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Introduction

1973 WINKELNKEMPER : FIRST USED The Word

11 1)
Open Book Decomposition

BUT IT WAS ALREADY KNOWN & STUDIED UNDER DIFFERENT NAMES :

· Global poincare-birkhoff Section
· RELATIVE MAPPING TORUS

· LEFShet2/ MILNor FIBRATION

· FIBERED LINKS

· SPINNABLE STRUCTURES

Def : Open Book : (5 , 4)

- ↑
Y : So HOMEOMORPHISM : MONODROMY

SURFACE WITH BOUNDARY !
S
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Introduction

G IROUX CORRESPONDENCE

OPEN BOOKS <> CONTACT STRUCTURES

&OSITIVE STABILISATION CONTACTOMORPHISM

G) C HAS BEEN EXTENSIVELY USED TO Prove THMS ABOUT CTCT 3-MFDS

2DDO The ORIGINAL PROOF Of GIROUX WAS Incomplete

↑
MASSOT WROTE DOWN A COMPLETE PROOF BUT DIDN'TIPUBLISH IT

2023 BREEN-HONDA-HUANG : PROOF OF THE GIROUX CORRESPONDENCE

FOR CONTACT STRUCTURES IN ANY DOD DIMENSIONS

1023 LICATA-V: PROOF Of THE GIROUX CORRESPONDENCE

FOR TIGHT Contact 3-manifolds (independent)
2024 LICATA-U: EXTENDED OUR PROOF TO WORK FOR ANY

CONTACT 3- MANIFOLD



APPLICATIONS
(m"3)

IN CONTACT TOPOLOGY

(w" w)
-> FILLABILITY

D
G IROUX : Topological Description of Stein-fillable

CONTACT 3-MANIFOLDS

ELIASHBERG ,
ETNYRE : ANY WEAK SYMPLECTIC FILLING OF A

CONTACT 3-MANIFOLD CAN BE EMBEDDED INTO A CLOSED

SYMPLECTIC MANIFOLD

- CONTACT SURGERY

WAND : CONTACT SURGERY PRESERVES TIGHTNESS

KEGEL-STENHENDE-V-ZUDDAS : CLASSIFICATION OF LEGENDRIAN

SURGERY DIAGRAMS DESCRIBING THE SAME CONTACT

MANIFOLD
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APPLICATIONS

Surgery : remove Neighbourhood ofnot
& GLUE BACK A D'S' differently

=

TOPOLOGY

KRONHEIMER-MRONKA : EVERY NONTRIVIAL KNOT HAS PROPERTY P

DISVATH-SZABO : The UNKNOT
,
TREFOLL & FIGURE-EIGHT KNOT

A RE CHARACTERISED By Their SURGERIES

DISVATH-SZAB : The Thurston Norm Is determined By

HEEGAARD FLOER HOMOLOGY

G IROUX-GOODMAN : INDUCTIVE CONSTRUCTION OF FIBERED

KNOTS IN S3



PLAN Of TALKS

· LECTURE 1 : SUBMANIFALOS OF CONTACT STRUCTURES

· LECTURE 1 : DESCRIBING CONTACT STRUCTURES

· LECTURE 3 : PROOF OF GIROUX CORRESPONDENCE



PLAN Of TALKS

· LECTURE 1 : SUBMANIFALOS OF CONTACT STRUCTURES

- CONTACT STRUCTURES

- (D) Legendrian & Transverse Knots
,
Legendrian graphs

- (d) CONVEY SURFACES

- NEIGHBORHOOD THEOREMS

- FIGHT & OVERTWISTED CONTACT STRUCTURES

· LECTURE 1 : DESCRIBING CONTACT STRUCTURES

· LECTURE 3 : PROOF Of GIROUX CORRESPONDENCE



PLAN Of TALKS

· LECTURE 1 : SUBMANIFALOS OF CONTACT STRUCTURES

· LECTURE 1 : DESCRIBING CONTACT STRUCTURES

- CONTACT CELL Decompositions

- CONVEY SURFACE Theory-Bypasses

- CONTACT HeEGAArD SPLITTINGS (proof Of existence)
- Open Book Decompositions

- Open Book decompositions CONTACT HEEGAArD SPLITTINGS

· LECTURE 3 : PROOF Of GIROUX CORRESPONDENCE



PLAN Of TALKS

· LECTURE 1 : SUBMANIFALOS OF CONTACT STRUCTURES

· LECTURE 1 : DESCRIBING CONTACT STRUCTURES

· LECTURE 3 : PROOF OF GIROUX CORRESPONDENCE

- STABILISATION

- STATEMENT Of GIROUX CORRESPONDENCE

- IDEA Of prodf

- FURTHER DIRECTIONS
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CONTACT Structures

DEF : A CONTACT STRUCTURE ON A CLOSED , ORIENTED SMOOTH

3.MANIFOLD M3 Is ATOTALLY Non Integrable

2.PLANE-DISTRIBUTION 3CTh T
NOT TANGENT TO ANY

f
SURFACE

SMOOTH CHOICE OF
1

2 M
-50:

3 TpM X
p

① TpM L
# FROBENIUS

LOCALLY : 3 = kear" (M) 21dx)0

COORIENTED CONTACT STRUCTURE : GLOBAL L



CONTACT Structures

DEF : A CONTACT STRUCTURE ON A CLOSED , ORIENTED SMOOTH

3.MANIFOLD M3 Is ATOTALLY Non Integrable

2.PLANE-DISTRIBUTION 3CTh T
NOT TANGENT TO ANY

f
SURFACE

SMOOTH CHOICE OF
1

2 M
>0:*

3 TpM X
p

① TpM L
# FROBENIUS

LOCALLY : 3 = kear" (M) 21dx)0

COORIENTED CONTACT STRUCTURE : GLOBAL L

DARBOUX THM : LOCALLY ANY CONTACT

STRUCTURE IS CONTACTOMORPHIC

To M
, 3 s+

= k (dz - ydx) ↑
DIFFEOMORPHISM THAT CARRIES

3 To z



Equivalence of Contact Structures

(M . 3) & /M ,3) CONTACT STRUCTURES

·Contactomorphism : (m .3) /M3) if 7 diffeomorphism p : mer

THAT CARRIES 3 To 3' : 65 = 3
WHEN M = Mi

· Homotopy : 3 = 3 If 7 1-parameter FAMILY of Contact

SRUCTURES (EtteP ON M WITH 3 = 304 3 = 5a

·otopu : 33 If 7 1-parameter family of Self-Diffeomorphism

(P+)+20.
1)

OF M WITH Po=1d &

· 3 = (b)+ 3
1)

THM (GRAY STABILITY) : "HOMOTOpY = ISOTOPY

* NY homotopy (3) teony of CONTACT Structures is

I Nouced by an Isotopy (bt)te8, 1)
: · Po = Id &

· 37 = (Pt) 30
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KNOTs In CONTACT Structures

DEF : GM IS A LEGENDRIAN KNOT

TpL
If ToL < 3p Vp : -

L

A

1 = (y = z = 0



KNOTs In CONTACT Structures

DEF : GM IS A LEGENDRIAN KNOT

TpL
If ToL < 3p Vp : -

L

·
A

A

"

+

>

MOTTO : THE CONTACT STRUCTURE

ALWAYS "ROTATES
M

L = 4x = z = 0
* LONG LEGENDRIANS

TSTON-BENNEQUIN Framina :

PUSH L IN THE TpL

DIRECTION OF V -
-

WHERE[p + TpL &Esp



KNOTs In CONTACT Structures

DEF : GM IS A LEGENDRIAN KNOT

TpL
V LIf ToL < 3p p

: - i-
. . .

s

A

MOTTO : THE CONTACT STRUCTURE
1)

ALWAYS ROTATES
"

L = 4x = z = 0

↓to
cenomas

PUSH L IN THE

THURSTON-BENNEQUIN FRAMING :

DIRECTION OF T,

WHERE[p + TpL &Esp



KNOTs In CONTACT Structures
A

DEF : GM IS A LEGENDRIAN KNOT

TpL
V LIf ToL < 3p p

: -
A

MOTTO : THE CONTACT STRUCTURE
1)

ALWAYS ROTATES
"

T = (x = y = 0

↓to
cenomas

PUSH L IN THE

THURSTON-BENNEQUIN FRAMING :

DIRECTION OF T,

WHERE[p + TpL &Esp

M

Per:GM IS A Transverse KNOT If ToTYBp Up :

· (TpT))0 i



Legendrian Approximation
THM : ANY KNOT /M ,3) Can Be co-approximated By

A LEGENDRIAN KNOT

IDea of propf : Enough To Approximate LOCALLY & By

DARBOUX ThM We Can Work In (3,3st

3s+
= kn(dz = ydx)



Legendrian Approximation
THM : ANY KNOT /M ,3) Can Be co-approximated By

A LEGENDRIAN KNOT

IDea of propf : Enough To Approximate LOCALLY & By

DARBOUX ThM We Can Work In (3,3st

3s+ -ke(dz -ydx) > y=
We can Read off y-coordinate
# Rom the PROJECTION to (x2)-Plane

· PROJECT K TO THE /X ,2)-PLANE

21 (x(t) ,z(t) - y(t))

7 X



Legendrian Approximation
THM : ANY KNOT /M ,3) Can Be co-approximated By

A LEGENDRIAN KNOT

IDea of propf : Enough To Approximate LOCALLY & By

DARBOUX ThM We Can Work In (3,3st

3s+ -ke(dz -ydx) > y=
We can Read off y-coordinate
# Rom the PROJECTION to (x2)-Plane

· PROJECT K TO THE /X ,2)-PLANE
L

(x(t) ,z(t) - y(t))

~
7 X

Slope "Close" to =L is -close To k
At

COR : ANY SMOOTH KNOT Can Be Represented By A Legendrian Knot



Isotopes of Knots
SMOOTH KNOTS

-

- 2-
T -

& -

3
&

③

on S E
A

&
&

-
e

& &



Isotopes OF Knots
SMOOTH KNOTS

I SOTODY : PATH IN THE
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Isotopes of Knots
SMOOTH KNOTS

I SOTODY : PATH IN THE

SPACE OF KNOTS

&

· ISOTOPY CLASS : CONNECTED

COMPONENT

LEGENDRIAN ISOTOPY : PATH

In THE SPACE Of LEGENDRIAN

KNOTS

If LIsotopic TO LIMPLIES ↓ Legedrian Isotopic To l ?



Isotopes of Knots
SMOOTH KNOTS

I SOTODY : PATH IN THE

SPACE OF KNOTS

ISOTOPY CLASS : CONNECTED⑧ COMPONENT

LEGENDRIAN ISOTOPY : PATH

In THE SPACE Of LEGENDRIAN

KNOTS

If L Isotopic TO L Implies ↓ Legedrian Isotopic To l ?

NO ! - THE TWISTING OF 3 /W . R .
T THE SELFERT SURFACE)

DOESN'T CHANGE DURING LEGENDRIAN

Isotopy --



Isotopes of Knots
SMOOTH KNOTS

I SOTODY : PATH IN THE

SPACE OF KNOTS

ISOTOPY CLASS : CONNECTED⑧ COMPONENT

LEGENDRIAN ISOTOPY : PATH

In THE SPACE Of LEGENDRIAN

KNOTS

If Lisotopic To L Implies L Legedrian isotopic to i ?

NO ! - THE TWISTING OF 3 /W . R .
T THE SELFERT SURFACE)

DOESN'T CHANGE DURING LEGENDRIAN

Isotopy
-
-

STABILISATION : CHANGES TWISTING

--
THM (FUCHS-TABACHNIKOV) : L IS Isotopic TO <) After Some

STABILISATIONS Stil is Legedrian Isotopic to Stil
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SURFACES IN CONTACT STRUCTURES
DEF : A CONTACT Vectorfield XECt(M)

ISA VECTORFIELD WHOSE FLOW

PRESERVS 3 ↑
#

2 =

ga For SOME g
: MoR

X=



SURFACES IN CONTACT STRUCTURES
DEF : A CONTACT Vectorfield XECt(M)

ISA VECTORFIELD WHOSE FLOW

PRESERVS 3

#
1

2 =

ga For SOME g
: MoR

X = *



SURFACES IN CONTACT STRUCTURES
DEF : A CONTACT Vectorfield XECt(M)

ISA VECTORFIELD WHOSE FLOW

PRESERVS 3 ↑
#

2 =

ga For SOME g
: MoR

X = - 2 = hz = 03
22

DEF : SM IS CONVEY If 7 X CONTACT VECTORFIELD S



- =4x3]
SURFACES IN CONTACT STRUCTURES
DEF : A CONTACT Vectorfield XECt(M)

ISA VECTORFIELD WHOSE FLOW

PRESERVS 3

#

2 =

ga For SOME g
: MoR

x= 2 = hx = 03

DEF : SM IS CONVEY If 7 X CONTACT VECTORFIELD S

EPUIVALENTLY : E has a Neighbourhood N(l) ZI With
t

I - INVARIANT CONTACT STRUCTURE 3

H
d = B + gd + WHERE BER() & g

: M -R

FACT (GIROUX) : TO Understand 3 On Nill one only needs

TO KNOW
r = (g = 0 = (3) = (x33



Convex Surfaces (Giroux)
DEF : EGM IS CONVEX If 7 CONTACT VECTORFIELD X : 2 x

Det : n= xe3] =1/ =C is The Dividing curve

PROP :
- THE ISOTOPY CLASS Of IS INDEPENDENT Of The

CHOICE OF X

- Divides Into Two neces : [it = (a())o
2- (a(X)(0)

i
THM ) The Dividing curve Determines 3 Near Ei)
E E CONVEX SURFACES w/ ISOTOPIC DIVIDING CURVES

7 7 N/E) , NIS') NEIGHBORHOODS THAT ARE

CONTACTOMORPHIC

THM /CONVEX SURFACES ARE CO-GENERIC) : ANY Surface S CAN

BE Co SMALL Isotoped To Be Convey



CONTACT Manifolds with Boundary
def : Kitten Is a CONVEY Isotopy If It Is Convex (vtefo, 17)

M 3 - MANIFOLD With Boundary ,

3. CONTACT STRUCTURE On M S
.
T

WE WILL WORK WITH

I &2 M IS CONVEX

&
-

(M.3)



CONTACT Manifolds with Boundary
def : Kitten Is a CONVEY Isotopy If It Is Convex (vtefo, 17)

WE WILL WORK WITH

M 3 - MANIFOLD With Boundary ,

3. CONTACT StructureOn M
I

5.T

2 M IS CONVEX

· Same For (M ,3) &
& ↓.
(M,3) (M.3)



CONTACT Manifolds with Boundary
def : Kitten Is a CONVEY Isotopy If It Is Convex (vtefo, 17)

jo
M 3 - MANIFOLD With Boundary ,

WE WILL WORK WITH

&3. CONTACT STRUCTURE On M S
.
T

2 M IS CONVEX

· Same For (M ,3)

I &
111

DEF: WEAKLY CONTACTOMORPHIL : 7 EMBEDDING (M. 3) (Mr 3)
SUCH THAT NM) IS CONVEY ISOTOPIC TO -M

((r),3)

& =
(M,3)



G Luing Contact Structures

WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH

M ATCHING DIVIDING CURVES

IDEA

%
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G Luing Contact Structures

WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH

M ATCHING DIVIDING CURVES

IDEA Nay
STEP 1 : ADD I-INVARIANT PART TO EACH

-

& STEP 1 : Find Namp) in NaMY)

Stepl : Truncate Mat 1/am(11)
m

(M! 34 e/NIMeD (M23%



G Luing Contact Structures

WE CAN GLUE CONTACT STRUCTURES ALONG SURFACES WITH

M ATCHING DIVIDING CURVES

IDEA NiaMY Nati
STEP 1 : ADD I-INVARIANT PART TO EACH

# stepe : find namel in slant

Stepl : Truncate Mat 1/am(11)
m

(M! 34 e/NIMeD (M23% STEP4 : Overlap ninjare)) with Name)

&
THE OBTAINED CONTACT MANIFALD

Is /M! 34 +(M23%

& It IS WELL defined up To

↑ CONTACTOMORPHISM

WEAKLY CONTACT ISOTOPIC To (MY 3%



Standard neighbourhood of aLeggendriann

= . G : 3 = ker (cos(2)dx-sin (2) dy)
Visotopic tost



Standard neighbourhood of aLeggendriann

= . G : 3 = ker (cos(2)dx-sin (2) dy)
Visotopic tost
IDENTIFY (ty , z) - (x, y ,

z + 2πn)

~ CONTACT STRUCTURE

ON R2x si

WITH LEGENDRIAN KNOT
:)

↳= ( ,0) + 5 c-s'

Neighbourhood Nids'



Standard neighbourhood of aLeggendriann

= . G : 3 = ker (cos(2)dx-sin (2) dy)
Visotopic tost
IDENTIFY (ty , z) - (x, y ,

z + 2πn)

~ CONTACT STRUCTURE -XXON R2x si

WITH LEGENDRIAN KNOT -↳= ( ,0) + 5 c-s'

Neighbourhood Nids'

RMK : aN/L) IS NOT CONVEX , BUT BY a COSMALL Isotopy

IT CAN BE MADE CONVEX WITH A TWO COMPONENT

DIVIDING CURVE Parallel To (sin(l , cost) ,z(/
X

THIS GIVES THE THURSTON-BENNERUIN FRAMING



Standard neighbourhood of aLeggendriann

= . G : 3 = ker (cos(2)dx-sin (2) dy)
Visotopic tost
IDENTIFY (ty , z) - (x, y ,

z + 2πn)

~ CONTACT STRUCTURE

WITH LEGENDRIAN KNOT

-XXON R2x si

↳= ( ,0) + 5 c-s' -
Neighbourhood Nids'

RMK : aN/L) IS NOT CONVEX , BUT BY a COSMALL Isotopy

IT CAN BE MADE CONVEX WITH A TWO COMPONENT

DIVIDING CURVE Parallel To (sin(l , cost) ,z(/
X

THIS GIVES THE THURSTON-BENNERUIN FRAMING

THM : ANY LEGENDRian Knot lg (M ,3) has a Neighbourhood Will

Contactomorphic To Nid)



Legendrians on Convex Surfaces

Def : [C( . 4) IS An ISOLATING CURVE
,
IF SOME COMPONENT

OF EIC Is Disfont From Mi

i
↑ ↑ -

ISOLATING NON-IS OLATING

ThYLEGENDRIAN REALISATION PRINCIPLE)
() ↓) Convex Surface ,

CCS Non-Isolating curve

7> [ CAN Be Isotoped Through Convey Surfaces Yt(f)
5.T

. After The ISOTOPY /) <Ye) IS Legendrian



Legendrians on Convex Surfaces

Def : [C( . 4) IS An ISOLATING CURVE
,
IF SOME COMPONENT

OF EIC Is Disfont From Mi

i
↑ ↑ -

ISOLATING NON-IS OLATING

ThYLEGENDRIAN REALISATION PRINCIPLE)
() ↓) Convex Surface ,

CCS Non-Isolating curve

7> [ CAN Be Isotoped Through Convey Surfaces Yt(f)
5.T

. After The ISOTOPY /) <Ye) IS Legendrian

RMK : THE TWISTING OF 3 W
. R .

T. TS ALONGC = -Ear
IDEA :

- TURN BETWEEN EACH INTERSECTIONFr



Convex Surfaces with Legenarian Boundary
THM /KANDA) : E Surface WITH Legendrian Boundary L can

Be Isotoped REL - TO Be CONVEY

1

V

TWISTING Of 3 W .R .
T . I ALONG L is <o

· THE ISOTOPY Can Be Assumed TO Be C: SMALL

(Co-SMALL If E IS Already Convey NearaE)

&MK : AFTER THE ISOTapy

I
↑WISTING Of 3 W .R .

T . I ALONG L = -YIMnL



Rounding Edges
& & E CONVEX Surfaces With Common Legendrian Boundary L

CONVEX

2L LEGENDRIAN

-

L CONVEX



Rounding Edges
& & E CONVEX Surfaces With Common Legendrian Boundary L

CONVEX

2L LEGENDRIAN

+
tLi CONVEX

&

2

-



Rounding Edges
& & E CONVEX Surfaces With Common Legendrian Boundary L

THEN THE EDGE L CAN BE ROUNDED O WE GET A NEW

SMOOTH CONVEY SURFACE E WITH DIVIDING CURVE AS BELOW

CONVEX CONVEX

L LEGENDRIAN L LEGENDRIAN
V

T
2 L
~ -SMOOTH &

t

&

+ ALONG L
t ConverL CONVEX

7

L
2

- X-



IGHT
&

OVERTWISTED



ContaStre
overTwisted Contact structure

3s+
= kn(dz = ydx) So+= ke (cosfu)dz + ~sin()dx)

Are Est & Bot isotopic/contactomorphic ?



TwoContact Structures

STANDARD CONTACT STRUCTUREOVERTWISTED CONTACT STRUCTURE

3s+
= kn(dz = ydx) So+= ke (cosfu)dz + ~sin()dx)

Are Est & Bot isotopic/contactomorphic ?

BENNEQUIN (1982) : No ! Consider d = In any + ho]
def : d (m ,3) is an overtwisted Disk if Toan wa

RMK : ENOUGH TWISTING OF 3 ALONG UD WRT D IS O

DEF: 3 IS OVERTWISTED IF 3 CONTAINS AN OVERTWISTED DISK

· 3 IS TIGHT IF IT IS NOT OVERTWISTED



OverTwisted Contact Structures
THM JELLASHBERG) 3 , 3' OVERTWISTED

CONTACT STRUCTURES &

3= S PLANEFIELDS

> 3 = 5

THM (LUTZ-MARTINEZ) ANY HOMOTOPY CLASS OF PLANEFIELDS

Is represented by an Overtwisted) contact structure

OVERTWISTED CONTACT STRUCTURES CAN BE UNDERSTOOD

THROUGH ALGEBRAIL TOPOLOGICAL INVARIANTS : de , da

RMK : TIGH CONTACT STRUCTURES ARE HARDER TO CLASSIFY

· ELIASHBERG : S admits A Unique Tight CONTACT Structure

· GIROUX : 70-LY MANY 3-MANIFOLDS WITH O-LY MANY

TIGHT CONTACT STRUCTURES

· ETNYRE : -[12 ,
3

. 5) ADMITS NO TIGHT CONTACT STRUCTURES

....



Recognising Overtwisted Contact Structures
D IS CONVEX : X = E Is A

22

CONTACT VECTORFIELD , XaD
·--&

↑
-

D ~ = (3) = (= 40
↑ Ez

So+= ke (cosfu)dz + ~sin()dx)

THM /GIROUX'S CRITERION) : S4(M .3) CONVEX SURFACE ADMITS

A Tight Neighbourhood Inkl /3Inrl) 1FF

· Z = 5 & (4) = 1

·2 + 52 NO Component of Bounds a Disc

-
- DRi

No :



Idea of Proof
THM /GIROUX's CRITERION) : S4(M .3) CONVEX Surface ADMITS

A Tight Neighbourhood Ini /biniel) iff

· Z = 5 & (4) = 1

· I S & NO Component of Bounds a Disc

> WILL SHOW : T HAS A COMPONENT THAT BOUNDS A DISC

& THIS IS NOT THE ONLY COMPONENT

↑ ↑ 7 Blvis) IS TIGHT

~



Idea of Proof
THM /GIROUX's CRITERION) : S4(M .3) CONVEX Surface ADMITS

A Tight Neighbourhood Inkl /3Inrl) 1FF

· Z = 5 & (4) = 1

· I S & NO Component of Bounds a Disc

> WILL SHOW : T HAS A COMPONENT THAT BOUNDS A DISC D

& THIS IS NOT THE ONLY COMPONENT

> Blis) IS TIGHT~ CONSIDER : CENCAPSULATING D-
C IS NON-ISOLATING

LEGENDRIAN REALISATION PRINCIPLE

V

WE CAN Isotope e Inside NE) SUCH That C IS Legendrian



Idea of Proof
THM /GIROUX's CRITERION) : S4(M .3) CONVEX Surface ADMITS

A Tight Neighbourhood Inkl /3Inrl) 1FF

· Z = 5 & (4) = 1

· I S & NO Component of Bounds a Disc

7 WILL SHOW: HAS A COMPONENT THAT BOUNDS A DISC D

& THIS IS NOT THE ONLY COMPONENT

> Blis) IS TIGHTi CONSIDER : CENCAPSULATING D↑ ↑
C IS NON-ISOLATING

LEGENDRIAN REALISATION PRINCIPLE

V

WE CAN Isotope e Inside NE) SUCH That C IS Legendrian

THEN TWISTING OF 3 ALONG C W
.
R

.
T

.
E = Vlta

So DIS An OverTwisted Disc,

[ UNIVERSAL COVER OF Z... E



CLASSIFICATION OFLIGHT CONTACT STRUCTURES

T#MELIASHBERG) : D ADMITS A UNIQUE TIGHT CONTACT ----

-

STRUCTURE WITH CONNECTED DIVIDING CURVE ON St :

THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E
.
G: M=XS' GIVEN Any Contact structure 3 on M

· STEP 1 : BY The Legendrian realisation principle

WE Can Assume ad IS Legendran

af



CLASSIFICATION OFLIGHT CONTACT STRUCTURES

T#MELIASHBERG) : D ADMITS A UNIQUE TIGHT CONTACT ----

-

STRUCTURE WITH CONNECTED DIVIDING CURVE ON St :

THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E
.
G: M=XS' GIVEN Any Contact structure 3 on M
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T#MELIASHBERG) : D ADMITS A UNIQUE TIGHT CONTACT ----

-

STRUCTURE WITH CONNECTED DIVIDING CURVE ON S :

THIS RESULT ALLOWS US TO PROVE OTHER UNIQUESS RESULTS

E
.
G.: M = D xs' GIVEN ANY CONTACT STRUCTURE 3 ON M

· STEP 1 : BY The Legendrian realisation principle

WE Can Assume ad IS Legendran

af · Step 2 : Isotaped REL . v To Be CONVeX :

THE DIVIDING CURVE ON D IS A SINGLE ARC

⑰ & STEP 3 : CUT M ALONG D

3
· STEP 4 : Round The Edges : We Get a D

WHICH HAS A UNIQUE CONTACT STRUCTURE 30

- ANY 3 CAN Be Obtained From 3 .

.. By GLUEINGEIS UNIQUE TOO m
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CLASSIFICATION OFLIGHT CONTACT STRUCTURES

T#MELIASHBERG) : D ADMITS A UNIQUE TIGHT CONTACT ----

-

STRUCTURE WITH CONNECTED DIVIDING CURVE ON S :

E
.
G

.

: ADMITS A UNIQUE TIGHT CONTACT STRUCTURE

af
· WHAT Did We Use In THE Proof ?

· THAT 1DN = 2 THIS THE DIVIDING CURVE ON D WAS WELL

DEFINED
----

-
· & THAT WE GOT AFTER CUTTING AND ROUNDING

ADMITS A UNIQUE TIGHT
SIMILARLY :

P CONTACT STRUCTURE

De
Dz Ds

Defiproduct disI decomposable



lo be Continued...

LECTURE 1 : DESCRIBING CONTACT STRUCTURES

- CONTACT CELL Decompositions

- CONVEY SURFACE Theory-Bypasses

- CONTACT HeEGAArD SPLITTINGS (proof Of existence)
- Open Book Decompositions

- Open Book decompositions CONTACT HEEGAArD SPLITTINGS



HE GIRSUX
CORRESPONDENCE
-VIA CONVEX U

&

-

-SURFACES -

1

-

VERA VERTESI Do

IDINT WORK WITH JOAN LICATA

UNIVERSITY OF VIENNA



LECTURE L T
DESCRIBING

CONTACT STRUCTURES
- CONTACT CELL Decompositions

- CONVEY SURFACE Theory-Bypasses

- CONTACT HeEGAArD SPLITTINGS (proof Of existence)
- Open Book Decompositions

- Open Book decompositions & CONTACT HEEGAArD SPLITTINGS



AsT TimeGiroux

· -M IS CONVEY If 7 CONTACT VECTORFIELD X : 2x

I [ = 2+ un [

↑
x(x))o ↑ *kko

x(x) = 0

-> GENERIC EGM IS CONVEX

=>Nie) Is Determined by c S

· (M,3) OVERTWISTED ) JEM Convey wit or In
CONTAINING A DISC

I
TIGHT # OVERTWISTED

· 5 ! TIGHT CONTACT STRUCTURE ON D WITH CONVEX BORY:
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Handle Decompositions of Smooth 3-manifolds

& - HANDLE 1 - HANDLE 2- HANDLE 3- HANDLE

hi= D x j3 h'=D + D h2= x xD h3 xxxo=

- -
~ & · -

ThM(Morse) : Any (3tmanifold can be obtained via sSUCCESIVELY ATTACHING HANDLES ONTO EACH OTHER

A LONG GD ab-i Chandle Decomposition)
h

MOREOVER THE INDICES OF HANDLES CAN

B ASSUMED TO be In Increasing order 2 - h's

COR : =En
->

- 2:

- 1 -4's
Ne

EVERY 3-MANIFOLD ADMITS A & -

->o-h
HEEGAArD DECOMPOSITION

HANDLEBODY



teegaard Decompositions

ThM /ALEXANDER) Every 3-manifold admits a M=luy

HEEGAArD DECOMPOSITION ↑x

HANDLE Bodies :⑳
E

.
G .: . 5==

Vi P
W
33
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· s = [12IwY= 13<
-

= [*] vSw3 ,
2 = (12) = Iw) =Yess"
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v
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Origin - Morse Functions : M smoothManifold

DEF: F : M I SMODTh FUNCTION IS Morse If ALL
Hess (f) IS

CRITICAL POINTS Of f Are Nondegenerate

47 +- X NONDeGENERATE

FACTS : · Morse FUNCTIONS Are Co-GENERIC

· LOCAL Model Near a Morse-critical point :

7i

INDEX -
-> FLOW Off

Xi+ 1...., ·F core

> X1/... /Xi
↑
COCORE

·Index-i Critical pointsi hi =Dixi i - HANDLES

REARRANGING CRITICAL POINTS : MOVING INDEX I-HANDLES UNDER

INDEX i' = HANDLES

i 3 - it

USES TRANSVERSALITY & That dim(core) + Dim(colore) < 3

#

i(i
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CONTACTHandles

& - HANDLE 1 - HANDLE 2- HANDLE 3- HANDLE

Do x j3 D x D D 2 x pl D3x yo

-
~ D E -
thi 3) (n13 192 . 37 (h: 3%

After rounding the edges each becomes~

& By ELIASHBERG'S THM THIS ADMITS A

UNIDE TIGHT CONTACT STRUCTURE

-> Up To ISOTODY We GET WELL Defined CONTACT STRUCTURES

ON THE he



Attaching Contact Handles
i = HANDLE hi = D" - D

3- i

2h" = 20piua x - =

WE CAN CONSTRUCT CONTACT MANIFOLDS BY SUCCESIVELY

3 -i

G LUING HANDLES ALONG 20" x D ·

- GLUF ROUND& 7-- A E↑-
CONTACT HANDLE DECOMPOSITION

THM/GIROUX) ANY CONTACT 3-MANIFOLD ADMITS A

CONTACT HANDLEDECOMPOSITION



Contact Handlebody

D-HANDLE U Some 1-Handles
- -

E .
G

. ~·
(n , zu ,
)



Contact Handlebody

D-HANDLE U Some 1 -HANDLES
- -

E.

Legenda an

~·8
G RAPH :

NEIGHBORHOOD OF A

(n , zu ,
)



Contact Handlebody

D-HANDLE U SOME 1-HANDLES
- -

- OE .
G

. ~
Y~

8 NEIGHBORHOOD OF A

D
LEGENDRIAN GRAPH :

(n , zu ,
)

NOTE : CONTACT handLebodies are product Disc Decomposable

RECALL : A PRODUCT DISC DECOMPOSABLE HANDLEBODY L ADMIT S

A UNIQUE TIGHT CONTACT STRUCTURE WITH DIVIDING

CURVE ON U.

↑HUS

THM : A PRODUCT DISC DECOMPOSABLE HANDLEBODY U WITH

TIGHT CONTACT STRUCTURE 3 IS A

CONTACT HANDLEBODY
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Rearranging Contact Handles
-. UST AS IN THE SMOOTH CASE

I A CONTACT Handle decomposition One Can Assume That :

- CONTACT D-S ARE ATTACHED FIRST

- CONTACT 3-h's ARE ATTACHED LAST

BUT ! CONTACT 1-h'S CANNOT ALWAYS Be Attached

BEFORE CONTACT 2-hS
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Interlude - Contact Morse Functions
ONLY FOR FUN

3
( ,3) CONTACT MANIFOLD

DEF : FiM " Morse FUNCTION IS CONTACT If 7 X CONTACT

VECTORFIELD THAT IS AN ALMOST GRADIENT FOR F

&
A TO LEVEL SETS

RMK : NONCRITICAL Levelsets are
& "LIKE" TF NEAR

CONVEX
CRITICAL POINTS

def : Critical submanifold : c= xe3]
& UNION Of DIVIDING CURVES Of LEVELSETS)

THM(Giroux) : fIc : < < R IS Also Morse with the

SAME CRITICAL POINTS As F WITH Indices f fc

T HIS EXPLAINS WHY WE CANNOT MOVE Do

1.HANDLES UNDER 2-HANDLES 1 1

L 1

They are both 1- handles for c)
32
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BypassSLICE &
-- 7 >M

1 - h

-
2- h

&-
FROM THE TOP

#
THE ABOVE TAIR OF CONTACT 1- 82-4 CAN BE

ATTACHED TO ANY CONVEX SURFACE (IT) ALONG ANY

ARC C INTERSECTING As C

WILL SEE : Bypasses Are BASIC BUILDING Blocks of

CONTACT STRUCTURES ON EXI
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Convex Surface Theory
O- PARAMETER

RECALL (GIROUX) : CONVEX Surfaces Are Co-Generic

1- PARAMETER

THM IGIROUX ,
COLIN

,
rephrased By HONDA) Any 1-parameter

FAMILY Of Surfaces (Etegon With for E,
Convex

CAN Be Isotoped to letteron So THAT

· + = 24 NEAR t = D & 1

· It Is convey except at discrete Times (th... ,tube d1)
7

· Et
: - &+E

JOBOUND a Bypass SLICE (i = 1
.. k)

THM (GIROUX rephrased By Honda) theEA
ANY CONTACT STRUCTURE ON EXI IS ti- E

CONTACTOMORPHIC TO A STACK OF - I-INVARIANT

34PASS SLICES

⑭
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THM (GIROUX) : Any CONTACT 3-manifold (M .3) AdmitS A

CONTACT HEEGAARD DECOMPOSITION

PROOF (LICATA - V)
As N(kv)

Step 4: =M-(N/ku)uN/kul Ex -
L

CAN BE WRITTEN AS A STACK

DF BYPASS-SLICES = h'u hz 1

/AWAY FROM The HANDLES E IS E-INVARIANT) -

1
1
- N(Kul



stenceof Contact Heegaard Decompositions

THM (GIROUX) : Any CONTACT 3-manifold (M .3) AdmitS A

CONTACT HEEGAARD DECOMPOSITION

PROOF (LICATA - V)
Step 4: =M-(N/ku)uN/kul Ex Niku)

L
CAN BE WRITTEN AS A STACK

DF BYPASS-SLICES = h ! uhz ↓/
/AWAY FROM The HANDLES E IS E-INVARIANT)

STEP 5 : USE THIS FLOW TO EXTEND THE HANDLES Le



stenceof Contact Heegaard Decompositions

THM (GIROUX) : Any CONTACT 3-manifold (M .3) AdmitS A

CONTACT HEEGAARD DECOMPOSITION

PROOF (LICATA - V)
Step 4: =M-(N/ku)uN/kul Ex Niku)

L
CAN BE WRITTEN AS A STACK

DF BYPASS-SLICES = h'u hz ↓/
/AWAY FROM The HANDLES E IS E-INVARIANT)

STEP 5 : USE THIS FLOW TO EXTEND THE HANDLES

Consider : Y = N(ru) u (uhi)

↑

Le
f T

CONTACT 1- HANDLES
CONTACT HANDLEBODY

- I IS A CONTACT Handle body



stenceof Contact Heegaard Decompositions

THM (GIROUX) : Any CONTACT 3-manifold (M .3) AdmitS A

CONTACT HEEGAARD DECOMPOSITION

PROOF (LICATA - V)
Step 4: =M-(N/ku)uN/kul Ex Niku)

L
CAN BE WRITTEN AS A STACK

↓/DF BYPASS-SLICES = h'u hz
↑

/AWAY FROM The HANDLES E IS E-INVARIANT)

STEP 5 : USE THIS FLOW TO EXTEND THE HANDLES Le
Consider : Y = N(ru) u (uhi)

f T
CONTACT 1- HANDLES

CONTACT HANDLEBODY

-

7 U Is A CONTACT HANDLEBODY
1 1

Y side down : v = M) lenik) u(uhi) is a Contact Handle body

> M =Yu Is a Contact heegaard decomposition
U



BRIDGING
BRIDGING 1

M = U-V - M = U BRIDGE WHERE~ Y · u = N(r) u(uhi)
M

1 1
H He · v = M)U

NOTE : The BridgeDepends on

· H

· ku & Kv Niku)
· The Bypassesa Building up Elect L

i = /kurku , B) ↑ ↓/win
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Open Book Decompositions

DEF : PAIR (B ,) , WHERE

- BM Embedded 1-manifold : BINDING

- E : M-B > S' FIBRATION SUCH THAT

-> V + = S Se (t) Is A Seifert Surface For B

-> & on NibleByd = Angle Rew&

Def : Sti =" It) are the pages of (b ,t)

E
.
G.: M = S = ((z) + (w) = 13 = 2

(2 ,w) 7
z

#3 = (12) =03=5 ,
i : 5 "13 <s

Z

↑
1

ON R"WITH COORDINATES :

1 -
Imw(z , kew) [ang() = = = t]

HERE 5) = D
=

Vt
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⑳enBook Decompositions - Another example

E
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THM /ALEXANDER) : ANY 3-MANIFOLD ADMITS AN Open Book
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Abstract Seen Books

FIX S := S
.
& Look AT THE FIRST RETURN-MAP

YOf E : M - 3 <S -> GET (5 , Y) WHERE E- S IS AN ORIENTED SURFACE WITH Boundary

- & 4 : S8S HOMEOMORPHISM THAT FIVES NaS)
S = So

Def : THE AIR (SY) Is an Abstract Open Book

E G .: THE PREVIOUS EXAMPLE GIVES

S =

a S'x I

&a MAPPING a TO Y(a) O
THIS Determines Y Up To Isotopy)

DEF : THE ABOVE MAP IS A RIGHT HANDED DEHN-TWIST

ALONG C

C
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Abstract Seen Books

CONVERSALY : AN ABSTRACT OB (5, 4) DETERMINES A 3-MANIFOLD

M TOGETHER With an open Book decomposition

Proof: Take The Mapping Torus of y :

My =

SxE

(x , 1) - (y(x) , 0)⑲· LAS Y Fixes as) -My = asxs"

· & WE COLLAPSE EACH CIRCLE

x + S (x = 2S)

M : = Ma(x, +)-(t) + Eas

THEN : 3 = -S/e

(x ,t) > t ·& a : M - z > s

GIVES AN OBD
um
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Interlude - Describing Monodromies
FOR FUN ONLY

Power Of Open Books : To DESCRIBE CTCT STRUCTURES

We Need To Understand p : 5 < S : Yas = idE Y/isotopy=: McG(s)

(Mapping CLASS Group)

THM (DEHN) : MCG(S) IS GENERATED BY DEAN TWISTS ALONG

SIMPLE CLOSED CURVES LT
1

THM (LICKORISH) MCGISIS GENERATED
N()

BY DEHN TWISTS ALONG a

↑ Guara
&

-> WE CAN RePHRASE/ Solve PROBLEMS ABOUT CTC Structures

COMBINATORIALLY (CURVES ON A SURFACE)

G)ROU CORRESPONDANCE ALLOWS MS TO Use Open Books

TO DEFINE INVARIANTS OF CTC STRUCTURES
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Def : An obd (bitt) supports a contact structure If

· 3 IS Transverse /TB +3
M

1 : %330
↳

· d
+30

3

A ↑ m
-

E
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-

3 NEVER Gets = TSz



Spen Books & Contact Structures

Def : An obd (bitt) supports a contact structure If

· 3 IS Transverse /TB +3
M

1 : %330
↳

· d
+30

3

A ↑ m
-

E
- (t) positive area form on Sei Fre
-

3 NEVER Gets = TSz

WE WILL HAVE A MORE TOPOLOGICAL DEF LATER

CONSTRUCTION /THURSTON-WINKENKEMPLER) : ANY OBD SUPPORTS

A CONTACT STRUCTURE THAT IS UNIQUE UP To

Isotopy

IDEA : 01-parameter family of area form Bey
-> x = B +

+ kdt WHERE KID

· LOCAL CONSTRUCTION NEAR Binding i



Spen Book - & Contact teegaard Decompositions

GIVEN An OBD (3 ,it)

S
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Spen Book Decompositions Heegaard Decompositions

Given an obd (b ,it) met consider M=nuV where

u = c- ((0, 3) V =n -1((k - 13)

* S D = 1

Here 2 = SuSi

↑rop : U & V Are Handlebodies

· Let dirt-ranges be masor↑roof : For U :

SUCH THAT S-vaied"

= - ED
A &T THEN Di : = aix(1]=
- 2

E-

· a u-up = /S-va (0.]
=

= a + (0,%]/ = 3



Spen Book Decompositions Heegaard Decompositions

Given an obd (b ,it) met consider M=nuV where

u = c- ((0, 3) V =n -1((k - 13)

* S D = 1

Here 2 = SuSi

↑rop : U & V Are Handlebodies

· Let dirt-ranges be masor↑roof : For U :

SUCH THAT S-vaied"

= - ED
A &T THEN Di : = aix(1]=
- 2

E-

· a u-up = (S-va(01] = a = (04]/ = 3-

> U IS A HANDLEBODY
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Given an obd (b ,it) met consider M=nuV where

u = c- ((0, 3) V =n -1((k - 13)

* S D = 1

Here 2 = SuSi

↑rop : U & V Are Handlebodies
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[
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Spen Book Decompositions Heegaard Decompositions

Given an obd (b ,it) met consider M= uV where
2

u = c- ((0, 3) V =n -1((k - 13)

* S D = 1

Here 2 = SuSi

↑rop : U & V Are Handlebodies

↑ roduct Disc decomposable TMoreover : (v ,
[

, r = 3) Is

7> DISCS Di SUCH THAT ↑ ↑
· u - uDi = D Di = a = x10,12)

·&Dinn = 2 Vi

We Have SEEN : An open Book decomposition Defines

A Heegaard Decomposition with product Decomposable

HANDLE BODIES

WARNING : NEED On S
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THM : An open Book decomposition defines a Heegaard
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Spen Book - & Contact teegaard Decompositions

THM : An open Book decomposition defines a Heegaard

Decomposition with product Decomposable handLebodies

(3 ,4) -> M = uV(,)V

Let's Look at the Contact structure supported By (bitt)

THM/TORISU) : THE SURFACE E IS CONVEY WITH DIVIDING

curve T
.
The CONTACT Structures 31m & Blu Are

TIGHT ,

5. : (M .Bu) & /V.3) Are Contact handlebodies

THUS M = YVIS A Contact hergaard decomposition

THIS GIVES RISE TO AN EPUIVALENT DEFINITION :

Def : 3 Is supported by the open book (bit) If

The heeGard decomposition defined by (bitt) Is a

CONTACT HeEGAArd DeCOMPOSITION



Heegaard Decompositions Seen Book Decompositions
↑ rop : (4/ 1) product Disc decomposable Handlebody

> u = Sx I
(t) - (x ,t)) + =GS

,
t

,
t EI

SUCH THAT 2U = Sto v-SX1
an = es/

IDea : Induction on The # Of PRODUCT DISCs

* n = 0
= =& IDENTIFIED

-

-

· n n + 1

T & x/E
M



Heegaard Decompositions Seen Book Decompositions
↑ rop : (4/ 1) product Disc decomposable Handlebody

< u = S + =(x,y) - (x ,t)) + = 2S
,
t

-
t EI

SUCH THAT 2U = Sto vSX1
an = es/

& IVEN a contact heegaard decomposition M = U visiti
V

U 2u = 2 = 2+ un - R
=

1

V V

V av= 2 = = R + unR-



Heegaard Decompositions Seen Book Decompositions
↑ rop : (4/ 1) product Disc decomposable Handlebody

< u = S + =(x,y) - (x ,t)) + = 2S
,
t

-
t EI

SUCH THAT 2U = Sto v= SX1

an = es/

& IVEN a Contact heegaard decomposition m = u visitiv
S x 0 - Sx

Il

34 Prop : u = Sx(01] wu = 2 = R + un - R
=

1 1

V V

v = Sx(k
-
1] av= 2 = = R + unR-

II Il

- SX1 S 1
7
Il

> GLUES TO A FULL FIBRATION (b ,)
*

Given By projection Onto Cort] uY/ -
1]



Spen Book - & Contact teegaard Decompositions
So WeGet A One-to-one Correspondance

OPEN Book CONTACT HEEG AARD
[ >

Decompositions of (M , 3) DECOMPOSITIONS of (M.3)

ISOT ISOT

SO We CAN Work WITH WHICHEVER IS MORE CONVENIENT

RECALL :

THM : EVERY CONTACT MANIFOLD (N, 3) ADMITS A

CONTACT HEEGAArd DeCOMPOSITION

COR : Every CONTACT MANIFOLD (n- 3) ADMITS An

OPEN Book DeCOMPOSITION



COMING up :

- STABILISATION

- STATEMENT Of GIROUX CORRESPONDENCE

- IDEA Of prodf



Sani-Lecture 3

PROOF OF GIROUX CORRESPONDENCE

- STABILISATION

- STATEMENT Of GIROUX CORRESPONDENCE

- IDEA Of prodf

- FURTHER DIRECTIONS



HE GIRSUX
CORRESPONDENCE
-VIA CONVEX U

&

-

-SURFACES -

1

-

VERA VERTESI Do

IDINT WORK WITH JOAN LICATA

UNIVERSITY OF VIENNA



LECTURE 3

PROOF OF GIROUX'S
CORRESPONDENCE

- STABILISATION

- STATEMENT Of GIROUX CORRESPONDENCE

- I DE A Of Proof

- FURTHER DIRECTIONS t jestas (
&

STAB 1 i -

S

v
. -

(3 ,5) ·

~



AST TIME

· CONTACT HANDLEBODY :- -

-> CTCT O-hw1 : hs~·
- /Legendrian Graph)

O
-> TIGHT 8↑

PRODUCT DISC DECOMPOSABLE

·Contact heegaard decomposition M = lugv

=> E CONVEX

-> U & V CONTACT HANDLEBODY

· open book decomposition y
S

· Open Book CONTACT HEEG AARD
>

Decompositions of (M , 3) DECOMPOSITIONS of (M.3)

ISOT ISOT



STABILISATION
If

HEEGAARD DECOMPOSITIONS
- SMODTH
- CONTACT

OPEN BOOK DECOMPOSITIONS

M~



Stabilisation of Heegaard Decompositions

V
M = uuv HEEGAArd DECOMPOSITION

· c ARC oN E &

2

-
2

U
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Stabilisation of Heegaard Decompositions
C

M = uuv HEEGAArd DECOMPOSITION
V -2

· c ARC oN E -· isotope into v

2

U



Stabilisation of Heegaard Decompositions

-M = uuv HEEGAArd DECOMPOSITION
V E

2 Mi
· c ARC oN E -z

· Isotope C INTO V

-
z

- - := UuN() is a Hauplebody U
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Stabilisation of Heegaard Decompositions
-

2

V -M = uuv HEEGAArd DECOMPOSITION &
...... ----

· c ARC oN E -v

· isotope into v -
2

-

- - := UuN() is a Hauplebody U

- V := VIN(c) IS Also a hanplebody

- 2 : = -U
7

STABILISATION
-

->

DEF : M = UV(,) V M = Yurin) V
--
DESTABILISATION
-

REIDEMEISTER-SINGER THEOREM : ANY TWO HO-S OF M3 ARE

RELATED By STABILISATIONS & DeSTABILISATIONS



Stabilisation of Contact Heegaard Decompositions
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M = UVIV Contact He &
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2

WITH Tw
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iM = UVIV Contact He

2
WITH Tw
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Stabilisation of Contact Heegaard Decompositions

(M ,3) CONTACT 3-MANIFOLD -
M = UVIV Contact He M
·C LEGENDRIAN ARC On 2

2
WITH Tw

, (3 ,+2) = - M
U

· LEGENDRian isotope into v

-> - := UuN() is a Contact Hauplebody

- V := VIN(c) IS Also A Contact hanplebody

- 2 : = au



Stabilisation of Contact Heegaard Decompositions

(M ,3) CONTACT 3-MANIFOLD "
1 r

M = UVIV Contact He -·C LEGENDRIAN ARC On 2
2

WITH Tw
, (3 ,+2) = - M

U
· LEGENDRian isotope into v

-> - := UuN() is a Contact Hauplebody

- V := VIN(c) IS Also A Contact hanplebody

- 2 : = au

CONTACT STABILISATION

->

DEF : M = UV(,) V M = Yurin) V
--

CONTACT DESTABILISATION



Stabilisation of Deen Books

RECALL : CONTACT HEEGAARD ODEN Book
E 7

Decomposition Decomposition

M = uv(,V
- (S =R+ h)

V

- - +

2 5 =M+



Stabilisation of Deen Books

RECALL : CONTACT HEEGAARD ODEN Book
E 7

Decomposition Decomposition

M = uv(,V
- (S =R+ h)

V

- - +

2 5 =M+

U
STABILISATION

V

-M
2

u



Stabilisation of Deen Books

RECALL : CONTACT HEEGAARD ODEN Book
E 7

Decomposition Decomposition

M = uv(,V
- (S =R + (y)

V

- - +

2 5 =M+

U
STABILISATION

V

-M~
2 S = T

+

u



Stabilisation of Deen Books

THE MONODROMIES (AN ALSO BE READ OFF & WE GET

n
+

5 =M+

↓
POSITIVE

V

STABILISATION

note E
S

S = T
+

So UNDER THE CORRESPONDENCE

CONTACT HEEGAARD ODEN Book
E 7

Decomposition Decomposition

STABILISATION > &OSITIVE STABILISATION



REISTATEMENT
IF GIRAUXE:

CORRESPONDENCE



Giroux Correspondence - Rephrased

G IROUX CORRESPONDANCE
CONTACT

OPEN BOOKS
POSITIVE > 3- MANIFOLDS

STABILISATION CONTACTOMORPHISM

GIROUX CORRESPONDANCE /REPHRASED

CONTACT HEEGAARD CONTACT
< >

DECOMPOSITIONS CONTACT 3. MANIFOLDS
CONTACTOMORPHISM

STABILISATION



Giroux Correspondence - Rephrased

G IROUX CORRESPONDANCE
CONTACT

OPEN BOOKS
POSITIVE > 3- MANIFOLDS

STABILISATION CONTACTOMORPHISM

GIROUX CORRESPONDANCE /REPHRASED

CONTACT HEEGAARD CONTACT
< >

DECOMPOSITIONS CONTACT 3. MANIFOLDS
CONTACTOMORPHISM

STABILISATION

FROM SMOOTH TOPOLOGY :

REIDEMEISTER-SINGER THEDREM

HEEGAARD SMOOTH

DE COMPOSITIONS 3. MANIFOLDS
< >

STABILISATION
Diffeomorphism



IDEA If i49887
ru

j⑪
N(kui)



What do we Want to Prove ?

GIROUX CORRESPONDANCE /REPHRASED

CONTACT HEEGAARD CONTACT
< >

DECOMPOSITIONS CONTACT 3. MANIFOLDS
CONTACTOMORPHISM

STABILISATION
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What do we Want to Prove ?

GIROUX CORRESPONDANCE /REPHRASED

CONTACT HEEGAARD CONTACT
< >

DECOMPOSITIONS CONTACT 3. MANIFOLDS
CONTACTOMORPHISM

STABILISATION

MORE PRECISELY : GIVEN TWO CONTACT HEEGAARD DECOMPOSITIONS

3 THEN THERE IS A SEQUENCEH
·

DESTAB↑ i OF CONTACT STABILISATIONS
-

STAB 1

D &

i -
& CONTACT DeSTABILISATIONS

S

~ ~ CONNECTING THEM
& z 2

H 1

V

&



-eaof Proof
IN three steps we make Them more& More SIMILAR

3

He He

STEP 1 ↓ STAB destab star
H

,
< SMOOTHLY ISOTOPI( -se

STEP 1 +· e· DESTAB

H2
STAB + DESTAB

7 res-
STEP 3

T
M

SAME LEGENDRIAN SKELETON

3



STEP 1
G IVEN TWO CTCT HO's

V vi
M = UvV

Z

um &livi
Z S

H

&EIDemeister
> & & Je ADMITS U u

SINGER
A COMMON SMOOTH

STABILISATION



STEP 1
G IVEN TWO CTCT HO's

Vi V
Menov &livi

Z 1 SDT 2
um 21 2
H

M A

&EIDemeister
> & & Je ADMITS Un u

SINGER
A COMMON SMOOTH

STABILISATION

REALISE THESE STABILISATIONS WITH CFCT STABILISATIONS

ON EACH Hi Hz

-

~ GET M = U
, vzV &#uv where End ,

&

Are SMOOTHLY ISO Topic



STEPL
Hzn .
-

-
7 Vi V

M = U
, vzV & M = Up u ,V,E

1 SDT 2

2WHERE EI , are Smoothly
& >

1

1S0 TOPIC
Un u

Apply The existence prodf



STEPL As
Kv kv a

Hi Hz
-

-
7

M = U
, vzV & M = Up u ,V,E

ISOT >

WHERE EI , are Smoothly
2 - En

1S0 TOPIC

Apply The existence prodf ⑳ ku Ku B

· TAKE LEGENDRIAN Skeletons For The HANDLEBODIES



=>Ku Kv
STEPL As As

- -

Hi Hz
-

-
7

M = U
, vzV & M = Up u ,V,E

1 SDT

WHERE EI , are Smoothly
= I

1S0 TOPIC

- *Apply The existence prodf ⑳ ku I ku

· TAKE LEGENDRIAN Skeletons For The HANDLEBODIES

FUCHS-TABACHNIKOV : AFTER SUFFICIENTLY MANY LEGENDRIAN

STAB .
WE CAN ASSUME Kn = Kn & Kv = Kv

· TAKE The Standard Neighbourhood Niku) , Niku)



=>Ku Kv
STEPL As As

- -

Hi Hz
-

-
7

M = U
, vzV & M = Up u ,V,E

1 SDT 2

WHERE EI , are Smoothly
M
2 - En

1S0 TOPIC

-
M
- -

Apply The existence prodf ⑳ ku I ku
⑳

· TAKE LEGENDRIAN Skeletons For The HANDLEBODIES

FUCHS-TABACHNIKOV : AFTER SUFFICIENTLY MANY LEGENDRIAN

STAB .
WE CAN ASSUME Kn = Kn & Kv = Kv

· TAKE The Standard Neighbourhood Niku) , Niku)
HONDA

· K Nku) & VINIku) Are EEI 7 = STACKS OF BYPASSES



=>Ku Kv
STEPL As As

- -
Hzn .
- M

&
-

7

M = U
, vzV & M = Up u ,V,

1
E & f

WHERE EI , are Smoothly
M

&Is
1S0 TOPIC 1

-
M 1
- *Apply The existence prodf ⑳ ku I ku

· TAKE LEGENDRIAN Skeletons For The HANDLEBODIES

FUCHS-TABACHNIKOV : AFTER SUFFICIENTLY MANY LEGENDRIAN

STAB .
WE CAN ASSUME Kn = Kn & Kv = Kv

· TAKE The Standard Neighbourhood Niku) , Niku)
HONDA

· K Nku) & VINIku) Are EEI 7 = STACKS OF BYPASSES



=>Ku Kv
STEPL * #
Hi Hz
- M

7

E
2

WHERE EI , are Smoothly

U
, vsV & M = Up u ,V,

T En 155. Th1S0 TOPIC

Apply The existence prodf ku I ku

· TAKE LEGENDRian Skeletons For THE HANDLEBODIES

FUCHS -TABACHNIKOV : AFTER SUFFICIENTLY MANY LEGENDRIAN

STAB .
WE CAN ASSUME Kn = Kn & Kv = Kv

· TAKE THE Standard Neighbourhood Niku) , Niku)
HONDA

· K Nku) & VINIku) Are EEI 7 = STACKS OF BYPASSES

· EXTEND THE HANDLES



=>Ku Kv
STEPL * #
Hi Hz &
- M

7

E
2

WHERE EI , are Smoothly

U
, vsV & M = Up u ,V,

T En 155. Th1S0 TOPIC

Apply The existence prodf ku I ku

· TAKE LEGENDRian Skeletons For THE HANDLEBODIES

FUCHS -TABACHNIKOV : AFTER SUFFICIENTLY MANY LEGENDRIAN

STAB .
WE CAN ASSUME Kn = Kn & Kv = Kv

· TAKE THE Standard Neighbourhood Niku) , Niku)
HONDA

· K Nku) & VINIku) Are EEI 7 = STACKS OF BYPASSES

· EXTEND THE HANDLES &

vz : = N(uk) u(1 - h's) Vz = M)Uz

- M = Uzu Ve & uni-Hz



STEPL *
kn =

v

· Nku) & VINIku) ARE = ExI
M

&

7 = STACKS OF BYPASSES

· EXTEND THE HANDLES

HONDA #2

Uz : = N(uk)u(1 - h's) v2 = M)Vz

- M = Uzu Ve & U2vve
-

Ha see

Prop (L -V) H Can Be Obtained FROM JY VIA A

SEQUENCE Of CONTACT STAB & DESTAs



STEPL *
kn =

v

· Nku) & VINIku) ARE = ExI
M

&

HONDA
7 = STACKS OF BYPASSES

· EXTEND THE HANDLES

42 : = N(uk) u(1 - h's) Vz = M)Uz #2

-&Uzu Ve & U2vve
Ha see

Prop (L -V) H can be Obtained fromJey via a

SEQUENCE OF CONTACT STAB & DESTAB

BEFORE NEXT STEP NOTICE

Hz = Je (Un ,VK ,
B) si = Je (UK

,
VB)

whereBud' are different decompositions of

3) M- (N(U)uN(V) AS BYPASS STACKS
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I = i -i l
2

FROM Top
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INTERLUde-Stacking Bypasses
-#

THE FOLLOWING MOVES DO NOT CHANGE 3

COMMUTATION TRIVIAL BYPASS

3 A

I l l -
i =
2

FROM Top

~·GET SAME 3

↑HM STIAN , BREEN-HONDA-HUANG) ON EXI ANY TWO DECOMPOSITION SAME

OF 3 INTO STACKS OF BYPASS SLICES ARE RELATED VIA

· ADDING A TRIVIAL BYPASS
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STEP 3 *
kn = Kr

He = Je /Un /V ,
B) se = Je /K

-
VB) M

Where Bud are Two I I-BYPASS DECOMPOSITIONS 1

TIAN

78 & 8 ARE RELATED

#of 3/M-IN(UK)uNIV)

3-H -H

VIA BYPASS MOVES

B =B - B
,
- ... Br = b

THM :/L-V) : BYPASS MOVES ON EXI CORRESPOND TO CONTACT

STAB DESTAB Of Je

M STAB+DESTAB M

...

STABDESTAB M (

Je(Uk , Vu , B)-> a(4k -Vk ,
B1)- - a(4k -Vk ,

B)
Il Il

H2 He?
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SUMMARY

He je

STEP 1 ↓ STAB destab star
H

,
< SMOOTHLY ISOTOPI( -se

STEP 1 +· e· DESTAB

H2
STAB + DESTAB

7 res-
STEP 3

T
M

SAME LEGENDRIAN SKELETON

> Se & de Are related via a sequence of

CONTACT STAB
.
& DESTAB

#
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Key POINT
IN Step 2 We Needed :

Bz

THM (L-V) : a CTCT HO The Bridge Ye

OF A IS CONNECTED TO Se VIA CTCT [

%B

STAB'S & DESTABS

AN ELEMENTARY STEP IN The PROOF

+20012-1 : creu)+Ho , b bross

out
THEN FOR = U w1 - h

· v = M = u

THE CTCT HD sim = vuV)

IS CONNECTED TO Se VIA CTCT

STAB'S & DESTABS
·

Mr !
Prop (THM : START FROM H

· ATTACH The 1-h Of 3, % Be To u

· Than upside Down & attack The 2-h of B! To v
Ja



Key POINT
IN Step 2 We Needed :

Bz

THM (L-V) : a CTCT HO The Bridge Ye

OF J IS CONNECTED TO se VIA CTCT [

%B

STAB'S & DESTABS

AN ELEMENTARY STEP IN The PROOF

↑200(L - V) : H(M = UvV) CctH0 , b broass

on
THEN FOR = U w1 - h

· v = M = u

THE CTCT HD sim = vuV)

IS CONNECTED ↑ S VIA CTCT

STAB'S & DESTABS
int

Prop (ThM : START From R

· ATTACH The 1-h Of 3, % Be To u

· TheN Upside DOWN ATTACH The 21 Gra:
To Ju

-> GETI



Adding Bypass 1-handle

STABILISATION 34PASS 1-HANDLE

1 -D -
V ↓ VE

c'-

-

" ---
C+ C-

- T
2

-C-
U
-

U

-

z-zRECALL : VE -X I/ !-
-~ o cc[+-

So THE By PASS 1-HANDLE ADDITION Along Cuc = Stab Along

Il

STABILISATION ALONG +UC



Adding Bypass 1-handle

STABILISATION 34PASS 1-HANDLE

V V
c'-

-C+ C-

- -
2

-C-
U
-

U

-

z-zRECALL : VE -X I/ !- -
- &⑳ o

-

- C
.

C2
+

So THE By PASS 1-HANDLE ADDITION ALONG Cuc = STAB ALONG

Il

c
STABILISATION ALONG +UC

·-ONLY WORKS If c - 1 c+
= p



Adding Bypass 1-handle

STABILISATION 34PASS 1-HANDLE

V V
c'-

-C+ C-

- -
2

-C-
U
-

U

-

z-zRECALL : VE -X I/ !- -

cc[+
-⑳ o

-

-
So THE By PASS 1-HANDLE ADDITION ALONG Cuc = STAB ALONG

Il

c
STABILISATION ALONG +UC

·itONLY WORKS If c
= nc+

= p

2

We show : After more (estab we can make sure cinc = p



Adding Bypass 1-handle
WE GET

↑ 200 (l-v) : H
.

/Menuvl (TCT Ho , b bypass onto e cv

THEN FOR U = U w1-h

· v = M = u

↑HE CTCT HD SSM = ViuV') Is Connected To se

VIA CTCT STAB'S & DESTABS

Cor(l-v) : s
.

/menuv) Cict ho , b bypass onto e cv

If v = Hub IS Tight
,
Then For vi = M-U

↑HE CTCT HD SSM = ViuV') Is Connected To se

VIA CTCT STAB'S & DESTABS

THIS GIVES A SIMPLER PROOF FOR GIROUX CORRESPONDENCE

F OR TIGHT CONTACT STRUCTURES



FURTHER

DIRECTIONS

E Elit



WHAT's Next ?

FEELS LIKE END OF A LONG STORY

BUT AS ALWAYS THERE IS A LOT TO DO :

·(hopefully) Minor issue :

COMMON STABILISATION US . SEQUENCE OF DELSTABILISATIONS

WHAT WE PROVED :

·

jestab
(3)

↑ 1

D &

·STAB 1 T
~ ~

& z 2

(B ,()) 1

V

&

WHAT SOME OF THE APPLICATIONS USE: !
. ↓
↑

(B,(t) it
ARE THEY EQUIVALENT ?

(B .
5)



WHAT's Next ?

· HOW MANY STABILISATIONS DO we Need ?

- jestab
(3)

1

D &

·STAB 1 T
~ ~

& z 2

(B ,()) 1

V

&

· ETNYRE : Does Every CONTACT STRUCTURE HAVE C

A GENUS 1 Open Book ? G- OVERTWISTED CONTACT STRUCTURES HAVE -
PLANar =genus of Open Books leTNyre)

- THERE ARE CONTACT STRUCTURES THAT DO NOT

HAVE PLANAR Open Books/ETNyre)

- possible counterexample (Massot) Elit



WHAT's Next ?

THM(WAND): LeGENTRIAN Surgery PRESERVS Tightness

- THE PROOF RELIES ON AN EQUIVALENT CHARACTERISATION

OF TIGHTNESS IN TERMS OF OPEN BOOKS

- THIS CHARACTERISATION IS GIVEN IN A SEQUENCE OF

COMBINATORIAL DEFINITIONS THAT TAKE UP MULTIPLE PAGES

IS THERE A SIMPLER Proof USING CONTACT HEEGAArD

DECOMPOSITIONS ?

· MOVES Between open books of The Same GENUS/

EULER CHARACTERISTIC

·

jestab↑ i
D &

-

STAB 1 i - o

& z 2

(B ,())
~

1

~ -
. (3)

V

&
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THM(WAND): LeGENTRIAN Surgery PRESERVS Tightness

- THE PROOF RELIES ON AN EQUIVALENT CHARACTERISATION

OF TIGHTNESS IN TERMS OF OPEN BOOKS

- THIS CHARACTERISATION IS GIVEN IN A SEQUENCE OF

COMBINATORIAL DEFINITIONS THAT TAKE UP MULTIPLE PAGES

IS THERE A SIMPLER Proof USING CONTACT HEEGAArD

DECOMPOSITIONS ?

· MOVES Between open books of The Same GENUS/

EULER CHARACTERISTIC

·

jestab↑ i
D &

J ~..
STAB 1

7
~

& Yo z

~ "(it)
(B ,()) 1

V

&



THANKS FOR
Y8UR

ATTENTION !


