON AN EQUIVALENT CHARACTERISATION OF TIGHTNESS IN TERMS OF OPEN BOOKS
- THIS CHARACTERISATION IS GIVEN IN A SEQUENCE OF COMBINATORIAL DEFINITIONS THAT TAKE UP MULTIPLE PAGES

IS THERE A SIMPLER PROOF USING CONTACT HEEGAARD

• MOVES BETWEEN OPEN BOOKS OF THE SAME GENUS/ EULER CHARACTERISTIC



THANKS +()R AII-MION!