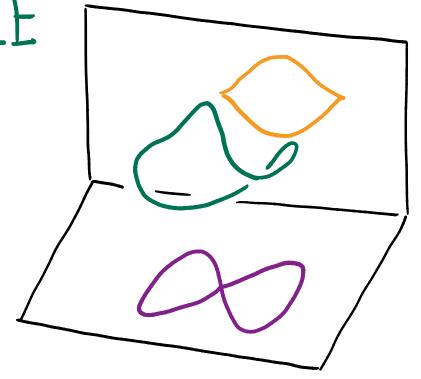
HOW TO UNTANGLE PLANECURVES IN THE 3RD DIMENSION



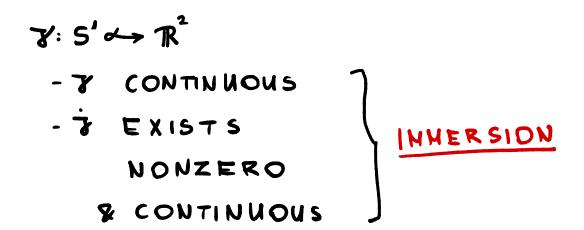
HOW CONTACT TOPOLOGY PROVES
CLASSICAL THEOREMS

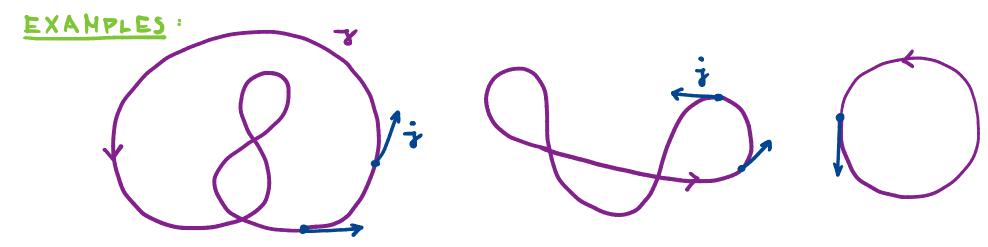
VERA VÉRTESI

UNIVERSITY OF VIENNA

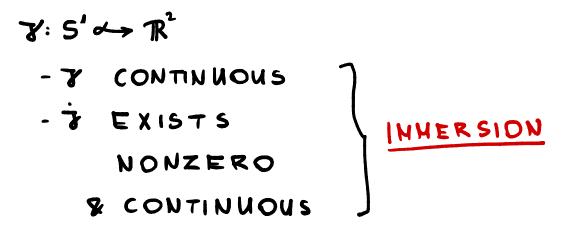
NOV. 10. 2021.

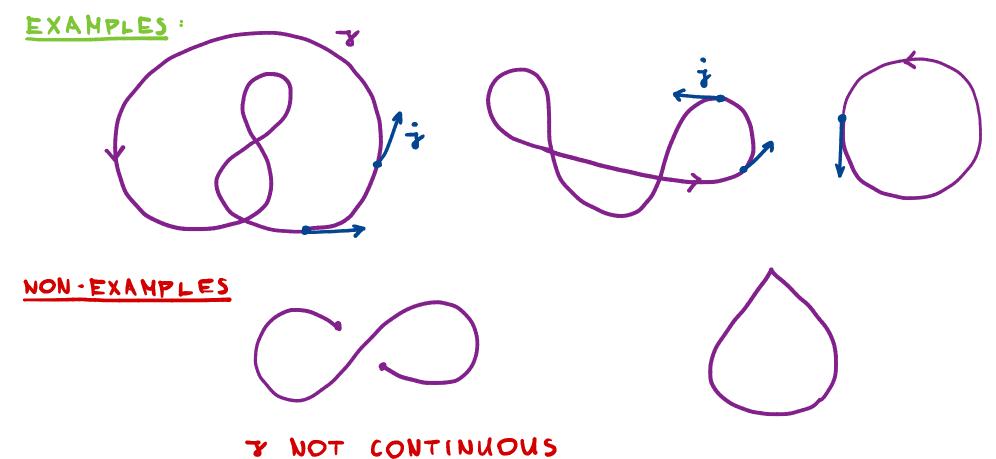
REGULAR CLOSED CURVES IN THE PLANE



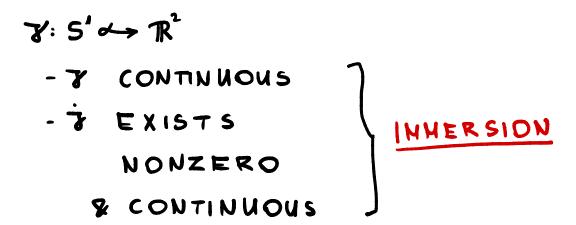


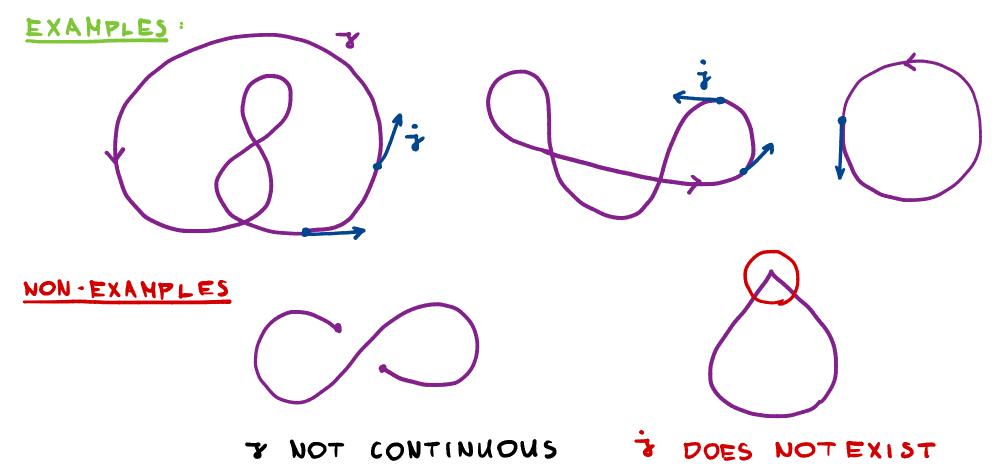
REGULAR CLOSED CURVES IN THE PLANE

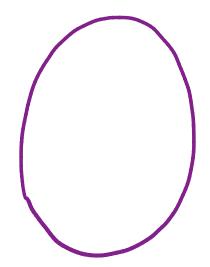


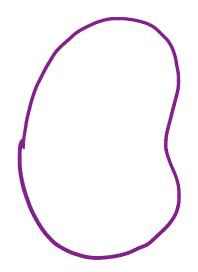


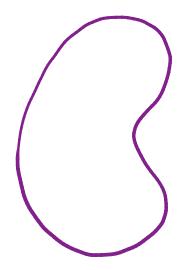
REGULAR CLOSED CURVES IN THE PLANE

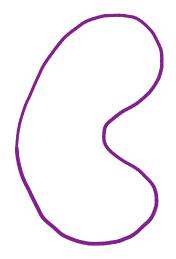


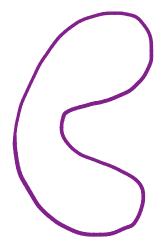


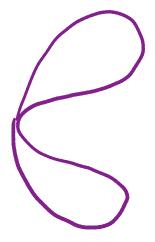


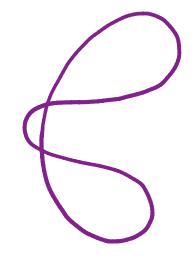


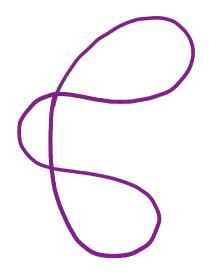


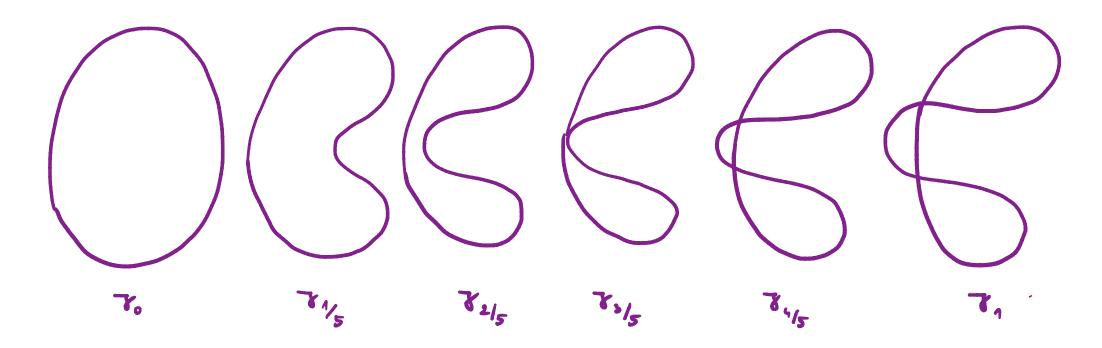






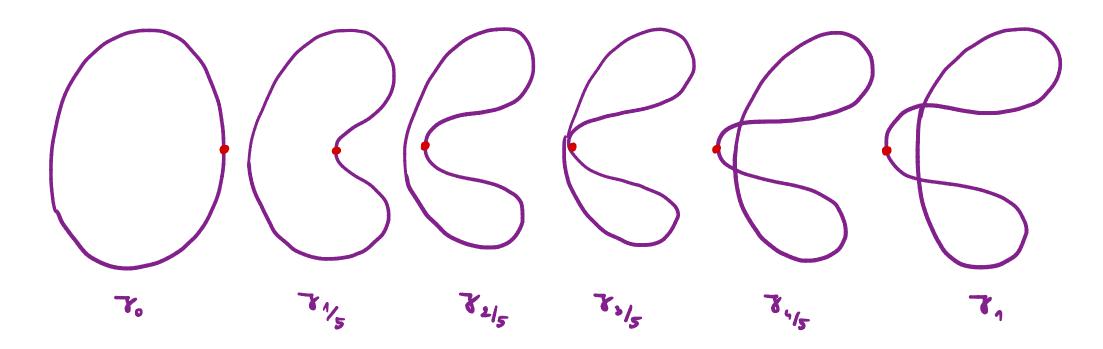






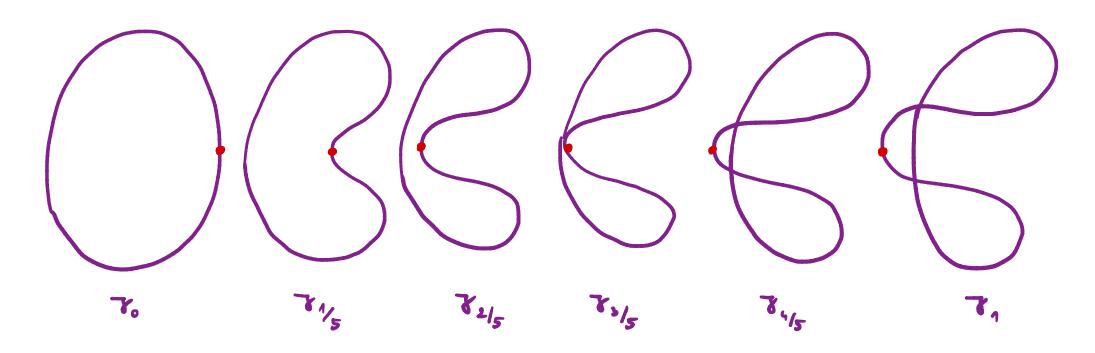
A MOVIE (76) OF REGULAR CLOSED CURVES:

- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS



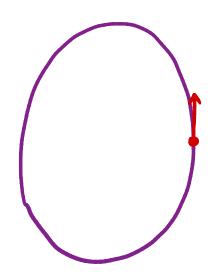
A MOVIE (76) OF REGULAR CLOSED CURVES:

- & IS CONTINUOUS
- T. EXISTS, NONZERO & CONTINUOUS
- THE PATH I $\rightarrow \mathbb{R}^2$ IS CONTINUOUS FOR EACH SES⁴ $t \mapsto \mathcal{T}_{\epsilon}(s)$



A MOVIE (T) OF REGULAR CLOSED CURVES:

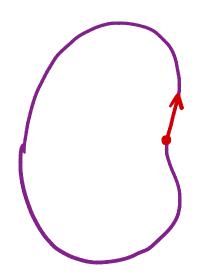
- & IS CONTINUOUS
- T. EXISTS, NONZERO & CONTINUOUS
- THE PATH I $\rightarrow \mathbb{R}^2$ IS CONTINUOUS FOR EACH SES⁴ t $\rightarrow \mathcal{T}_{\epsilon}(s)$
- & t + it (s) 15 CONTINUOUS FOR EACH SES



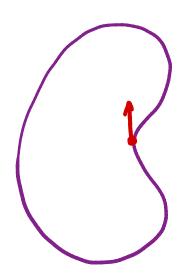
A MOVIE TEGULAR CLOSED CURVES:

- & IS CONTINUOUS
- T. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR2 IS CONTINUOUS FOR EACH SES

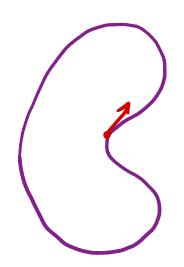
- & t > it (s) 15 CONTINUOUS FOR EACH SES



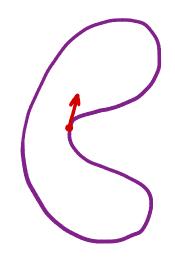
- & IS CONTINUOUS
- T. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR2 IS CONTINUOUS FOR EACH SES
 - t → 7/4 (5)
- & t > it (s) IS CONTINUOUS FOR EACH SES



- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR2 IS CONTINUOUS FOR EACH SES
 - t → 7 (5)
- & t > it (s) 15 CONTINUOUS FOR EACH SES



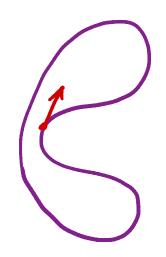
- & IS CONTINUOUS
- T. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR IS CONTINUOUS FOR EACH SES
 - t → 7 (5)
- & t + 3, (s) 15 CONTINUOUS FOR EACH SES



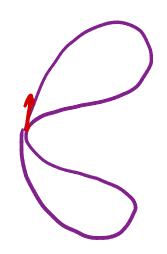
A MOVIE TEGULAR CLOSED CURVES:

- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR2 IS CONTINUOUS FOR EACH SES

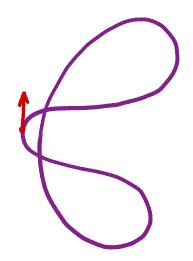
- & t → it (s) IS CONTINUOUS FOR EACH SES



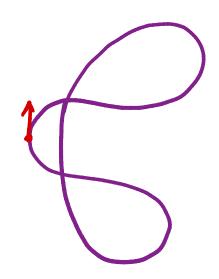
- & IS CONTINUOUS
- T. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR IS CONTINUOUS FOR EACH SES
 - t → 7/2 (5)
- & t → it (s) 15 CONTINUOUS FOR EACH SES



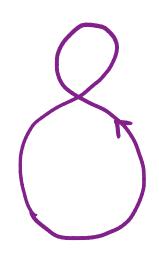
- & IS CONTINUOUS
- T. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR IS CONTINUOUS FOR EACH SES
 - t >> 7/ (5)
- & t > 'y' (s) IS CONTINUOUS FOR EACH SES



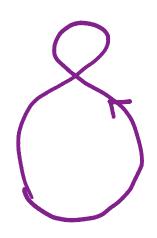
- & IS CONTINUOUS
- T. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR2 IS CONTINUOUS FOR EACH SES
 - t → 7/t (5)
- & t + 3, (s) 15 CONTINUOUS FOR EACH SES



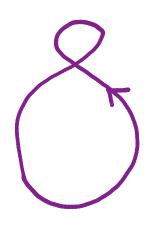
- & IS CONTINUOUS
- T. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR2 IS CONTINUOUS FOR EACH SES
 - t → 7/2 (5)
- & t > 7, (s) IS CONTINUOUS FOR EACH SES



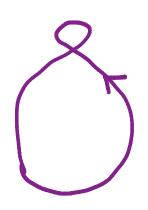
- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR2 IS CONTINUOUS FOR EACH SES
 - t → 7/t (5)
- & t + 7; (s) 15 CONTINUOUS FOR EACH SES



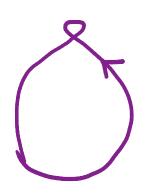
- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR2 IS CONTINUOUS FOR EACH SES
 - t → 7 (5)
- & t + 3t (s) 15 CONTINUOUS FOR EACH SES



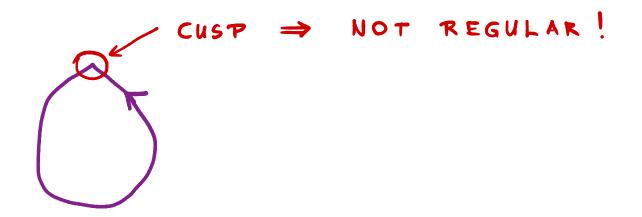
- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR IS CONTINUOUS FOR EACH SES
 - t → 7/2 (5)
- & t + it (s) 15 CONTINUOUS FOR EACH SES



- & IS CONTINUOUS
- T. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR IS CONTINUOUS FOR EACH SES
 - t → 76 (5)
- & t + 7; (s) 15 CONTINUOUS FOR EACH SES

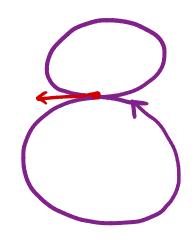


- 7, IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR2 IS CONTINUOUS FOR EACH SES
- $t\mapsto 7_{t}(s)$ \$\forall t\rightarrow \decorptile \cdots \decorptile \cdots \decorpt \decorpt



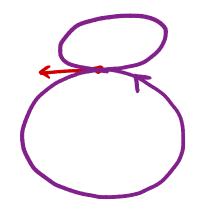
A MOVIE (TE) OF REGULAR CLOSED CURVES:

- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I $\rightarrow \mathbb{R}^2$ IS CONTINUOUS FOR EACH SES⁴ t $\rightarrow \mathcal{T}_{\epsilon}(s)$
- & t + it (s) 15 CONTINUOUS FOR EACH SES



50 LET'S HAKE SURE TO KEEP THE CURVES REGULAR!

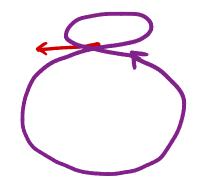
- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR2 IS CONTINUOUS FOR EACH SES
 - $t \mapsto \mathcal{T}_{t}(s)$
- & t → y (s) 15 CONTINUOUS FOR EACH SES



50 LET'S HAKE SURE TO KEEP THE CURVES REGULAR!

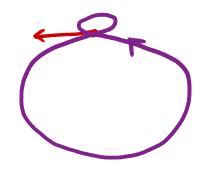
- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I → R2 IS CONTINUOUS FOR EACH SES
 - t → 7/t (5)
- & t → it (s) IS CONTINUOUS FOR EACH SES

50 LET'S HAKE SURE TO KEEP THE CURVES REGULAR!



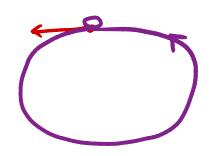
- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I $\rightarrow \mathbb{R}^2$ IS CONTINUOUS FOR EACH SES
 - $t \mapsto \mathcal{T}_t(s)$
- & t + 7; (s) 15 CONTINUOUS FOR EACH SES

50 LET'S MAKE SURE TO KEEP THE CURVES REGULAR!



- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR2 IS CONTINUOUS FOR EACH SES
 - $t \mapsto \mathcal{T}_{\epsilon}(s)$
- & t + 7; (s) 15 CONTINUOUS FOR EACH SES

50 LET'S MAKE SURE TO KEEP THE CURVES REGULAR!



- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I $\rightarrow \mathbb{R}^2$ IS CONTINUOUS FOR EACH SES¹ t $\rightarrow \mathcal{T}_{\epsilon}(s)$
- & t + it (s) 15 CONTINUOUS FOR EACH SES

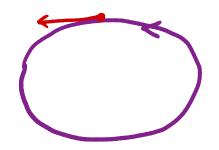
50 LET'S MAKE SURE TO KEEP THE CURVES REGULAR!



A MOVIE TEGULAR CLOSED CURVES:

- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I $\rightarrow \mathbb{R}^2$ IS CONTINUOUS FOR EACH SES¹ t $\rightarrow \mathcal{T}_{\epsilon}(s)$
- & t → y (s) 15 CONTINUOUS FOR EACH SES

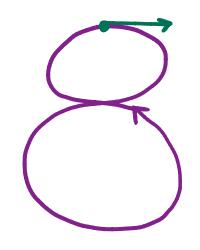
50 LET'S HAKE SURE TO KEEP THE CURVES REGULAR!



STILL NOT A REGULAR HONOTOPY
WHY?

A MOVIE TEGULAR CLOSED CURVES:

- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I $\rightarrow \mathbb{R}^2$ IS CONTINUOUS FOR EACH SES
 - $t \mapsto \mathcal{T}_t(s)$
- & t + 3, (s) 15 CONTINUOUS FOR EACH SES



50 LET'S HAKE SURE TO KEEP THE CURVES REGULAR!

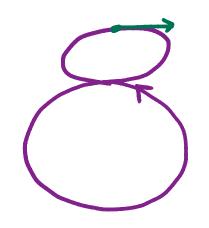
4 STILL NOT A REGULAR HONOTOPY

MHAS

KEEP TRACK OF ONE HORE TANGENT

A MOVIE (TE) OF REGULAR CLOSED CURVES:

- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I $\rightarrow \mathbb{R}^2$ IS CONTINUOUS FOR EACH SES¹ t $\rightarrow \mathcal{T}_{\epsilon}(s)$
- & t + 3, (s) 15 CONTINUOUS FOR EACH SES



50 LET'S HAKE SURE TO KEEP THE CURVES REGULAR!

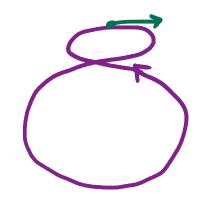
- STILL NOT A REGULAR HONOTOPY

MHAS

KEEP TRACK OF ONE HORE TANGENT

A MOVIE (T) OF REGULAR CLOSED CURVES:

- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I→R2 IS CONTINUOUS FOR EACH SES
 - $t \mapsto \mathcal{T}_t(s)$
- & t + 3, (s) IS CONTINUOUS FOR EACH SES



50 LET'S MAKE SURE TO KEEP THE CURVES REGULAR!

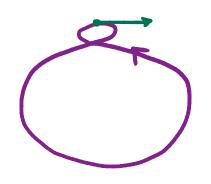
STILL NOT A REGULAR HONOTOPY

MHAS

KEEP TRACK OF ONE HORE TANGENT

A MOVIE (TE) OF REGULAR CLOSED CURVES:

- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR2 IS CONTINUOUS FOR EACH SES
 - $t \mapsto T_t(s)$
- & t + 3, (s) IS CONTINUOUS FOR EACH SES



50 LET'S MAKE SURE TO KEEP THE CURVES REGULAR!

- STILL NOT A REGULAR HONOTOPY

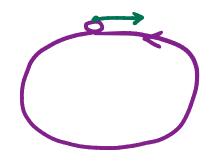
MHAS

KEEP TRACK OF ONE HORE TANGENT

A MOVIE (T) OF REGULAR CLOSED CURVES:

- 7, IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR2 IS CONTINUOUS FOR EACH SES
 - t → 76 (5)
- & t + 3t (s) 15 CONTINUOUS FOR EACH SES

50 LET'S HAKE SURE TO KEEP THE CURVES REGULAR!



- STILL NOT A REGULAR HONOTOPY

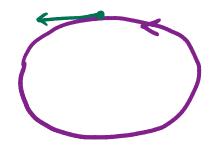
MHAS

KEEP TRACK OF ONE HORE TANGENT

A MOVIE (T) OF REGULAR CLOSED CURVES:

- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I $\rightarrow \mathbb{R}^2$ IS CONTINUOUS FOR EACH SES
 - $t \mapsto \mathcal{T}_t(s)$
- & t + it (s) 15 CONTINUOUS FOR EACH SES

50 LET'S HAKE SURE TO KEEP THE CURVES REGULAR!



- STILL NOT A REGULAR HONOTOPY

MH A 3

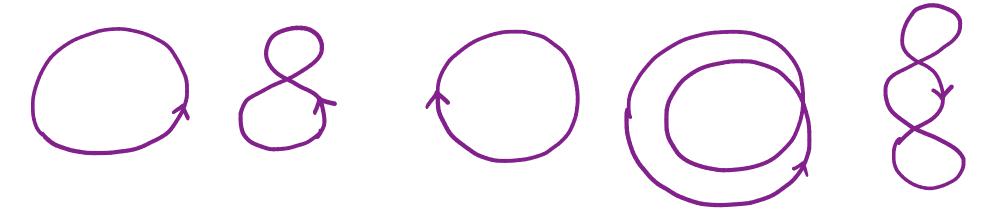
to To 15 NOT CONTINUOUS!

A MOVIE TES OF REGULAR CLOSED CURVES:

- & IS CONTINUOUS
- 7. EXISTS, NONZERO & CONTINUOUS
- THE PATH I IR2 IS CONTINUOUS FOR EACH SES
 - $t \mapsto \mathcal{T}_{t}(s)$
- & t + 3, (s) 15 CONTINUOUS FOR EACH SES

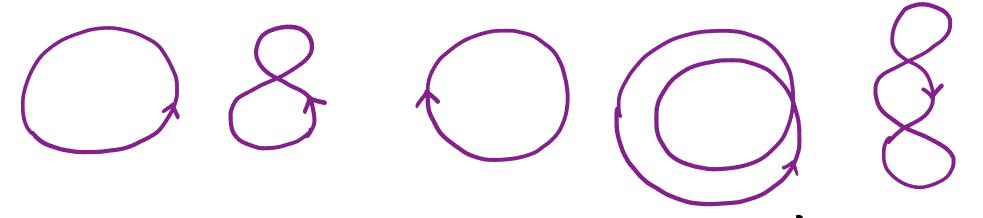
REGULAR HONOTOPY

QUESTION: WHICH CURVES ARE REGULAR HONOTOPIC?



REGULAR HONOTOPY

QUESTION: WHICH CURVES ARE REGULAR HONOTOPIC?



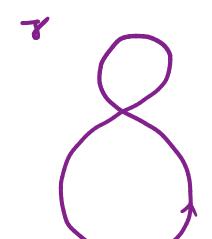
ANSWER: FIND A PROPERTY THAT DOESN'T CHANGE DURING REGULAR HONOTOPY.

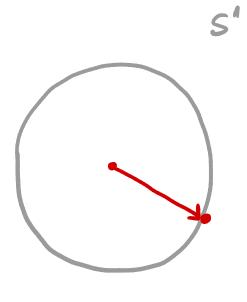
WHITNEY - GRAUSTEIN THEOREM (1934):

7. IS REGULARLY HOMOTOPIC TO 3,

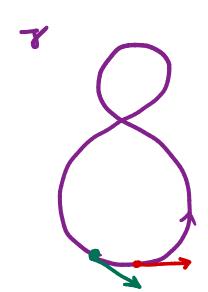
↑ (*.) = **W**(*****.)

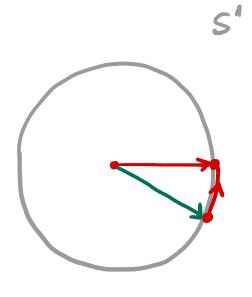
DEFINE:
$$\frac{\dot{z}}{|\dot{z}|}: S' \rightarrow S'$$



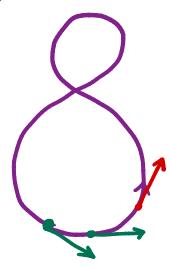


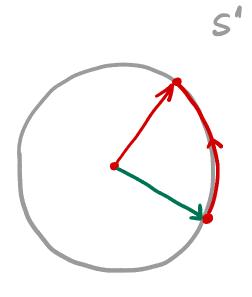
DEFINE:
$$\frac{\dot{z}}{|\dot{z}|}: S' \rightarrow S'$$



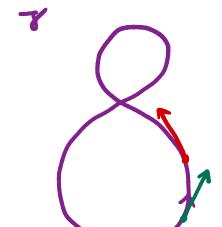


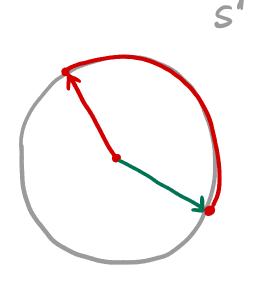
DEFINE:
$$\frac{\dot{z}}{|\dot{z}|}: S' \rightarrow S'$$





DEFINE:
$$\frac{\dot{z}}{|\dot{z}|}: S' \rightarrow S'$$

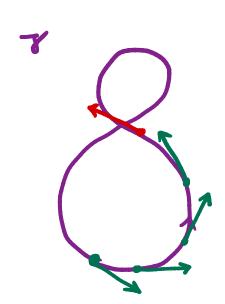


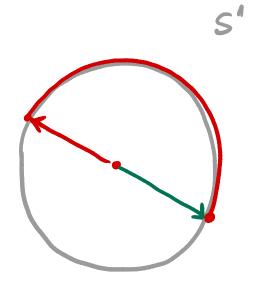


$$\mathcal{F}: S' \longrightarrow \mathcal{R}^2$$

$$(\Rightarrow \dot{x} + 0)$$

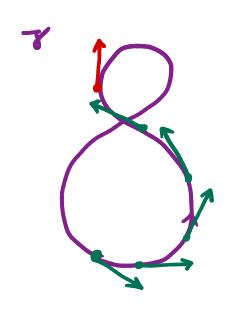
DEFINE:
$$\frac{\dot{z}}{|\dot{z}|}: S' \rightarrow S'$$

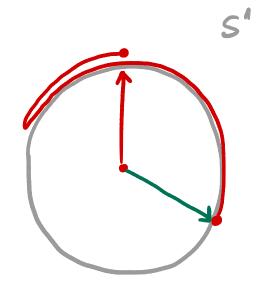




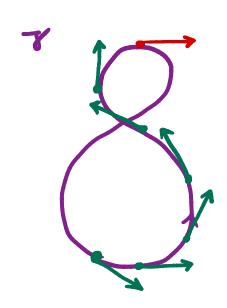
$$\mathcal{F}: S' \longrightarrow \mathcal{R}^2$$

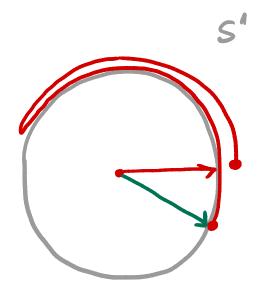
DEFINE:
$$\frac{\dot{z}}{|\dot{z}|}: S' \rightarrow S'$$



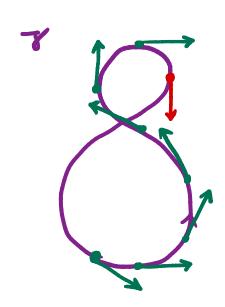


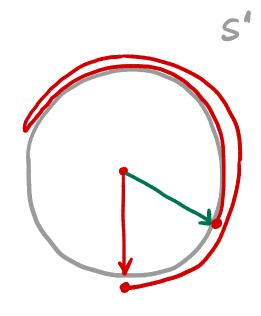
DEFINE:
$$\frac{\dot{z}}{|\dot{z}|}: S' \longrightarrow S'$$





DEFINE:
$$\frac{\dot{z}}{|\dot{z}|}: S' \rightarrow S'$$

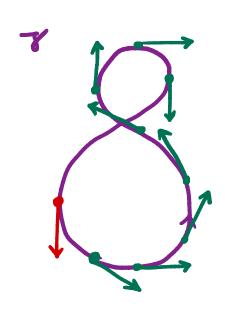


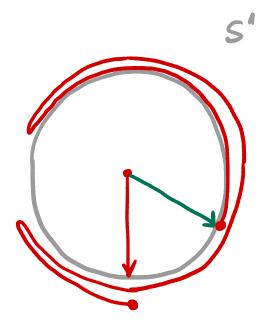


$$F: S' \longrightarrow \mathbb{R}^2$$

$$(\Rightarrow \dot{x} + 0)$$

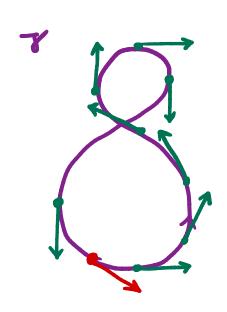
DEFINE:
$$\frac{\dot{z}}{|\dot{z}|}: S' \rightarrow S'$$

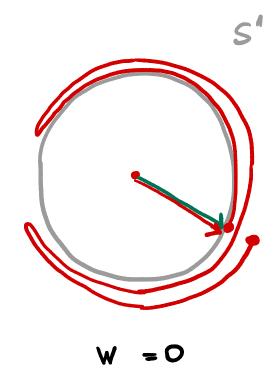




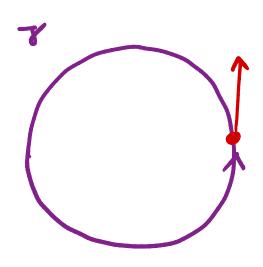
$$\mathcal{F}: S' \longrightarrow \mathcal{R}^2$$

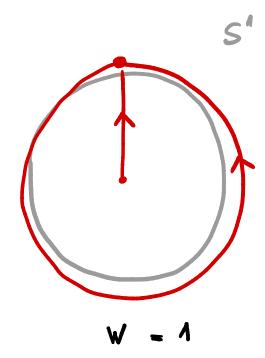
DEFINE:
$$\frac{\dot{z}}{|\dot{z}|}: S' \longrightarrow S'$$



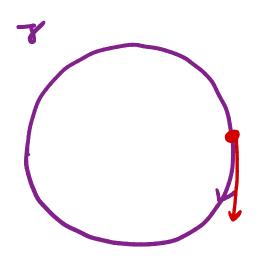


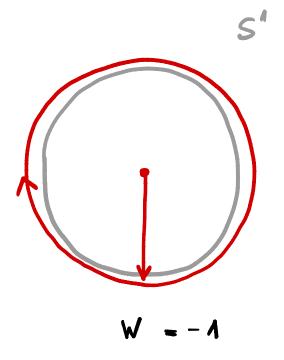
DEFINE:
$$\frac{\dot{z}}{|\dot{z}|}: S' \rightarrow S'$$





DEFINE:
$$\frac{\dot{z}}{|\dot{z}|}: S' \rightarrow S'$$

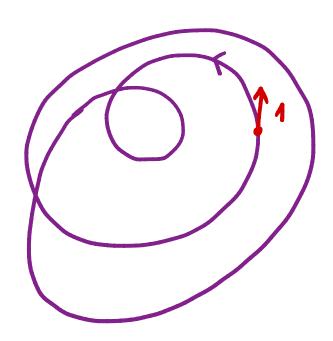




F: S' → R REGULAR PLANE CURVE

CHOOSE A DIRECTION (E.G. > 1)

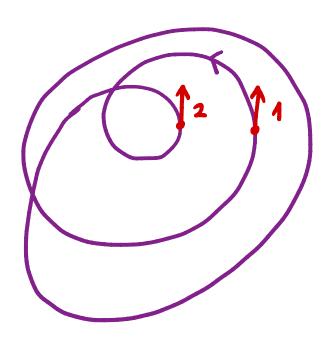
· LET'S CHECK HOW HANY TIMES & I 1



Y: S' → R REGULAR PLANE CURVE

CHOOSE A DIRECTION (E.G. ↑)

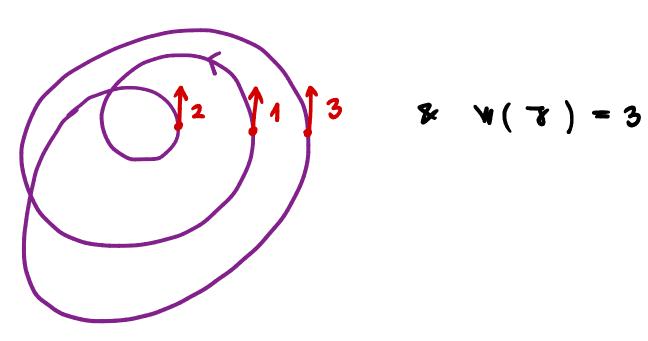
· LET'S CHECK HOW HANY TIMES & I 1



Y: S' → R REGULAR PLANE CURVE

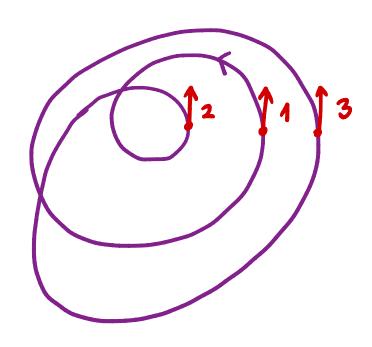
CHOOSE A DIRECTION (E.G. > 1)

· LET'S CHECK HOW HANY TIMES & I 1



Y: S'→R' REGULAR PLANE CURVE

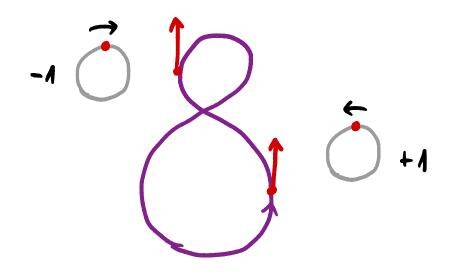
· LET'S CHECK HOW HANY TIMES & I T



Y: 5' → R REGULAR PLANE CURVE

CHOOSE A DIRECTION (E.G. > 1)

· LET'S CHECK HOW HANY TIMES & 1



THEOREM: W(7) = # 17 | 1)

BUT! WE HAVE TO COUNT W

WINDING NUMBER - FOR COMPLEX CURVES

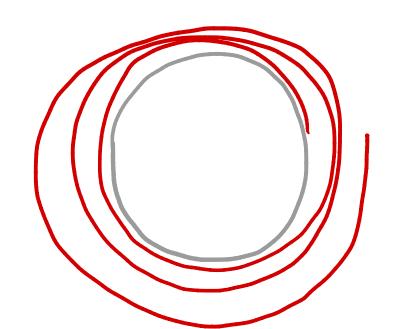
FOR
$$F: S' \rightarrow C$$

$$W(7) = IND(7, Q) = \frac{1}{2\pi i} \oint \frac{dx}{x}$$

EXAMPLE:
$$\gamma_n: S' \longrightarrow S'$$

$$z \mapsto z^n$$

$$W(\mathcal{L}^n) = N$$



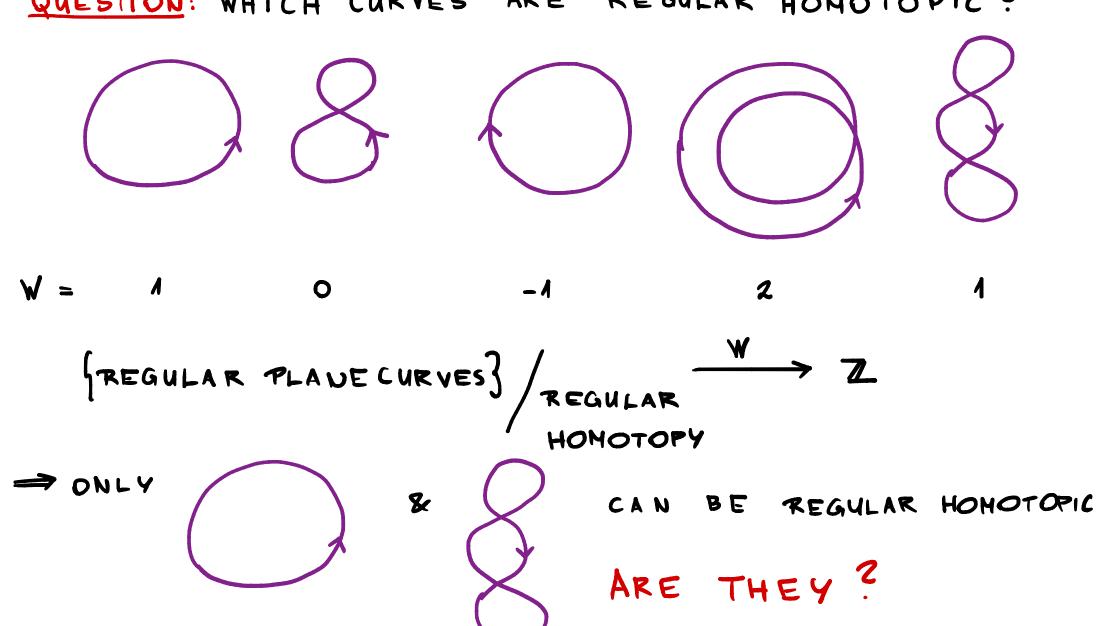
F: S' → R REGULAR PLANE CURVE

DEFINE: $\frac{3}{|3|}:5' \longrightarrow 5'$

$$M(s) = DEC\left(\frac{|s|}{s}\right)$$

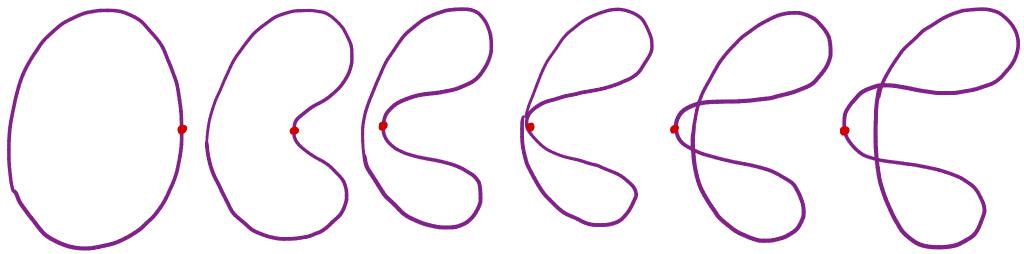
REGULAR HONOTOPIC CURVES HAVE EQUAL WINDING #S

QUESTION: WHICH CURVES ARE REGULAR HONOTOPIC?



WHITNEY-GRAUSTEIN THEOREH

YES:



IN GENERAL:

WHITHEY - GRAUSTEIN THEOREM:

IS BIJECTIVE.

WHITNEY-GRAUSTEIN THEOREH - PROOF

WHITNEY - GRAUSTEIN THE OREM:

IS BIJECTIVE

PROOF

. W IS WELL - DEFINED

WHITNEY-GRAUSTEIN THEOREH - PROOF

WHITNEY - GRAUSTEIN THEOREM:

15 BIJECTIVE

PROOF

- . W IS WELL DEFINED
- · SURJECTIVE : W(Tn) = n

WHITNEY-GRAUSTEIN THEOREH - PROOF

WHITNEY - GRAUSTEIN THEOREM:

IS BIJECTIVE.

PROOF

- . W IS WELL DEFINED
- SURJECTIVE : $V(T_n) = n$ $T_n: Z \mapsto Z^n$
- . | NBECTIVE :

PROVED BY WHITHEY IN 1937

GOAL: PRESENT A 3D - PROOF OF GEIGES - ELIASHBERG TROM 2007

USING CONTACT TOPOLOGY

STRATEGY OF PROOF

WANT TO SHOW: $W(T_n) = W(T_n) \implies T_n$ REG. HONOTOPIC TO T_n INSTEAD: WE WILL FIND STANDARD FORMS T_n SO THAT $W(T) = n \implies T$ REG. HONOTOPIC TO T_n HOW DO WE LOOK FOR THE STANDARD FORM?

STRATEGY OF PROOF

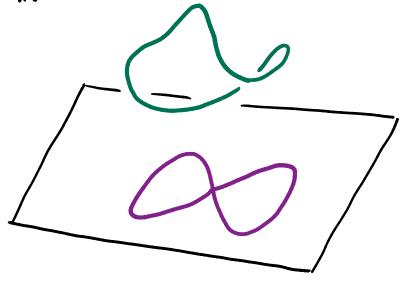
WANT TO SHOW: W(7.) = W(7.) => 7. REG. HOMOTOPIC TO 7.

INSTEAD: WE WILL FIND STANDARD FORMS 3,

SO THAT W(3) = i → 7 REG. HOHOTOPIC TO 7,

HOW DO WE LOOK FOR THE STANDARD FORH?

PROJECTION OF A KNOT IN 1R3



STRATEGY OF PROOF

WANT TO SHOW: W(7.) = W(7.) => 7. REG. HONOTOPIC TO 7,

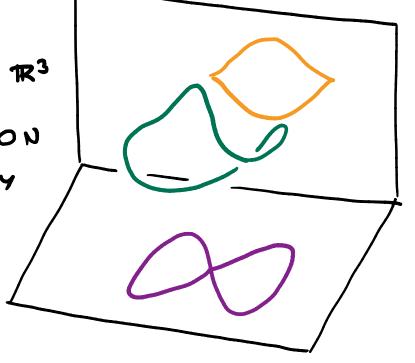
INSTEAD: WE WILL FIND STANDARD FORMS &

SO THAT W(7)= i → 7 REG. HOHOTOPIC TO 7,

HOW DO WE LOOK FOR THE STANDARD FORH?

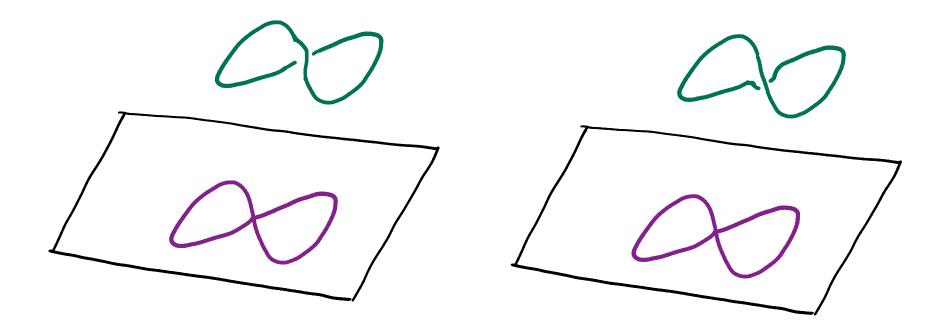
PROFECTION OF A KNOT IN 1R3

THEN USE ANOTHER PROJECTION
TO REDUCE REGULAR HOMOTOPY
TO SOMETHING THAT IS
COMBINATORIALLY CHECKABLE



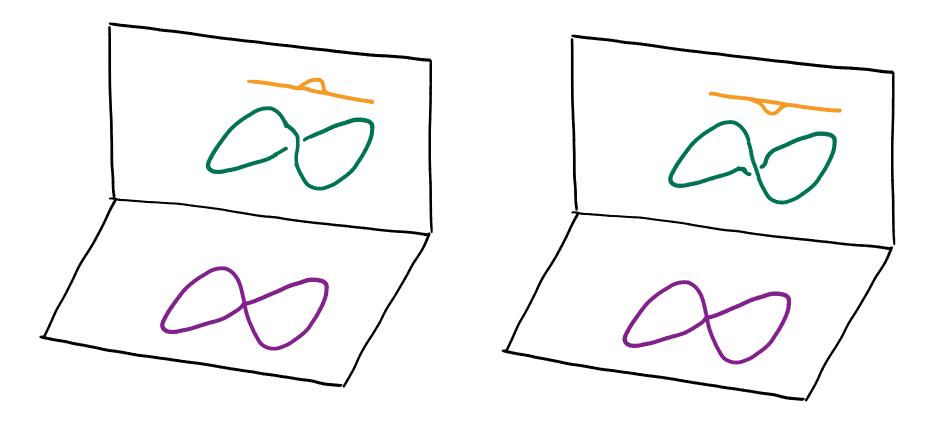
LIFTING THE CURVES TO 183

- A PRIORI WE HAVE HULTIPLE WAYS OF LIFTING &



LIFTING THE CURVES TO 183

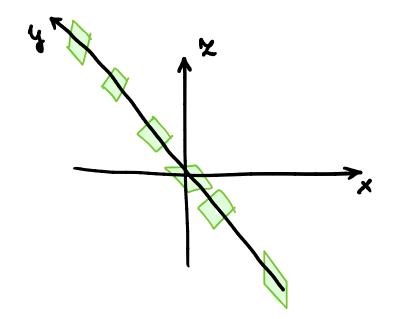
- A PRIORI WE HAVE HULTIPLE WAYS OF LIFTING &



- BUT THEN THE PROJECTION IS BORING OR CAN BE ALHOST ANYTHING
- → WE HAVE TO PUT RESTRICTIONS ON THE LIFT TO MAKE IT UNIQUE

STANDARD CONTACT STRUCTURE ON TR'

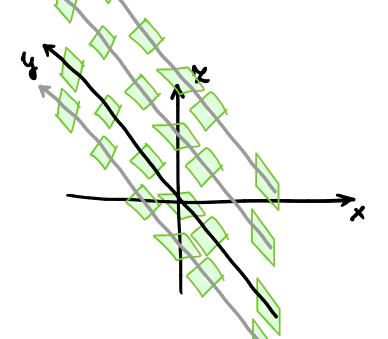
2-PLANE DISTRIBUTION (= 2-PLANE AT EVERY POINT)



THE LIFTS WILL NEED TO BE TANGENT TO 3

STANDARD CONTACT STRUCTURE ON 18°

2-PLANE DISTRIBUTION (= 2-PLANE AT EVERY POINT)

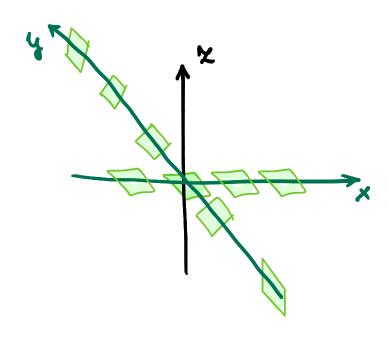


THE LIFTS WILL NEED TO BE TANGENT TO 3

LEGENDRIAN KNOTS

L: 5'CAR3 IS <u>LEGENDRIAN</u> IF Leg=kn (dz-ydx)

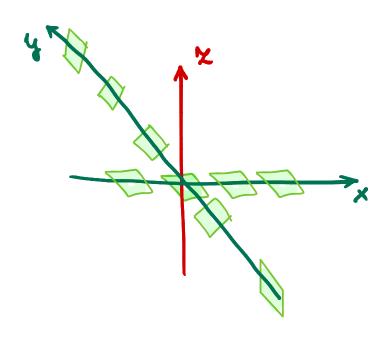
EXAMPLE: X-AXIS & Y-AXIS ARE BOTH LEGENDRIANS



LEGENDRIAN KNOTS

L: 5'CAR3 IS <u>LEGENDRIAN</u> IF Leg=kn (dz-ydx)

EXAMPLE: X-AXIS & Y-AXIS ARE BOTH LEGENDRIANS

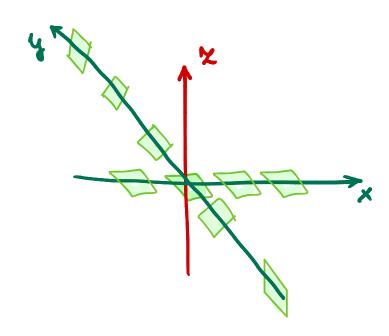


Z-AXIS IS NOT A LEGENDRIAN

LEGENDRIAN KNOTS

L: 5'CAR3 IS <u>LEGENDRIAN</u> IF Leg=kn (dz-ydx)

EXAMPLE: X-AXIS & Y-AXIS ARE BOTH LEGENDRIANS

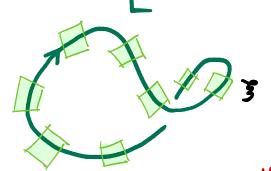


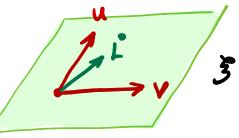
Z-AXIS IS NOT A LEGENDRIAN

L(s) = (x(s), y(s), z(s)) IS LEGENDRIAN $\iff \dot{L}(s) \in \mathcal{Z}_{L(s)}$

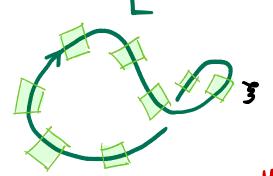
 \Rightarrow $\dot{z}(s) - y(s) \cdot \dot{x}(s) = 0$

L LEGENDRIAN KNOT



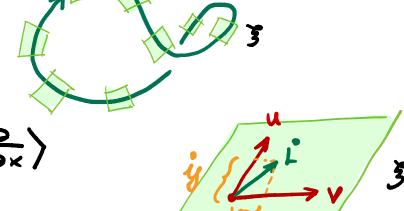


L LEGENDRIAN KNOT



L LEGENDRIAN KNOT

· VRITE L IN THE BASIS:



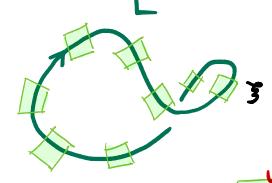
$$\dot{L} = \dot{x} \frac{\partial}{\partial x} + \dot{y} \frac{\partial}{\partial y} + \dot{z} \frac{\partial}{\partial z} = \dot{x} \left(y \frac{\partial}{\partial z} + \frac{\partial}{\partial x} \right) + \dot{y} \frac{\partial}{\partial y} = \dot{x} + \dot{y} \frac{\partial}{\partial y}$$

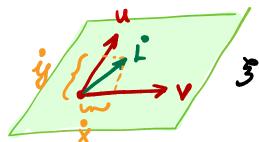
$$L \quad LEGENDRIAN$$

SO THE COORDINATES OF LARE (X, y)

L LEGENDRIAN KNOT

· VRITE L IN THE BASIS:





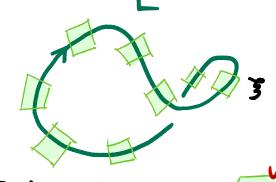
$$\dot{L} = \dot{x} \frac{\partial}{\partial x} + \dot{y} \frac{\partial}{\partial y} + \dot{z} \frac{\partial}{\partial z} = \dot{x} \left(y \frac{\partial}{\partial z} + \frac{\partial}{\partial x} \right) + \dot{y} \frac{\partial}{\partial y} = \dot{x} + \dot{y} \frac{\partial}{\partial y}$$

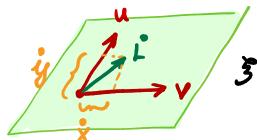
$$L \quad LEGENDRIAN$$

• ROT (L) = DEG
$$\left(\frac{(\dot{x},\dot{y})}{|(\dot{x},\dot{y})|}\right)$$

L LEGENDRIAN KNOT

· VRITE L IN THE BASIS:



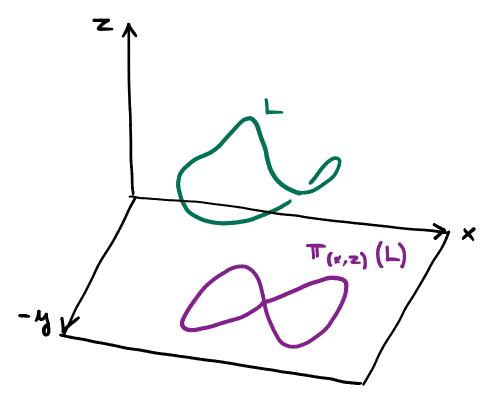


$$\dot{L} = \dot{x} \frac{\partial}{\partial x} + \dot{y} \frac{\partial}{\partial y} + \dot{z} \frac{\partial}{\partial z} = \dot{x} \left(y \frac{\partial}{\partial z} + \frac{\partial}{\partial x} \right) + \dot{y} \frac{\partial}{\partial y} = \dot{x} + \dot{y} \frac{\partial}{\partial y}$$

$$L \quad LEGENDRIAN$$

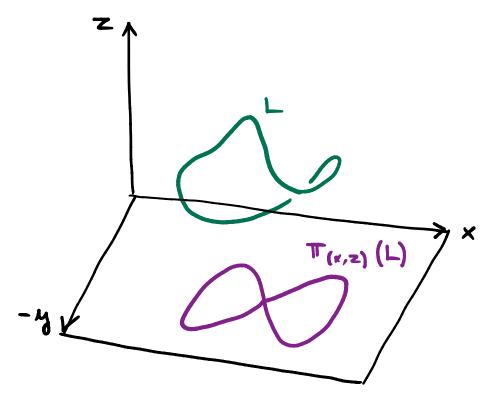
• ROT (L)
$$\stackrel{\text{per}}{=}$$
 DEG $\left(\frac{(\dot{x},\dot{y})}{|(\dot{x},\dot{y})|}\right)$

THIS IS THE WINDING # OF L'S PROJECTION TO



$$\Pi_{(x,z)} : \mathbb{R}^3 \longrightarrow \mathbb{R}^2 \\
(x,y,z) \longmapsto (x,y)$$

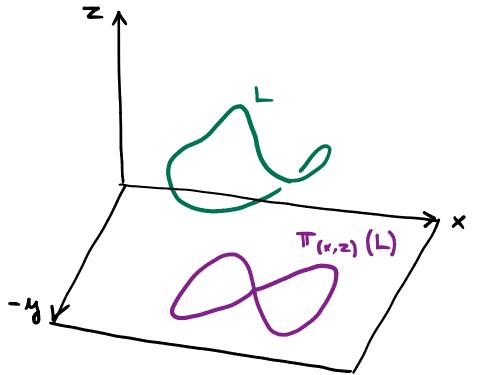
- · CLAIM: 7 = T(x,G) (L) IS AN IMMERSION



$$\Pi_{(x,z)} : \mathbb{R}^3 \longrightarrow \mathbb{R}^2 \\
(x,y,z) \longmapsto (x,y)$$

· CLAIM: 7 = T(x,G) (L) IS AN IMMERSION

$$\frac{7}{7}(s) = (\dot{x}(s), \dot{y}(s)) \stackrel{?}{=} 0 \Rightarrow \dot{L}(s) \parallel \frac{2}{32}$$

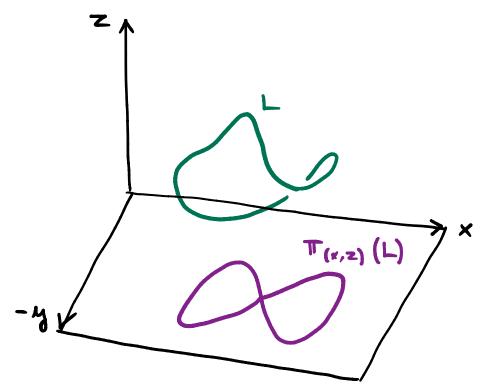


$$\Pi_{(x,z)} : \mathbb{R}^3 \longrightarrow \mathbb{R}^2 \\
(x,y,z) \longmapsto (x,y)$$

$$T(s) = T_{(x,y)}(L) = (x(s),y(s))$$

$$\frac{7}{7}(s) = (\dot{x}(s), \dot{y}(s)) \stackrel{?}{=} 0 \Rightarrow \dot{L}(s) \parallel \frac{2}{32}$$

BUT
$$\frac{2}{32}$$
 $\neq 3$ $\left(3 = \left(\frac{3}{34}, \sqrt{\frac{3}{32}} + \frac{3}{3x}\right)\right)$



$$\Pi_{(x,z)} : \mathbb{R}^3 \longrightarrow \mathbb{R}^2 \\
(x,y,z) \longmapsto (x,y)$$

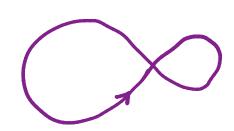
$$T(s) = T_{(x,y)}(L) = (x(s),y(s))$$

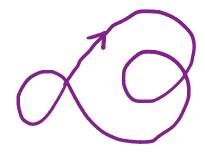
- · CLAIM: 7 = T(x,c) (L) IS AN IMMERSION
- . WE CAN RECOVER THE Z- COORDINATE

$$z(s_o) = z(0) + \int_0^s y(s) \dot{x}(s) ds$$
 $\Leftarrow \dot{z} = y \dot{x}$

$$z(s_o) = z(0) + \int_0^s y(s) \dot{x}(s) ds$$

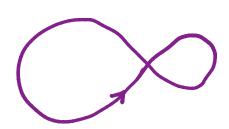
QUESTION: ARE THESE LAGRANGIAN PROJECTIONS
OF SOME LEGENDRIAN KNOT L: 517182

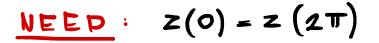


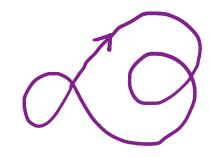


$$z(s_o) = z(0) + \int_0^s y(s) \dot{x}(s) ds$$

ARE THESE LAGRANGIAN PROJECTIONS QUESTION: OF SOME LEGENDRIAN KNOT L: 51 7 183 2

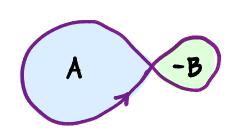


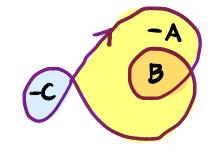




$$z(s_o) = z(0) + \int_0^s y(s) \dot{x}(s) ds$$

QUESTION: ARE THESE LAGRANGIAN PROJECTIONS OF SOME LEGENDRIAN KNOT L: 51 7 1832





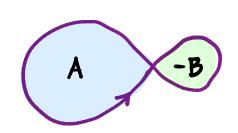
NEED: Z(0) = Z (2T) I.E. \$ y(s) x(s) ds = 0

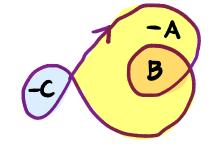
SIGNED AREA

50 : WE'D NEED : A - B = 0 -A + B - C = 0

$$z(s_0) = z(0) + \int_0^s y(s) \dot{x}(s) ds$$

QUESTION: ARE THESE LAGRANGIAN PROJECTIONS OF SOME LEGENDRIAN KNOT L: 51 7 183 2



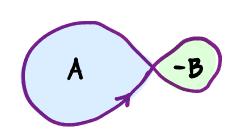


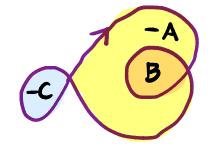
NEED:
$$z(0) = z(2\pi)$$
 I.E. $\oint y(s) x(s) ds = 0$

SIGNED AREA

$$z(s_o) = z(0) + \int_0^s y(s) \dot{x}(s) ds$$

QUESTION: ARE THESE LAGRANGIAN PROJECTIONS OF SOME LEGENDRIAN KNOT L: 51 7 183 2





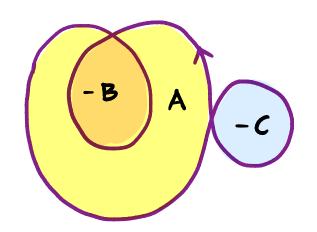
NEED:
$$z(0) = z(2\pi)$$
 I.E. $\oint y(s) \dot{x}(s) ds = 0$

SIGNED AREA

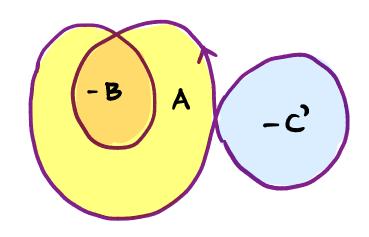
THIS WOULD LIFT :

LAGRANGIAN PROJECTIONS VS. REGULAR PLANECURVES

- · T: S' → R' REGULAR PLANE CURVE
- · BY REGULAR HOMOTOPY WE CAN ARRANGE TO HAVE $\oint y(s) \dot{x}(s) ds = 0$



INCREASE

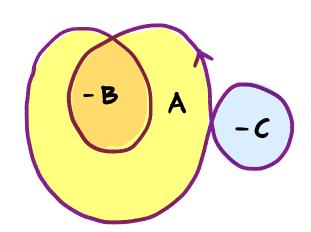


→ V = T(x,y) (L) FOR SOME LEGENDRIAN

LAGRANGIAN PROJECTIONS VS. REGULAR PLANECURVES

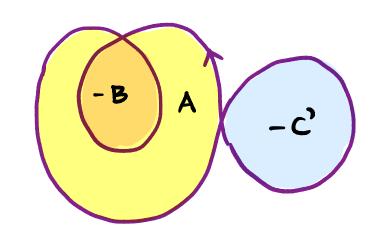
- · T: S' → R' REGULAR PLANE CURVE
- · BY REGULAR HOMOTOPY WE CAN ARRANGE

TO HAVE
$$\oint y(s) \dot{x}(s) ds = 0$$



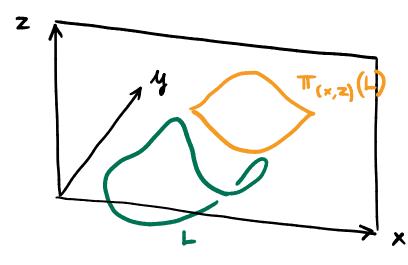
INCREASE





FRONT PROJECTION

LEGENDRIAN KNOT \Leftrightarrow Z-4x=0



$$\Pi_{(x,z)}: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$(x,y,z) \longmapsto (x,z)$$

$$F(s) = \Pi_{(x,z)}(L) = (x(s),z(s))$$

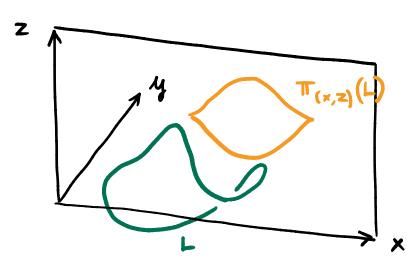
CAN RECOVER THE 4- COORDINATE

$$y = \frac{\partial z}{\partial x}$$

FRONT PROJECTION

L LEGENDRIAN KNOT \Leftrightarrow Z-4x=0

$$\Leftrightarrow$$



$$\Pi_{(x,z)}: \mathbb{R}^3 \longrightarrow \mathbb{R}^2 \\
(x,y,z) \longmapsto (x,z)$$

$$F(s) = \Pi_{(x/z)}(L) = (x(s)/z(s))$$

CAN RECOVER THE 4- COORDINATE

$$y = \frac{\partial z}{\partial x}$$

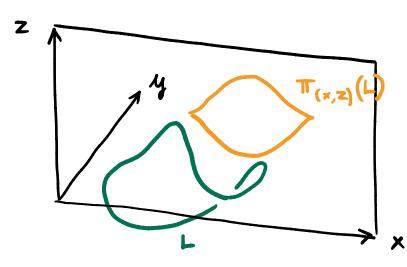
→ FRONT PROSECTIONS

- HAVE NO VERTICAL TANGENCIES

FRONT PROJECTION

L LEGENDRIAN KNOT 👄 Z-4x=0

$$\Leftrightarrow$$



$$\Pi_{(\times,z)}: \mathbb{R}^3 \longrightarrow \mathbb{R}^2 \\
(\times, y, z) \longmapsto (\times, z)$$

$$F(s) = \Pi_{(x,z)}(L) = (x(s),z(s))$$

CAN RECOVER THE 4- COORDINATE

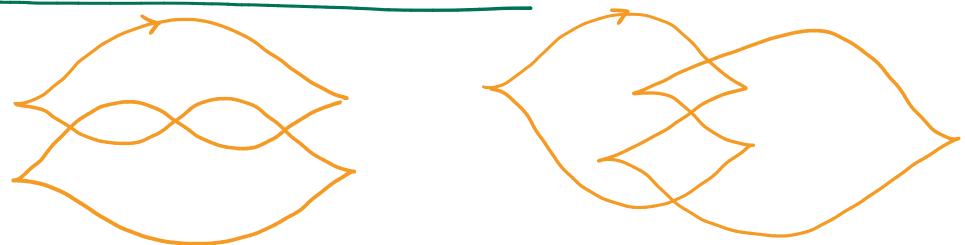
$$y = \frac{\partial z}{\partial x}$$

$$y = \frac{\partial z}{\partial x} \leftarrow SLOPE OF \Pi_{(x,z)}(L)$$

→ TRONT PROJECTIONS

- HAVE NO VERTICAL TANGENCIES

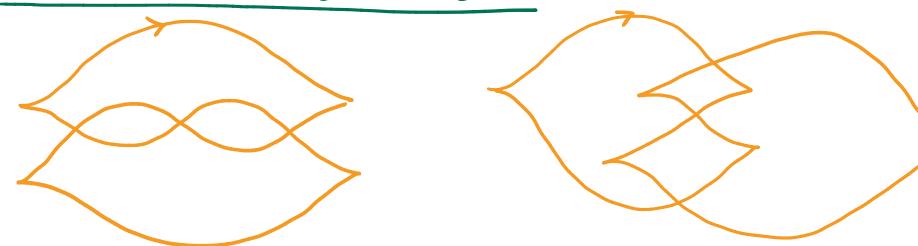
SONE FRONT PROJECTIONS



BY THE RULE DE UNIQUELY LIFTED

$$y = \frac{\partial z}{\partial x}$$

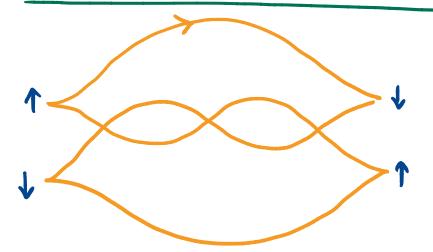
SONE FRONT PROJECTIONS



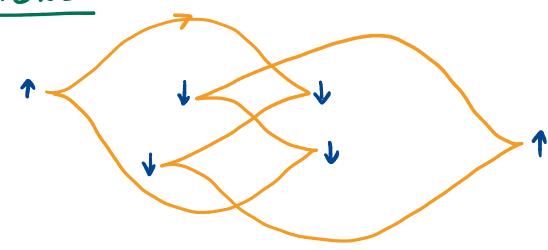
- BY THE RULE DZ
- · AND ROT(L) CAN BE COMBINATORIALLY COMPUTED

CLAIM:
$$ROT(L) = \frac{1}{2}(\# \downarrow - \# \uparrow)$$

SONE FRONT PROJECTIONS



ROT
$$-\frac{1}{2}(2-2)=0$$



$$ROT = \frac{1}{2}(4-2) = 1$$

. ANY CUSPED CURVE CAN BE UNIQUELY LIFTED

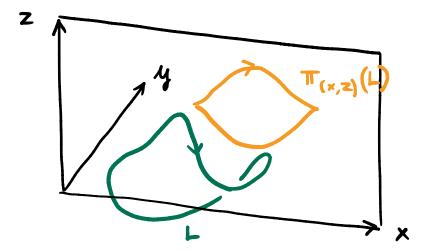
$$y = \frac{\partial z}{\partial x}$$

. AND ROT(L) CAN BE COMBINATORIALLY COMPUTED

CLAIM:
$$ROT(L) = \frac{1}{2}(\# \downarrow - \# \uparrow)$$

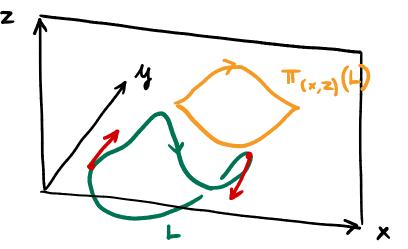
CLAIM:
$$ROT(L) = \frac{1}{2}(\# \downarrow - \# \uparrow)$$

$$\dot{L} = \dot{y} \frac{3}{3y} + \dot{x} \left(y \frac{3}{32} + \frac{3}{3x} \right) & & & \\ ROT(L) \stackrel{dif}{=} DEG \left(\frac{\left(\dot{x}, \dot{y} \right)}{\left| \left(\dot{x}, \dot{y} \right) \right|} \right) & & & \\ \end{array}$$



CLAIM:
$$ROT(L) = \frac{1}{2}(\# \downarrow - \# \uparrow)$$

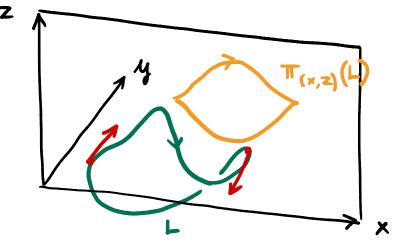
$$ROT(L) \stackrel{dif}{=} DEG\left(\frac{(\dot{x}, \dot{y})}{|(\dot{x}, \dot{y})|}\right) = \#\left(\mathring{L} \parallel \frac{3}{3y}\right)$$



CLAIM:
$$ROT(L) = \frac{1}{2}(\# \downarrow - \# \uparrow)$$

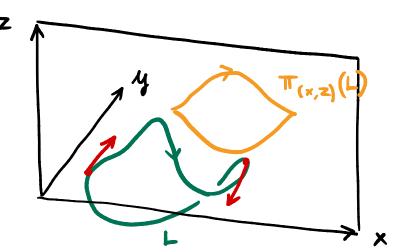
$$ROT(L) \stackrel{dif}{=} DEG\left(\frac{(\dot{x}, \dot{y})}{|(\dot{x}, \dot{y})|}\right) = \#\left(\mathring{L} \parallel \frac{3}{3y}\right)$$

$$L \parallel \frac{2}{2y} \Leftrightarrow T_{(x,z)}(L)$$
 HAS A CUSP



CLAIM:
$$ROT(L) = \frac{1}{2}(\# \downarrow - \# \uparrow)$$

$$ROT(L) \stackrel{dif}{=} DEG\left(\frac{(\dot{x}, \dot{y})}{|(\dot{x}, \dot{y})|}\right) = \#\left(\mathring{L} \parallel \frac{2}{2y}\right)$$



MOYES ON THE FRONT PROJECTION

- . ANY CUSPED CURVE CAN BE UNIQUELY LIFTED
- SO A HOVIE (= 1-PARAMETER FAMILY) (F)

 OF THESE CUSPED CURVES LIFTS UP TO

 A 1-PARAMETER FAMILY OF (IMMERSED) LEGENDRIANS

 (L1)

MOYES ON THE FRONT PROJECTION

- . ANY CUSPED CURVE CAN BE UNIQUELY LIFTED
- . SO A HOYIE (= 1- PARAMETER FAMILY) (FE)

OF THESE CUSPED CURVES LIFTS UP TO

A 1- PARAMETER TAMILY OF

LEGENDRIANS

MOVES ON THE FRONT PROJECTION

- . ANY CUSPED CURVE CAN BE UNIQUELY LIFTED
- . SO A HOYIE (= 1- PARAMETER FAMILY) (FE)

OF THESE CUSPED CURVES LIFTS UP TO

A 1- PARAMETER FAMILY OF IMMERSED LEGENDRIANS

IN THE LIFT

MOVES ON THE FRONT PROJECTION

- . ANY CUSPED CURVE CAN BE UNIQUELY LIFTED
- . SO A HOYIE (= 1- PARAMETER FAMILY) (FE)

OF THESE CUSPED CURVES LIFTS UP TO

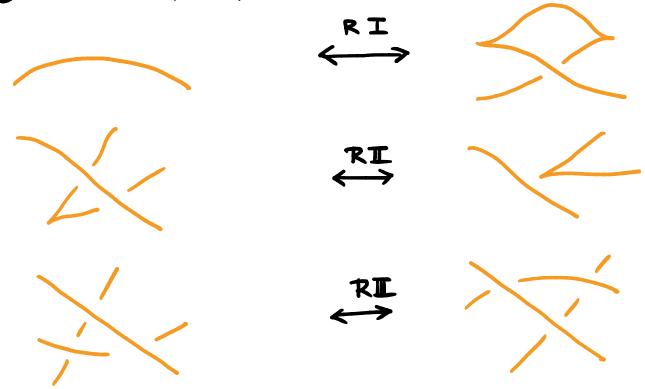
A 1-PARAMETER FAMILY OF (IMMERSED) LEGENDRIANS

IN THE LIFT

• $ROT(L) = \frac{1}{2}(\# \downarrow - \# \uparrow)$ DOES NOT CHANGE DURING THESE MOYES

LEGENDRIAN REIDEMEISTER MOVES

THE FOLLOWING LOCAL MOVES ARE COMING FROM PROJECTIONS OF A 1-PARAMETER FAMILY OF LEGENDRIAN KNOTS:



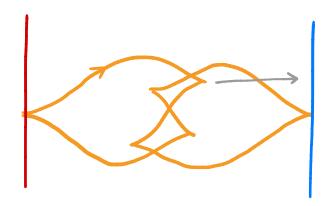
THEOREM: TWO FRONT PROJECTIONS CORRESPOND

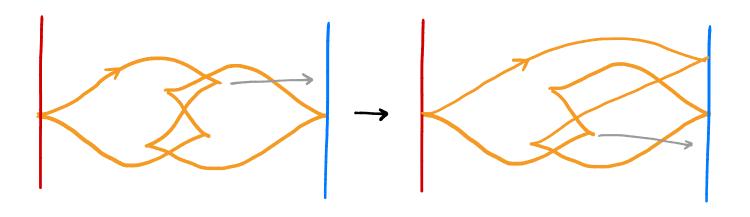
TO LEGENDRIAN ISOTOPIC LEGENDRIAN

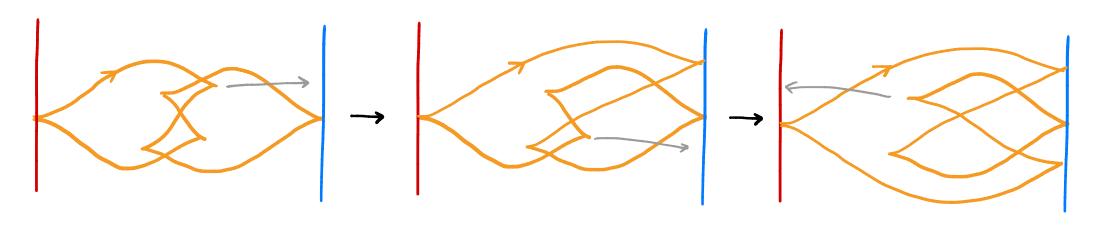
KNOTS ATHEY ARE RELATED BY

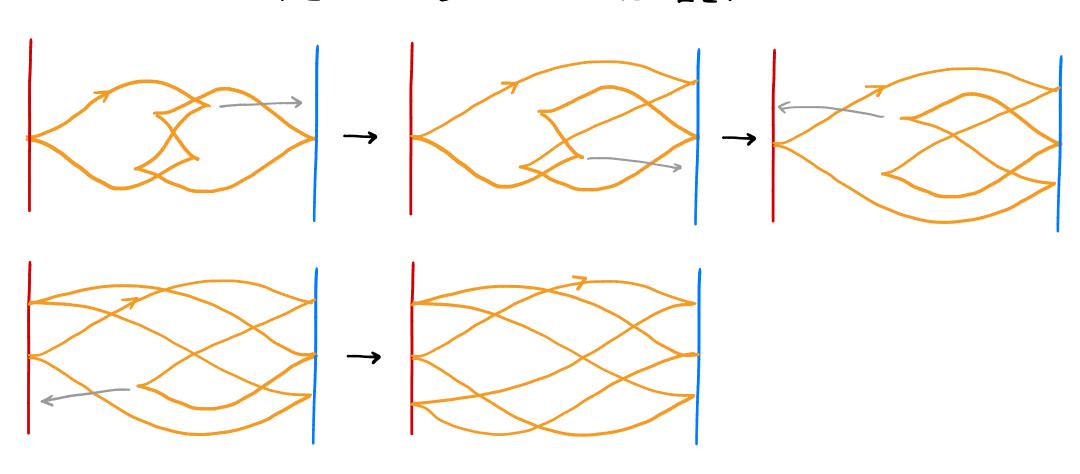
A SEQUENCE OF HOVES RI-RII.

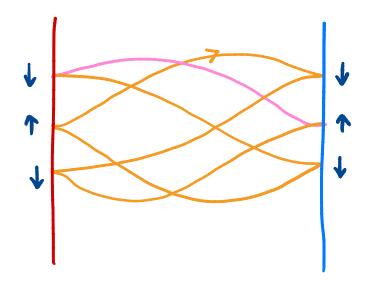
NORMALISING FRONT PROJECTIONS GIVEN ANY FRONT PROJECTION

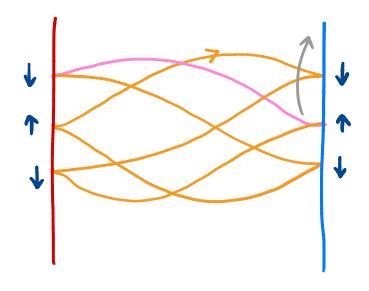


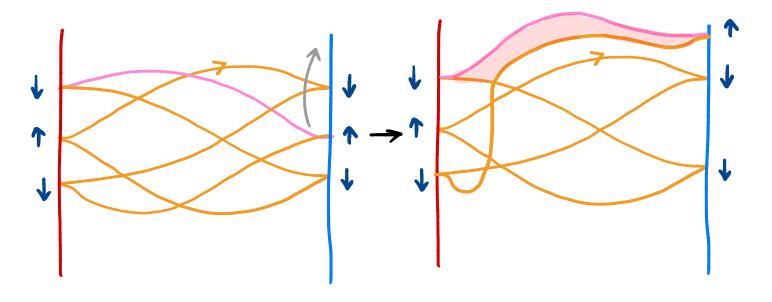


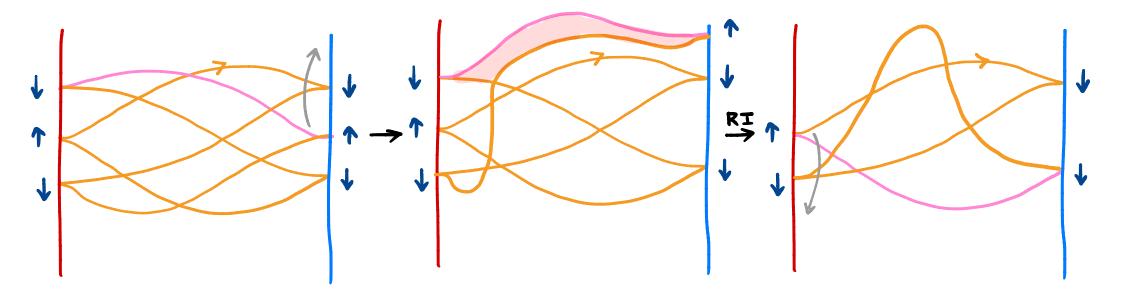


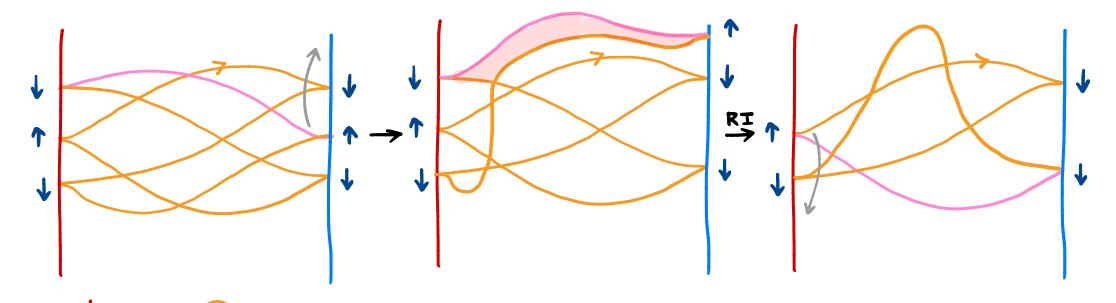


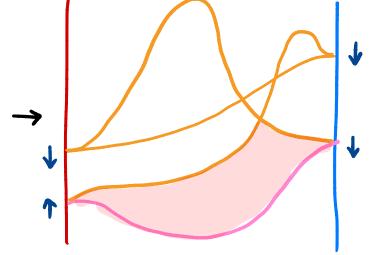


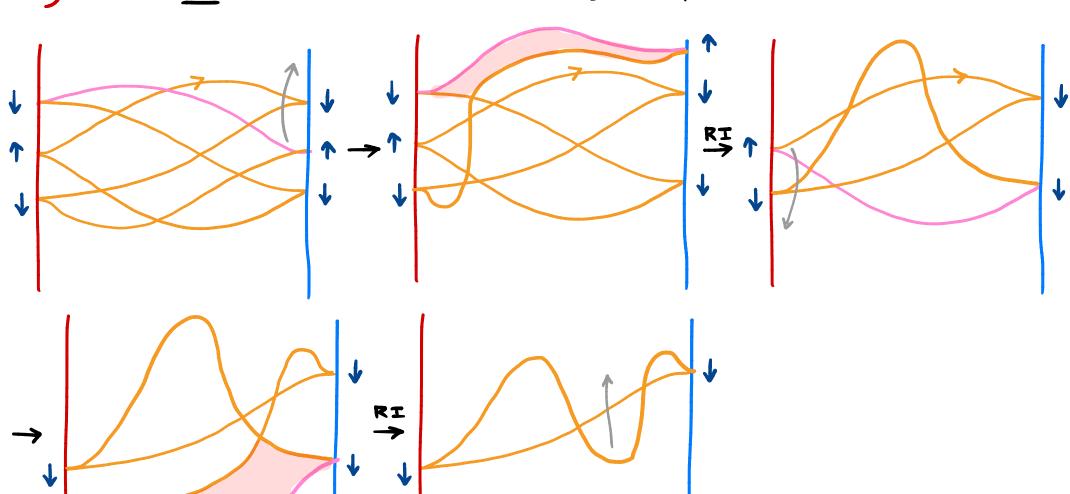












1

LABEL UPWARDS / DOWNWARDS CUSPS 2) USE TO REMOVE CONSECUTIVE RI 1

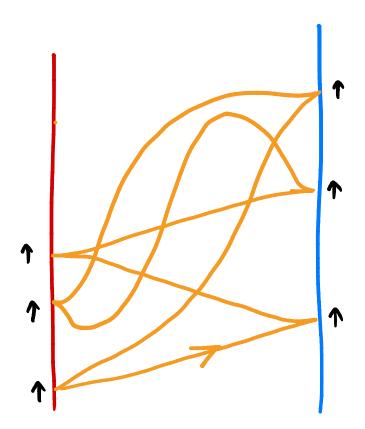
GIVEN ANY FRONT PROJECTION

NOVE ALL RIGHT CUSPS TO THE RIGHT &

LEFT CUSPS TO THE LEFT

LABEL UPWARDS/DOWNWARDS CUSPS W/ ^ OR ↓

2) USE RI TO REMOVE CONSECUTIVE ↑↓ OR ↓↑



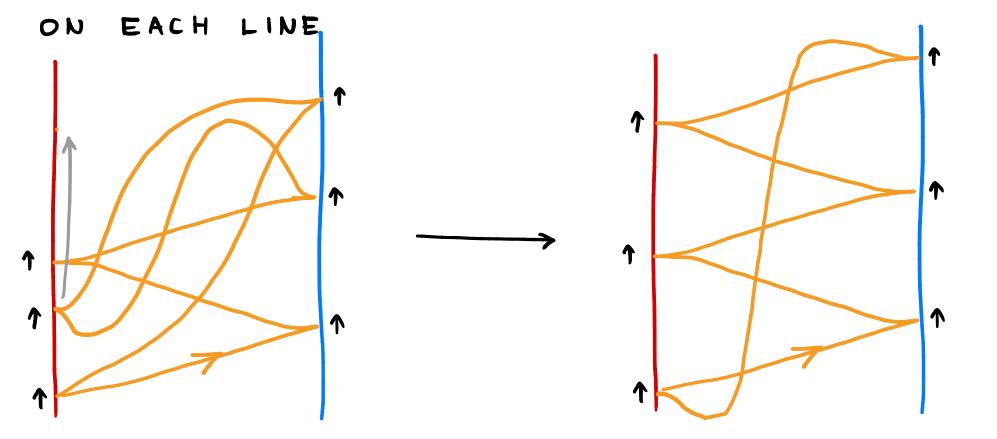
GIVEN ANY FRONT PROJECTION

MOVE ALL RIGHT CUSPS TO THE RIGHT &

LABEL UPWARDS / DOWNWARDS CUSPS W/ 1 OR 1

2) USE RI TO REMOVE CONSECUTIVE 11 OR 11

3) REARRANGE THE CUSPS SO THAT THEY INCREASE

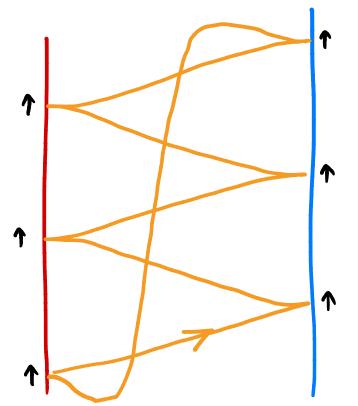


GIVEN ANY FRONT PROJECTION

- MOVE ALL RIGHT CUSPS TO THE RIGHT &
- LABEL UPWARDS / DOWNWARDS CUSPS W/ 1 OR 1

 2) USE RI TO REMOVE CONSECUTIVE 11 OR 11
- TEARRANGE THE CUSPS SO THAT THEY INCREASE ON EACH LINE
- THAT OULY DEPENDS ON

(ROT DOES NOT CHANGE)
DURING 1, 2, 3,



BACK TO WHITNEY-GRAUSTEIN THEOREM

WHITNEY - GRAUSTEIN THEOREM

PROOF: . W SURBECTIVE

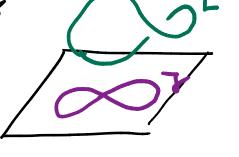
· W INFECTIVE

T: 5' - R' REGULAR PLANECURVE

1) DO REGULAR HONOTOPY ON 7 SO THAT \$4xds=0

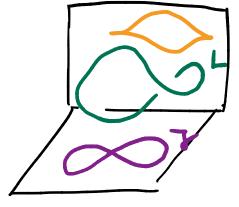
4 LIFT UP TO A LEGENDRIAN CURVE L SO THAT

THE LAGRANGIAN PROJECTION TI(x/4) (L) = &



BACK TO WHITNEY-GRAUSTEIN THEOREM

(UP TO REGULAR HOMOTOPY) WE HAVE 3-TI(x,y)(L)



- THE STEPS GIVE A 1-PARAMETER

 FAMILY OF (INNERSED) LE GENDRIA US (L.)

 WHERE

 L. =
- THE LAGRANGIAN PROJECTION $\mathcal{T}_{\varepsilon} = \mathcal{T}_{(\kappa, \eta)}(L_{\varepsilon})$ GIVES A REGULAR HONOTOPY OF $\mathcal{T} = \mathcal{T}_{\varepsilon}$. TO $\mathcal{T}_{\varepsilon} = \mathcal{T}_{(\kappa, \eta)}(L_{\varepsilon}) = \mathcal{T}_{\varepsilon}$

BACK TO WHITNEY-GRAUSTEIN THEOREM

50: ANY REGULAR PLANECURVE 7: S'→ R2

IS REGULARLY HOHOTOPIC TO

WHITHEY-GRAUSTEIN IN OTHER DIMENSIONS

• THEOREM (SMALE, 1959): IMM (Stark) = Tte (Ve (R"))

STIEFEL HANIFOLD

(ORTHONORHAL FRAMES IN TR")

• FOR
$$k = n-1$$
: $S^{n-1} \propto_{\pi} TR^{n}$

IMM $(S^{n-1}, TR^{n}) = T_{n-1}(V_{n-1}(TR^{n})) = T_{n-1}(SO(n)) \cong \begin{cases} 0 & n = 1, 3, 7 \\ 7/2 & n = 2 \\ 7/2 & n = 4 \end{cases}$

:

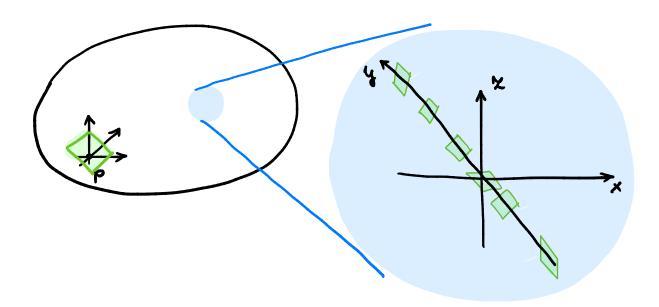
•
$$\underline{n=2}$$
 $\left\{5' \propto \mathbb{R}^2\right\}/_{\mathbb{R} \in \mathcal{A}} \stackrel{\text{W}}{\longleftrightarrow} \mathbb{T}_{4}(50(2)) \cong \mathbb{Z}$

$$\frac{n-3}{5^2} \left(\frac{5^2}{4} \mathbb{R}^3 \right) \Big|_{2 \in G} \longleftrightarrow \mathbb{T}_2 \left(\frac{50}{3} \right) = 0$$

WE CAN TURN THE SPHERE INSIDE - OUT

EPILOGUE

· CONTACT STRUCTURES CAN BE DEFINED ON ANY
ODD - DIMENSIONAL HANIFOLD



- · LEGENDRIAN SUBHANIFOLDS ARE USED AS TOOLS IN PHYSICS (OPTICS, THERHODY WA MICS, MECHANICS, ...)
- . THEY ARE USED IN TOPOLOGY & GEONETRY
- . THE TOOLS TO STUDY CONTACT HANIFOLDS INCLUDE:
 - COMPLE X GEOMETRY
 - FLOER HONOLOGIES
 - COMBINATORICS , ...

THANKS FOR YOUR ATTENTION!

ONE STIONS?

FUN VIDEOS ON YOUTUBE:

- · 1942 REGULAR HOMOTOPIES ON THE PLANE
- · 1994 OUTSIDE IN