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&GESTION : WHICH CURVES ARE REGULAR HOMOTOPIC ?

~& 08 &
1

ANSWER # IND A property That Doesn't Change-

DURING REGULAR HOMOTOPY .

↓TNEY-GRAYSTEIN Theore (1937) :

& IS REGULARLY HOMOTOPIC To 8
,

#

w((o) = W(t)



#ingNumbe
regular planecurve +d

DEFINE :

: 5- s
181

Si
z

I Q1

↳



#GNumbe
regular planecurve+d

DEFINE :

: 5- s
181

Si
z

I E-1

↳



#GNumbe
regular planecurveed

DEFINE :

: 5- s
181

Si
z

I O
↳



Winding Number
-

5 : S-R REGULAR PLANECURVE(j + 0)

DEFINE :

: 5- s
181

Si
z

DS E%



DingNumber

7 :S- REGULAR ↑Lane curve (j + 0)

DEFINE :

: 5- s
181

Si
z

* E-S E%N
↳



Winding Number
-

5 : S-R REGULAR PLANECURVE(j + 0)

DEFINE :

: 5- s
181

Si
z

&- ↑S E%



Windin GNUMBER
-

5 : S-R REGULAR PLANECURVE(j + 0)

DEFINE :

: 5- s
181

Si
z

-
-

L.&->· E%
↳



Winding Number
-

5 : S-R REGULAR PLANECURVE(j + 0)

i
DEFINE :

- : S-> st
181

Si
z

-

&- &

S D·

Y↓



Winding Number
-

5 : S-R REGULAR PLANECURVE(j + 0)

i
DEFINE :

- : S-> st
181

Si
z

-
-

&- & DIy↓&



DingNumber

5 : S-R REGULAR PLANECURVE(j + 0)

i
DEFINE :

- : S-> st
181

Si
z -

-
& ↳- &S E%YI &-

W = D



DingNumber

-St Regular planecurve (j + 0)

DEFINE : : s- s
Si

z

2: D
w = 1



DingNumber

-St Regular planecurve (j + 0)

Define:: S-s
Si

I D
W =

- 1

ora



WNGNumber - computation

2 :5- Regular plane curve

Choose A Direction (e .
G.: (

· LET'S Check HOW Many TIMES Illu

Y

↑g



WNGNumber - computation

2 :5- Regular plane curve

Choose A Direction (e .
G.: (

· LET'S Check HOW Many TIMES Illu

2g



WNGNumber - computation

2 :5- Regular plane curve

Choose A Direction (e .
G.: (

· LET'S Check HOW Many TIMES Illu

3 & w(y) = 3g



WNGNumber - computation

2 :5- Regular plane curve

Choose A Direction (e .
G.: (

· LET'S Check HOW Many TIMES Illu

3 w(z) = 3g #orer : w()= 4211v]



WNGNumber - computation

2 :5- Regular plane curve

Choose A Direction (e .
G.: (

· LET'S Check HOW Many TIMES Illu

↑ & w(y) = 3·

S #orer : w()= 4211v]
But ! We Have TOCOUNT WI

SIGN



WengNumber - For Complex Curves

For 8 : 5 -> K

K

CONSIDER i : s -> 4140)
Ye

An iorivb
j

EXAMPLE

z + z
-

-O#) = n



Winding Number
-

2 :5- Regular plane curve

DEFINE : : s- s Aofa
&Regular plane curves]#> I

X
DISCREET

REGULAR HOMOTOPIC CURVES HAVE EQUAL WINDING #S

regularpranecurves/w->REGULAR

HOMOTOPYL
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&GESTION : WHICH CURVES ARE REGULAR HOMOTOPIC ?

&& 08.
W = 1 D - 1 2 1

W

Gregular planecurves/
-> I

REGULAR

HOMOTOPY

=> ONLY

O .

g
: & E Regular Homotopic

ARE THEY ?
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#Ney-GraysteinTheorem-proof

#NEY-GRAUSTEINTHE OREM :

W

Gregular planecurves/
-> T

REGULAR

HOMOTOPY

IS BIJECTIVE
.

Proof
W· is well-defined ,

· SURJECTIVE : w((n) = n Tn : zzm

· INJECTIVE :

PROVED By WHITNEY IN 1937

&L : PRESENT A 30-proof Of Gelges-ELLASHBERG

FROM 2007

USINGTACT TOPOLOGY
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Toshow : Wil =W(t) = 5. Reg. Homotopic To Un

#STEAD : We WILL Find Standard Forms In

So that will = i = y Reg . Homotopic To Um

HOW DO WE Look FOR THE STANDARD FORM ?

· WANT TO THINK Of y AS A-
~ roJECTION Of A KNOT In R3

· TheN Use Another PROJECTION
↑ &
-

TO REDUCE REGULAR HOMOTOPY
-

TO SOMETHING THAT IS //COMBINATORIALLY CHECKABLE

-
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LFTINGTHE CURVES To R3

- A PRIORI We have MULTIPLE WAYS Of Lifting j

- -↑ - ↑E
11& &
- -
- BUT THEN THE PROJECTION IS BORING

OR CAN Be ALMOST ANYTHING

=> We haveTo Put Restrictions On The Lift

TO MAKE IT UNIQUE
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EGENORIANKNOTS

L : St->3 isGendrian if i <3 = kn (dz - ydx)
EXAMPLE ! * - AXIS & Y-AXIS ARE BOTH LEGENDRIANs
-

3

#..

2- AXIS IS NOT A LEGENDRIAN

↳ (s) = (x(s) , y(s) ,z(s)) Is Legendrian et [(s) E Burs

-y(s) . <(s) = 0)
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*** 3L LEGENDRIAf KNOT A
BASIS -> U V De

Il II X I
↓ . s - 3 = seav(Ey1y=y+) ↳· WRITE I IN The BASIS :

i = i + yfy +z = X(y5+ z) + yty = +1 + yu
X

L LEGENDRIAN

So The Coordinates of i ARE (X - jj)

·notedesi
THIS IS The Winding # OF L'S PROJECTION To

THE (x , y) - PLANE
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( -y,z) +- (x /y)↑ & -(s) = T(x ,y)(t) = (x(s) / y(s))
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grangianprojection

L Legendrian knot esz - yx =0
21

T(x ,z) :
R -> R2

L
( -y,z) +- (x /y)↑ & -(s) = M(x ,y)(t) = (x(s) / y(s))

π(x,z)(L)-T/ &
7 X

-
·M: =T(s) (1) is An Immersion

· We CAN Recover The Z-COORDINATE

So

=wid+ Syrersds)E z = y . x
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ECOGNISINGLAGRANGian PROJECTIONS

#Aravalan
protection

OF SOME LEGENDRIAN KNOT L :S- ?

& &1

NEED- 2(a) = z(2π)1 .
=
. Gy(s)x(s)ds = 0
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ECOGNISINGLAGRANGian PROJECTIONS

#sol-widtyersds
&UESTION

: ARE These LAGRANGIAN PROJECTIONS

OF SOME LEGENDRIAN KNOT L :S- ?

⑮ ·-C1

#Ed : 2(0) = z(t) I . E. Gy(s)x(s)ds = 0
X

SIGNED AREA

& : We'd Need : A-3 /0 - A + B - c 0

⑪↑HIS WOULD LIFT :
-A

7
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GRANGIANPROJECTIONS US
.

REGULAR PLANECURVES

· J :S'- REGULAR PLANecurve

· By REGULAR HOMOTOPY We CAN Arrange

TOHave Gy(s)Y(s)ds = 0

INCREASE

⑭ C TO HAVE Bl- C -

A - 3- c = 0

=>T = Try (l) for some Legendrian

zw)= 20+ (4))
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1

Z
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L > X

We can recover the y-coordinate

! Slope Of Nitz) (l)
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FrontProjection

L Legendrian knot esz - yx =0
1

Z

- T(x ,z) :
R -> R2

( ,y ,z) +- (x ,z)# = (s) = π(x ,z)(t) = (x(s) /z(s))

L > X

We can recover the y-coordinate

T a
slope of Hinz)(2)

=> FRONT PROJECTIONS

- have no vertical tangencies
- INTERSECTIONS of Thek) :X onl : X
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Some Front PROJECTIONS
-

7 7

↑
-

↓
↑ ↓

: ↑ 8 .
↓ +

-0+ = t(2 - 2) =0 20+ = E(4 -2) = 1
· ANY CUSPED CURVE Can Be Uniquely Lifted

3 Y THE RULE

T
· And rotil) can be combinatorially computer

=*# - A v) !
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ATIONNumber in the Front projection

=*# - A v) !
-eaof Proof :

i = ity+ X(y+)

rot()·
↓ IlEy E Tz) (2) Has A CUST

[ 3

& THE SIGNS ARE 2 - 1

↳ + 1 -
A
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-On The Front PROJECTION

· ANY CUSPED CURVE Can Be Uniquely Lifted

· So A Movie=1-parameter Family) [fa)

OF THESE CUSPED CURVES LIFTS UP TO

A 1-parameter family of Simmersed) Legendrians

92 +]

*+x+y+y=x[
IN THE LIFT

X -) ( not an isatory

· roth)=# - #u) does not change

DURING THESE MOVES



generianReidemeister Moves
THE FOLLOWING LOCAL MOVES ARE COMING FROM

PROJECTIONS OF A 1-PARAMETER FAMILY

OF LEGENDRIAN KNOTS :

RI -
-

< --

* X=

X-- -
#

THEOREM : TWO FRONT PROJECTIONS CORRESPOND

TO LEGENDRIAN ISOTOPIC LEGENDRIAN

KNOTS They Are RELATED By

A SEQUENCE Of MOVES RI-RI
.
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NORMALISING Front Projections
-

G IVEN ANY FRONT PROJECTION

↓ MOVE ALL RIGHT CUSPS TO THE RIGHT &

LEF T C USPS TO THE LEFT

----T ↑ ↑ T

x -> ↑
T

↑# X~-



NORMALISING Front Projections
-

GIVE N ANY FRONT PROJECTION

Y MOVE A LL RIGHT CUSPS TO THE RIGHT &

LEFT CUSPS TO THE LEFT

T T----F ↑ ↑X~-

F--
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NORMALISING FRONT PROJECTIONS
-

LABEL Upwards/downwards CUSPS w/ ↑ OR ↓

1) Use El to remove consecutive TV or y

·
*A
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NORMALISING Front Projections
-

G IVEN ANY FRONT PROJECTION

↓ MOVE ALL RIGHT CUSPS TO THE RIGHT &

LEFT CUSPS TO THE LEFT

LABEL Upwards/downwards cusps w/ Or ↓

↳ USE 2 TO REMOVE CONSECUTIVE T OR Y

3 REARRANGE THE CUSPS So THAT THEY INCREASE

ON EACH LINE

-

↑ HAT ONLY Depends DN

↳ de art a strato

toEnt())
ROT Does NOT CHANGE↑During 1 es 3 (



~To WHITNey-Graystein Theorem

#TNEY-GRAUSTEINTheOREM

W

3 -> T IS A&REGULAR PLANE Curves / 3 FECTION .

REGULAR

HOMOTOPY

#of : w surfective ,A

·WizECTIVE

- : S' -R" REGULAR PLANECURVE

↓ do regular homotopy on y so that Gyrds = O

I
2) LIFT Up - TO A LEGENDRIAN Curve L So THAT

THE LAGRANGIAN PROJECTION T(y) (2) = y s L

J=

tot()=w(s)/ #&



~To WHITNey-Graystein Theorem

up to regular homotopy) We have y=I(ry) (2)

-↑-3) TAKE The Front projection Of L -
S S

& NORMALISE IT
-

&= #
-

4 THE STEPS GIVE A 1 - PARAMETER

FAMILY Of Simmersed) Legendrians (Ley
WHERE -

-
5 THE LAGRANGIAN PROJECTION JE= TY (Lt)

G VES A Regular homotopy of

- = 50 TO 7
,
= # (xry) (h) = g



~To WHITNey-Graystein Theorem

5

: ANY Regular phavecurve v : serv

Is REGULARLY homotopic To ImgForn =W(t)

=> W IS INDEED INJECTIVE
&



In Other DIMENSIONSWTNEY-GrUSTEIN

Classify Immersed spheres :s Ra

UT TO REGULAR Homotopy · iMM(si")
·Teorem (smale , 1959) : imm(s) = Tr (VaR"))

X
STIEFEL MANIFALD

CORTHONORMAL FRAMES In R")
· For k = n-1 : Seth

/e n = 1 , 3, 7

T n = 2
1 MM (A) = Th-(Vn-1()) = In-1 (S0(n)) =( i

2

I n = 4

& Escry/ soll=
& #3 45R3/ea #z(50(3)) =0

↓
We can turn the Sphere INSIDE-OUT !



=PILOGUE
· CONTACT STRUCTURES Can Be Defined On Any

Odd - Dimensional Manifold

-O#-
· LEGENDRIAN SUBMANIFOLDS ARE USED As TOOLS In

↑HYSICS (Optics , thermodynamics , mechanics,.... )
· They are used In Topology & Geometry

· THE TOOLS TO STUDY CONTACT Manifolds Include:

- COMPLEX Geometry

- FLOER HOMOLOGIES

- Combinatorics ....



THANKS FOR YOUR

ATTENTION :

QUESTIONS ?

FUN VIDEOS DN YOUTUBE :

· 1972 Regular homotoples OnThe PLANE

· 1994 OUTSIDE IN


