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Preface

These are lecture notes accompanying a course on Lorentzian geometry at the Faculty of Mathematics at
Vienna University. They are based mainly on the notes [1] of Christian Bär and the standard text book [4]
by Barrett O’Neill. The prerequisites for following the course are a solid working knowledge in analysis on
manifolds and some basics of Riemannian geometry, as provided by [2, 3].

We are greatly indebted to Artemis Kaliger for creating these beautiful lecture notes!

Michael Kunzinger, Roland Steinbauer
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1
PRELIMINARIES

1.1 Curvature

• Let M be a SRMF with Levi-Civita connection ∇. (Riemannian) curvature tensor is defined as

R ∶ X(M)3 → X(M)

R(Z,X,Y ) = R(X,Y )Z = RXY Z ∶= ∇[X,Y ]Z − [∇X ,∇Y ]Z.

• It is a (1,3)-tensor field locally given by

R∂k∂l(∂j) = R
i
jkl∂i.

Recall ([3], 1.3.8) that
∇∂i∂j =∶ Γ

k
ij∂k

and, explicitly ([3], 1.3.9),

Γijk = g
ilΓljk =

1

2
gil(glj,k + gkl,j − gjk,l)

are Christoffel symbols.
For components of the curvature tensor in terms of Christoffel symbols we have ([3], 3.1.1):

Rijkl = ∂lΓ
i
kj − ∂kΓ

i
lj + Γ

i
lmΓmkj − Γ

i
kmΓmlj .

• Since R is a tensor field, one may also insert individual tangent vectors into its slots. Upon inserting
individual tangent vectors one obtains the curvature operator of p ∈M for x, y ∈ TpM via

Rxy ∶ TpM → TpM

z ↦ Rxyz.

It has the following symmetries for all x, y, v,w ∈ TpM ([3], 3.2.1):

1. antisymmetry: Rxy = −Ryx

2. skew-adjointness: ⟨Rxyv,w⟩ = −⟨Rxyw, v⟩

3. 1st Bianchi identity: Rxyz +Ryzx +Rzxy = 0

4. pair symmetry: ⟨Rxyv,w⟩ = ⟨Rvwx, y⟩

4
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as well as the 2nd Bianchi identity:

(∇zR)(x, y) + (∇xR)(y, z) + (∇yR)(z, x) = 0.

Definition 1.1.1. Every 2-dimensional subspace Π of TpM is called a tangent plane to M at p.

For v,w ∈ Π let

Q(v,w) = ⟨v, v⟩⟨w,w⟩ − ⟨v,w⟩2 = det(
⟨v, v⟩ ⟨v,w⟩
⟨v,w⟩ ⟨w,w⟩

) .

From [3], 1.1.3, we know that

Π non-degenerate (∶ ⇐⇒ g∣Π non-degenerate) ⇐⇒ Q(v,w) ≠ 0 for any basis {v,w} of Π.

Moreover, using ONB (exists by [3], 1.1.12), we have

Q(v,w) > 0 ⇐⇒ g∣Π is definite and

Q(v,w) < 0 ⇐⇒ g∣Π is indefinite.

It is easy to calculate Q(v,w) for v = e1 and w = e2 , where {e1, e2} is an ONB.
On the other hand, for v = ax + by and w = cx + dy by an easy calculation we get

Q(v,w) = (ad − bc)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

Q(x, y),

which shows that the sign of Q is independent of basis.

Lemma 1.1.2 (Sectional Curvature). Let Π be a non-degenerate tangent plane of p ∈M , where M is
any SRMF. The sectional curvature of Π

K(v,w) ∶=
⟨Rvwv,w⟩

Q(v,w)

is independent of the choice of basis {v,w} of Π (and so one can also denote it by K(Π)).

Proof. Let {x, y} be another basis of Π. Then there are a, b, c, d ∈ R (ad − bc ≠ 0) such that v = ax + by and
w = cx + dy.

⟨Rvwv,w⟩ = ⟨R(ax+by)(cx+dy)(ax + by), cx + dy⟩

Rxx=0= (ad − bc)⟨Rxy(ax + by), cx + dy⟩

[3], 3.1.2
= (ad − bc)2⟨Rxyx, y⟩

Now Q(v,w) = (ad − bc)2Q(x, y) proves the claim.

Lemma 1.1.3 (Approximation Lemma). Let V be a vector space with scalar product (with possibly
nontrivial signature, see 1.1.4 in [3]) and let v,w ∈ V . Then there exist v,w arbitrarily near v,w such
that v, w span a non-degenerate plane.
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Proof. Without loss of generality we may assume that v and w are linearly independent and that they span
a degenerate plane. If ⟨v, v⟩ = 0 (i.e. if v is a null vector) choose x with scalar product ⟨x, v⟩ ≠ 0 (note that
such an x exists since ⟨⋅, ⋅⟩ is non-degenerate). If v is not a null vector (i.e. if it is timelike or spacelike)
choose x with a different causal character from that of v. In both cases we have Q(v, x) < 0:

if ⟨v, v⟩ = 0 Ô⇒ Q(v, x) = −⟨v, x⟩2 < 0 and

if ⟨v, v⟩ ≠ 0 Ô⇒ Q(v, x) = ⟨v, v⟩⟨x,x⟩ − ⟨v, x⟩2 ≤ ⟨v, v⟩⟨x,x⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
different signs

< 0.

It suffices to show that v and w + δx span a non-degenerate plane for δ small.

Q(v,w + δx)
(⋆)
= Q(v,w)

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=0,

span(v,w) is degenerate

+2bδ + δ2Q(v, x)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
< 0

for some b ∈ R

and so there are two cases, namely, either

b = 0 and Q(v,w + δx) < 0 or

b ≠ 0 and for δ small Q(v,w + δx) ≠ 0.

Finally, we prove (⋆):

Q(v,w + δx) = ⟨v, v⟩(⟨w,w⟩ + 2δ⟨w,x⟩ + δ2⟨x,x⟩) − (⟨v,w⟩ + δ⟨v, x⟩)2

= ⟨v, v⟩⟨w,w⟩ − ⟨v,w⟩2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q(v,w)

+2δ(⟨v, v⟩⟨w,x⟩ − ⟨v,w⟩⟨v, x⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= b

) + δ2(⟨v, v⟩⟨x,x⟩ − ⟨v, x⟩2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q(v,x)

)

Proposition 1.1.4 (K and R). If K = 0 at p (i.e. K(Π) = 0 for every non-degenerate plane in TpM ),
then R = 0 at p (i.e. Rxyz = 0 for all x, y, z ∈ TpM ).

Proof. We proceed in several steps.

1. Claim: ⟨Rvwv,w⟩ = 0 for all v,w ∈ TpM . If Π = span(v,w) is non-degenerate, this follows from
definition of K . Otherwise, by Lemma 1.1.3 there exist vn , wn such that span(vn,wn) is non-degenerate
and vn → v, wn → w. Then

0 = ⟨Rvnwnvn,wn⟩
n→∞
Ð→ ⟨Rvwv,w⟩ .

2. Claim: Rvwv = 0 for all v,w ∈ TpM . This claim follows by polarization. More precisely, for arbitrary x
we have

⟨Rv,w+xv,w + x⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 0, by 1.

= ⟨Rvwv,w⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 0, by 1.

+⟨Rvwv, x⟩ + ⟨Rvxv,w⟩ + ⟨Rvxv, x⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 0, by 1.

.

Therefore, ⟨Rvwv, x⟩ = 0 for all x (since, by pair symmetry, ⟨Rvwv, x⟩ = ⟨Rvxv,w⟩). Finally, non-
degeneracy yields Rvwv = 0.

3. Claim: Rvwx = Rwxv for all v,w, x ∈ TpM . In order to prove this, we use polarization again:

R(v+x)w(v + x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 0, by 2.

= Rvwv
´¹¹¹¸¹¹¶
= 0, by 2.

+ Rxwv
´¹¹¹¸¹¹¶
= −Rwxv

+Rvwx + Rxwx
´¹¹¹¸¹¹¹¶
= 0, by 2.

.
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Finally,

0
1stBianchi i.
= Rvwx

´¹¹¹¸¹¹¹¶
= Rwxv, by 3.

+ Rxvw
´¹¹¹¸¹¹¹¶

= Rvwx = Rwxv, by 3.

+Rwxv = 3Rwxv

and therefore Rxyz = 0 for all x, y, z ∈ TpM i.e. R = 0 at p.

Remark 1.1.5. Recall that a SRMF (M,g) is called flat if R ≡ 0. By Proposition 1.1.4, if K ≡ 0 then (M,g) is
flat.

Example 1.1.6.

1. Rnr is flat. By [3], 1.3.10, ii), since g is constant, Γijk = 0 (1 ≤ i, j, k ≤ n) and so R = 0.

2. Every one-dimensional SRMF is flat. To see this let X,Y ∈ X(M), where M is one-dimensional. Then
Y = f ⋅X , where f ∈ C∞ . Therefore, RXY = fRXX = −fRXX and so RXY = 0.

Definition 1.1.7. A multilinear map F ∶ (TpM)4 → R is called curvature-like if it has the same symmetries as
(x, y, v,w) ↦ ⟨Rxyv,w⟩.

Remark 1.1.8. By the proof of Proposition 1.1.4, we get that F (v,w, v,w) = 0 for all v,w ∈ TpM spanning a
non-degenerate tangent plane at p, which is equivalent to F = 0.

Corollary 1.1.9 (Curvature-like Function). Let F be curvature-like on TpM such that

K(v,w) =
F (v,w, v,w)

Q(v,w)

for all v,w with non-degenerate span. Then

F (v,w, x, y) = ⟨Rvwx, y⟩ , for all v,w, x, y ∈ TpM.

Proof. The map ∆(v,w, x, y) ∶= F (v,w, x, y) − ⟨Rxyv,w⟩ is clearly curvature-like. By assumption,

∆(v,w, v,w) = 0

for all v,w spanning a non-degenerate plane. Remark 1.1.8 now gives the claim.

Remark 1.1.10. In particular, for a given g, if R1 and R2 are Riemann-tensors with K1 =K2 , then

R1(v,w, v,w)

Q(v,w)
=
R2(v,w, v,w)

Q(v,w)
Ô⇒ R1 = R2.

Definition 1.1.11. We say that a SRMF (M,g) has constant curvature if K is constant on M .

Corollary 1.1.12 (R for Constant Curvature). If M has constant curvature K = C , then

RXY Z = C(⟨Z,X⟩Y − ⟨Z,Y ⟩X).

Proof. One easily checks that

F (x, y, v,w) ∶= C(⟨v, x⟩ ⟨y,w⟩ − ⟨v, y⟩ ⟨x,w⟩)

is curvature-like. Moreover, F (v,w, v,w) = C ⋅Q(v,w). If v and w span a non-degenerate tangent plane,
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then

K(v,w) = C =
F (v,w, v,w)

Q(v,w)
.

By Corollary 1.1.9, F (x, y, z,w) = ⟨Rxyz,w⟩ for all v,w, x, z ∈ TpM , which proves the claim.

1.2 Frame Fields

Definition 1.2.1. Let (M,g) be a SRMF.

• A frame at p ∈M is an ONB of TpM .

• If dim(M) = n, then a frame field is an n-tuple E1, . . . ,En of pairwise orthogonal (smooth) vector
fields. (Hence, E1(p), . . . ,En(p) such that ⟨Ei(p),Ej(p)⟩ = ϵjδij ,∀1 ≤ i, j ≤ n provide a frame at any
point p.)

Remark 1.2.2.

• Given a frame field any vector field (by [3], 1.1.13) V ∈ X(M) can be expanded as

V = ∑
i

ϵi ⟨V,Ei⟩Ei, where ϵi = ⟨Ei,Ei⟩ = ±1.

Moreover, for v,w ∈ X(M)
⟨V,W ⟩ = ∑

i

ϵi ⟨V,Ei⟩ ⟨W,Ei⟩ .

• We will prove later that frame fields always exist locally (but maybe not globally).

• Recall that the coordinate vector fields (∂i∣p)i∈{1,...,n} of Riemannian normal coordinate (RNC) system
x1, . . . , xn of p form an ONB at p (but not necessarily at any q ≠ p) and that Γijk(p) = 0 for all
i, j, k (see [3], 2.1.17). Therefore, as long as only pointwise operations are concerned, we may reduce
formulas in frames to coordinate formulas.

Example 1.2.3.

1. Let A ∈ T 0
s (M), E1, . . . ,En a frame field. Then,

(CabA)(X1, . . . ,Xs−2) = ∑
m

ϵmA(X1, . . . , Em
´¸¶
ath sloth

, . . . , Em
´¸¶
bth sloth

, . . . ,Xs−2). (1.2.1)

Indeed, since this is an equality of tensor fields, we only need to verify it pointwise. Therefore, let p ∈M
and x1, . . . , xn be RNC at p such that ∂i∣p = Ei∣p (choose ei ∶= Ei∣p in [3], 2.1.17). By multilinearity, we
only need to verify (1.2.1) for Xi = ∂i . But, (1.2.1) reduces to the usual formula for CabA, as given in
[3], (3.2.11), i.e. to

(CabA)j1,...,js−2 = g
mnAj1,..., m

´¸¶
bth sloth

,..., n
´¸¶
bth sloth

,...,js−2 ,

which proves the claim since at p (by [3], 2.1.17) gmn(p) = ϵmδmn .

2. Let A ∶ X(M)s → X(M) be a C∞(M)-multilinear map. Then

(C1
bA)(X1, ...,Xs−1) = ∑

m

ϵm⟨Em,A(X1, . . . , Em
´¸¶
bth sloth

, . . . ,Xs−1)⟩.
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Choose RNC as above and note that dxm(∂i) = δmi = ϵmgim(p) = ⟨ϵm∂m, ∂i⟩. Therefore, (∂m)♭ =
ϵmdx

m (see [3], 1.3.3). As before, we only need to check the equality on coordinate vector fields:

(C1
bA)(∂1, . . . , ∂s−1)

[3], 1.3.15
= ∑

m

A(dxm, ∂1, . . . , ∂m
´¸¶
bth sloth

, . . . , ∂s−1)

[3], (1.3.24)
= ∑

m

dxm(A(∂1, . . . , ∂m, . . . , ∂s−1))

= ∑
m

ϵm(∂m)
♭(A(∂1, . . . , ∂m, . . . , ∂s−1))

= ∑
m

ϵm⟨∂m,A(∂1, . . . , ∂m
´¸¶
Em(p)

, . . . , ∂s−1)⟩.

Remark 1.2.4. Frame fields serve as an alternative tool for tensor calculations, offering an approach dis-
tinct from local coordinates. However, when proving an identity involving derivatives, a pointwise argument
becomes unfeasible. Consequently, determining the most advantageous approach between utilizing frame
advantages and other methods becomes a case-by-case decision.

⟨Ei,Ej⟩ = δijϵj (instead of ⟨∂i, ∂j⟩ = gij)

or use the advantages of a coordinate basis, for example

[∂i, ∂j] = 0 (but [Ei,Ej] ≠ 0).

We initiate our discussion on the local existence of frames by initially focusing on frames along a curve.

Definition 1.2.5. Given a C∞-curve α ∶ I → M we call a system E1, . . . ,En ∈ X(α) (where Ei ∶ I → TM ,
π ○Ei = α, see here [3], 1.3.26) a frame field along α if {Ei(t)}i=1,...,n is an ONB of Tα(t)M, ∀t ∈ I .

Such frames always exist.

Proposition 1.2.6 (Parallel Frames). Let α ∶ I →M be a C∞-curve and e1, ..., en an ONB at α(t0) for
some t0 ∈ I . Then there exists a unique parallel frame field E1, . . . ,En along α such that Ei(t0) = ei
for all 1 ≤ i ≤ n.

Recall that parallel means that induced covariant derivatives of all Ei vanish along α (see [3], after
(1.3.55)) i.e.

E′i(t) =
∇Ei
dt
= 0

where

Z ′ = (
dZk

dt
+ Γkijα̇

jZi)∂k∣
c(t)

.

Proof. By [3], 1.3.28, there exist unique parallel vector fields Ei ∈ X(α) with Ei(t0) = ei for all 1 ≤ i ≤ n.
Parallel transport is an isometry ([3], 1.3.30) and so E1(t), . . . ,En(t) is an ONB for all t ∈ I .

Corollary 1.2.7 (Local Frames). Every p ∈ M possesses a neighborhood on which there is a frame
field.
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Proof. Let {e1, . . . , en} be an ONB of TpM . Choose a small normal neighborhood U around p ([3], 2.1.14).
For any radial geodesic ([3], 2.1.15) γ emanating from p we parallel transport {e1, . . . , en} and get a frame
field E1, . . . ,En on U (Proposition 1.2.6). Parallel transport is given as the solution to an IVP of a (linear) ODE
([3], 1.3.28) so the Ei depend smoothly on parameters and initial data. Therefore, E1, . . . ,En ∈ X(U).

In summary, within a local context, we constantly have access to both coordinates and frame fields,
allowing us the flexibility to employ whichever best suits our calculations. Let’s continue by exploring additional
examples.

Example 1.2.8.

1. Divergence. For X ∈ X(M)
divX = C(∇X) ∈ C∞(M),

(see, [3] 3.2.7). In a frame this equation takes the following form:

divX = ∑
i

ϵi ⟨∇EiX,Ei⟩ .

Indeed, choosing RNC at a point p with ∂i∣p = Ei∣p , we get

C(∇X)∣p = ∇X(dxi, ∂i)∣p = ∇∂iX(dx
i)∣p = dx

i(∇∂iX)∣p
1.2.3,2.
= ∑

i

ϵi ⟨∇∂iX,∂i⟩ = ∑
i

ϵi ⟨∇EiX,Ei⟩ .

2. Ricci-tensor. The Ricci-tensor is defined as Ric = C1
3(R) (see 3.3.1 in [3]). In a frame, it takes the form

Ric(X,Y ) = ∑
m

ϵm ⟨RXEmY,Em⟩

since

Ric(X,Y ) = C1
3(R)(X,Y )

1.2.3
= ∑

m

ϵm ⟨Em,R(X,Y,Em)⟩

= ∑
m

ϵm ⟨RY EmX,Em⟩ = ∑
m

ϵn ⟨RXEmY,Em⟩ ,

where in the third equality we used the convention from 3.2.4 in [3] and in the fourth pair symmetry
(i.e. property 4. from the beginning of this section).

1.3 Semi-Riemannian Submanifolds

In this section, our focus lies on studying the (M,g) of a SRMF (M,g). Let j ∶M ↪M be the inclusion.
Then g = j∗g.



CHAPTER 1. PRELIMINARIES 11

We write ⟨⋅, ⋅⟩ for both g and g. Our goal is to relate curvature quantities in M and M . We will compare
∇ with ∇, R with R, et cetera.

Definition 1.3.1. Let M ⊆M be a smooth submanifold of a SRMF. Then we call X a vector field on j ∶M ↪M
(i.e. X ∶M → TM is such that πM ○X = j , compare with [3], 1.3.26)

TM

M M

π
M

X

j

an M-vector field on M .
Furthermore, we write

X(M) ∶= {X ∈ C∞(M,TM) ∶X is a vector field over j}.

Remark 1.3.2.

• X ∈ X(M) assigns to each p ∈ M some Xp ∈ TpM in a smooth way i.e. for all f ∈ C∞(M),
X(f) ∈ C∞(M). Hence, the set X(M) is a C∞(M)-module. X(M) is a submodule of X(M). Also, if
X ∈ X(M), then X ∣M ∈ X(M) (but, in general, not in X(M)).

• Since M is a SRSMF, by definition g∣TpM = j
∗g(p) is non-degenerate and hence TpM ⊆ TpM is

non-degenerate (see [3], p.5), so
TpM = TpM ⊕ TpM

�. (1.3.1)

Moreover, TpM� is non-degenerate as well ([3], 1.1.10) and the dimension of TpM� is the codimension
of M in M . The index of g∣TpM� is called the coindex of M in M . We have

ind(M) = ind(M) + coind(M)

(see [3], 1.1.15).

• We call elements of TpM tangential to M and those of TpM� normal to M . By (1.3.1) every x ∈ TpM
has a unique decomposition

x = tan(x)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
∈ TpM

+nor(x)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
∈ TpM

�

and we denote the respective orthonormal projections by tan ∶ TpM → TpM and nor ∶ TpM → TpM
�.

Those are clearly R-linear.

Definition 1.3.3. A vector field Z is called normal to M if Zp ∈ TpM� for all p ∈M .

Remark 1.3.4. The set of all such vector fields X(M)� is also a C∞(M)-submodule of X(M).

Lemma 1.3.5 (Hicks, 1963.). Let Mn ⊆M
n+k

be a SRSMF and p ∈M . Then there exists a neighbor-
hood W of p and E1, . . . ,En+k ∈ X(W ) such that for all q ∈ W (Ei∣q)i=1,...,n is an ONB TqM and
(Ei∣q)j=n+1,...,k is an ONB of TqM� .

Proof. For M a RMF consider an adapted chart (x1, . . . , xn+k) around p and apply Gram-Schmidt to
{∂1, . . . , ∂n+k}. For general SRMF M there might be null-vectors (during Gram-Schmidt process we nor-
malize vectors, which could result in division by zero). Let X1, . . . ,Xn+k be an ONB for TpM such that
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X1, . . . ,Xn is an ONB for TpM and Xn+1, . . . ,Xn+k an ONB for TpM� (see [3], 1.1.12).

1. There exists a chart (φ = (x1, . . . , xn+k), Ũ) of M at p such that ∂
∂xi ∣p =Xi where 1 ≤ i ≤ n + k.

To see this, let (φ̃, Ũ) be any chart of M at p and let Yi ∶= Tpφ̃(Xi)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ Rn+k

. Let A ∈ GL(n + k) be such that

A ⋅Yi = ei =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮
1
´¸¶
ith place

⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for all i ∈ {1, . . . , n+ k} and φ ∶ Ũ → Rn+k where φ(q) = A ⋅ φ̃(q). Then (φ, Ũ) is

a chart at p and Tpφ(Xi) = A ⋅ Tpφ̃(Xi)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= Yi

= ei , which implies that Xi = (Tpφ)
−1(ei) =

∂
∂xi ∣p .

2. There exists an adapted chart of M ψ = (y1, . . . , yn+k) at p such that ∂
∂yi
∣p = Xi , for all 1 ≤ i ≤ n.

Indeed, let φ be as in 1. and write

φ = (x1, . . . , xn, xn+1, . . . , xn+k) ≡ (φ′, φ′′) = ( pr1
´¸¶

Rn+k → Rn

○ φ,pr2 ○ φ).

∂
∂xi ∣p =Xi are linearly independent and so Tp(φ′∣M) is invertible. We have Tpφ(Xi) = ei for 1 ≤ i ≤ n,
and Xi is a basis of TpM . Hence,

Tp(φ
′∣M)(Xi) = Tp(pr1 ○ φ∣M)(Xi) = pr1 ○ Tp(φ∣M)(Xi) = pr1 ○ Tpφ(Xi) = ei

for 1 ≤ i ≤ n, implying that φ′ a chart of M at p. Without loss of generality φ(p) = 0 ∈ Rn+k .
Furthermore, we can pick a > 0 so small that

φ′ ∶ U → {x ∈ Rn ∶ ∣xi∣ < a for 1 ≤ i ≤ n}

is bijective (Inverse Function Theorem). Making a even smaller we can also have that

φ ∶ Ũ → {x ∈ Rn+k ∶ ∣xi∣ < a for 1 ≤ i ≤ n}

is bijective.
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For q ∈ Ũ let π(q) be the (unique) element of U such that

φ′(π(q)) = φ′(q) (1.3.2)

i.e. π(q) = (φ′∣U)−1(φ′(q),0). Therefore, π is well-defined as well as smooth since

φ′∣U ○ π
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

pr1 ○φ

○φ−1 = pr1.

Let ψ = (y1, . . . , yn+k) be as follows:
⎧⎪⎪
⎨
⎪⎪⎩

ψ′ = φ′

ψ′′ = φ′′ − φ′′ ⋅ π.

Note that ψ is smooth on Ũ . We prove that

U = {q ∈ Ũ ∶ yn+1(q) = ⋅ ⋅ ⋅ = yn+k(q) = 0} = {q ∈ Ũ ∶ ψ′′(q) = 0}.

If ψ′′(q) = 0 for some q ∈ Ũ then φ′′(q) = φ′′(π(q)) and φ′(q) = φ′(π(q)) (see (1.3.2)). Therefore,

φ(q) = φ(π(q)) and so, since φ is a chart, q = π(q) ∈ U .

Conversely, if q ∈ U since π∣U = id, we are done.
Tpψ = (Tpφ

′, Tpφ
′′ − Tπ(p)φ

′′ ⋅ Tpπ), where π(p) = p since p ∈ U . For 1 ≤ i ≤ n

Tpφ(Xi) = (
Tpφ

′(Xi)
Tpφ

′′(Xi)
) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮
1
´¸¶
ith place

⋮
0
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for all i ∈ {1, . . . , n}

and so Tpφ
′′(Xi) = 0 for 1 ≤ i ≤ n. Since {Xi}i=1,...,n are a basis for TpM , Tpφ′′∣TpM = 0 and

Tpφ
′′ ○ Tpπ

´¸¶
TpM→TpM

= 0. Therefore,

Tpψ = Tpφ

(in particular, ψ is a chart around p), Tpψ(Xi) = Tp(Xi) = ei for 1 ≤ i ≤ n + k and so Xi =
∂
∂yi
∣p .

3. Existence of Ei .
Shrink Ũ so that ⟨ ∂

∂yi
, ∂
∂yi
⟩ is near ±1 for all i and ⟨ ∂

∂yi
, ∂
∂yj
⟩ ≈ 0. Now apply Gram-Schmidt:

E1 =
∂

∂y1

E2 = ∂y2 −

≈ 0

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⟨∂y2,E1⟩

⟨E1,E1⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≈ 1

E1 Ô⇒ ⟨E2,E2⟩ ≈ ⟨∂y2 , ∂y2⟩ ≈ ±1

E3 = ∂y2 −
⟨∂y3,E1⟩

⟨E1,E1⟩
E1 −

⟨∂y3,E2⟩

⟨E2,E2⟩
E2 Ô⇒ ⟨E3,E3⟩ ≈ ⟨∂y3 , ∂y3⟩ ≈ ±1
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Remark 1.3.6. As a consequence of the previous lemma, we have that for every X ∈ X(M)

X =
n

∑
i=1
ϵi ⟨X,Ei⟩Ei

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
tan(X)

+
n+k
∑
i=n+1

ϵi ⟨X,Ei⟩Ei

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nor(X)

where tan(X) ∈ X(M) and nor(X) ∈ X(M)� . In other words, X(M) = X(M) ⊕X(M)� .

Moving forward, both V and W will consistently denote tangential vector fields to M , whereas Z will
consistently represent a normal vector field.

Lemma 1.3.7 (Extensions of Functions and Vector Fields). Let Mm , Nn be C∞-manifolds, j ∶M → N
an immersion and p ∈M . Then

1. for all f ∈ C∞(M) there exists f̃ ∈ C∞(N) such that near p

f = f̃ ○ j.

2. for all X ∈ X(j) there exists X̃ ∈ X(N) such that near p

X = X̃ ○ j.

Proof.

1. From [2] we know that there exist charts φ of p and ψ of j(p) such that pr ○ ψ ○ j = φ where pr is a
suitable projection from Rn to Rm . Choose f̃ ∈ C∞(N) such that near j(p)

f̃ = f ○ φ−1 ○ pr ○ ψ

(use a partition of unity). Then near p

f̃ ○ j = f ○ φ−1 ○ pr ○ ψ ○ j
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= φ

= f.

2. Locally around p we have X(q) = f i(q)∂yi ∣j(p) where the yi are coordinates with respect to ψ and f i

are C∞(M)-functions. Extend f i to f̃ i as in 1. and set X̃ = f̃ i∂yi . Then X̃ ○ j =X near p.

We now want to find a ’connection’

∇ ∶ X(M) ×X(M) → X(M)

induced by the connection ∇ on M . However, for V ∈ X(M) and X ∈ X(M) ∇VX is a priori not defined
since ∇ expects arguments from X(M). The idea is to extend X and V as in Lemma 1.3.7 to vector fields
X and V and set

∇VX ∶= ∇VX ∣M , where V ,X ∈ X(M). (1.3.3)

Lemma 1.3.8 (Induced Connection). The map defined in (1.3.2) is well-defined i.e. it does not depend
on the choice of extensions V , X of V and X . It is called the induced connection of M on M .
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Proof. ∇VX is smooth since V ,X ∈ X(M) (see [3], 1.3.1). To show independence of the choices of V and
X fix p ∈M and pick an adapted chart (U , x1, . . . , xn+k) of M around p (dimM = n, dimM = n+ k). Then

V = V i∂i,X =X
j∂j where V i ∈ C∞(M ∩ U) for 1 ≤ i ≤ n and Xi ∈ C∞(M ∩ U) for 1 ≤ i ≤ n + k

and

V = Ṽ i∂i where Ṽ i ∈ C∞(U), Ṽ i∣M∩U = V
i

X = X̃j∂j where X̃j ∈ C∞(U), X̃j ∣M∩U =X
j .

For q ∈M ∩ U
V q(X̃

j) = Ṽ i(q)
´¹¹¹¹¸¹¹¹¹¶
=

V i(q)

∂i∣q(X̃
j)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=

∂i∣q(Xj)
for 1≤i≤n

= Vq(X
j) (1.3.4)

and moreover
∇V (∂j)∣q = ∇V q

(∂j) = ∇Vq(∂j), (1.3.5)

where in the first equality we used the fact that connection is always tensorial in the first slot. Finally,

(∇V X
´¸¶
= X̃j∂j

)∣q
RG, 1.3.1
= V (X̃j)∣q∂j ∣q + X̃

j(q)∇V (∂j)
(1.3.4),(1.3.5)

= Vq(X
j)∂j ∣q +X

j(q)∇Vq(∂j)

and so we see that ∇VX only depends on V and X .

Proposition 1.3.9 (Properties of the Induced Connection). The induced connection ∇ ∶ X(M) ×
X(M) → X(M) on M ⊆ M has the following properties for V,W ∈ X(M), X,Y ∈ X(M) and
f ∈ C∞(M):

(∇1) ∇VX is C∞(M)-linear in V ,

(∇2) ∇VX is R-linear in X ,

(∇3) ∇V (fX) = V (f)X + f∇VX (Leibniz rule),

(∇4) [V,W ] = ∇VW −∇WV (torsion-free condition),

(∇5) V ⟨X,Y ⟩ = ⟨∇VX,Y ⟩ + ⟨X,∇V Y ⟩ (metric property).

Proof. Locally extend V,W,X,Y to vector fields V ,W,X,Y on M . Then for V ,W,X,Y properties (∇1) −
(∇5) of ∇ are satisfied. The result follows from following observations:

1. ∇VX ∣M = ∇VX holds by definition (see (1.3.3)).

2. V (f̃)∣M = V (f) (see (1.3.4)).

3. ⟨X,Y ⟩ ∣M = ⟨X,Y ⟩ (M is a SRSMF of M ).

4. [V ,W ]∣M = [V,W ] (since V ∼j V , W ∼j W , we get [V,W ] ∼j [V ,W ]; see [2], 2.3.16).

Note that for V,W ∈ X(M), ∇VW ∉ X(M) since the derivative might have non-tangential directions (see
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[2], Section 3.2). Consequently, our interest lies in studying both tan(∇VW ) and nor(∇VW ). We’ll discover
that tan(∇VW ) corresponds to something already familiar, while nor(∇VW ) introduces a new concept.

Proposition 1.3.10 (tan∇). Let V,W ∈ X(M) and M be a SRSMF of M . Then we have

tan(∇VW ) = ∇VW,

where ∇ is Levi-Civita connection on M .

Proof. Let X ∈ X(M) and choose extensions V ,W and X , as in Lemma 1.3.7. Then by the Koszul formula
for M ([3], (1.3.10))

2 ⟨∇VW,X⟩ = V ⟨W,X⟩ +W ⟨X,V ⟩ −X ⟨V ,W ⟩ − ⟨V , [W,X]⟩ + ⟨W, [X,V ]⟩ + ⟨X, [V ,W ]⟩

=∶ F (V ,W,X). (1.3.6)

As in the proof of Proposition 1.3.9, we find that

⟨∇VW,X⟩ ∣M
3.
= ⟨∇VW ∣M ,X ∣M ⟩

1.
= ⟨∇VW,X⟩ ,

(V ⟨W,X⟩)∣M
2.
= V (⟨W,X⟩ ∣M)

3.
= V ⟨W,X⟩ ,

⟨V , [X,W ]⟩ ∣M
3.
= (⟨V, [X,W ]∣M ⟩)

4.
= ⟨V, [X,W ]⟩ .

So the restriction of equation (1.3.6) gives

2 ⟨∇VW,X⟩ = F (X,Y,Z) = 2 ⟨∇VW,X⟩ Ô⇒ ⟨∇VW,X⟩ = ⟨∇VW,X⟩ ,

where r.h.s. Koszul formula characterizes Levi-Civita connection on M (see [3], 1.3.4). Finally, since X is
tangential (X ∈ X(M)!), we have

⟨∇VW,X⟩ = ⟨tan∇VW + nor∇VW,X⟩ = ⟨tan∇VW,X⟩ ,

which, because of non-degeneracy, implies that tan∇VW = ∇VW .

Lemma 1.3.11 (Second Fundamental Form). The mapping

I ∶ X(M) ×X(M) → X(M)�

I(V,W ) = nor(∇VW )

is C∞(M)-bilinear and symmetric. We call it the second fundamental form or shape tensor of M in
M .

Proof. C∞(M)-linearity in V and R-linearity in W follow from (∇1) and (∇2) of ∇VW in Proposition 1.3.9.
To prove C∞(M)-linearity, we will need

∇(fW )
(∇3)
= V (f)W + f∇VW

from Proposition 1.3.9 in order to obtain

I(V, fW ) = nor(∇(fW )) = V (f)norW
´¹¹¹¹¹¸¹¹¹¹¶
= 0

+fnor(∇VW ) = fI(V,W ),



CHAPTER 1. PRELIMINARIES 17

where the second equality holds because nor is C∞(M)-linear. Lastly, we prove symmetry:

I(V,W ) − I(W,V ) bilinearity
= nor(∇VW −∇WV )

(∇4)
= nor([V,W ]) = 0,

since [V,W ] ∈ X(M).

Remark 1.3.12. Even though I is not a tensor field on M (since it takes values in X(M)�), C∞(M)-bilinearity
still implies, akin to the tensor case, that I behaves as a ’pointwise object’. This implies the ability to insert
individual tangent vectors into it. Therefore, I(V,W )∣p depends only on V (p) and W (p) (proof as in the
tensor case, see [2], 4.1.19). Consequently, at any point, I defines a bilinear map:

Ip ∶ TpM × TpM → TpM
�

(v,w) ↦ Ip(v,w).
By Proposition 1.3.9 and 1.3.10, we have that

∇VW = tan(∇VW ) + nor(∇VW ) = ∇VW
´¹¹¹¹¸¹¹¹¹¶
X(M)

+ I(V,W )
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
X(M)�

, ∀V,W ∈ X(M) (1.3.7)

We derive the fundamental result concerning the curvature of SRSMF, known as the Gauss equation,
from this observation.

Theorem 1.3.13 (Gauss Equation). Let M be a SRSMF of M with Riemann tensors R and R, respec-
tively. Then ∀V,W,X,Y ∈ X(M)

⟨RVWX,Y ⟩ = ⟨RVWX,Y ⟩ + ⟨I(V,X), I(W,Y )⟩ − ⟨I(V,Y ), I(W,X)⟩ .

Proof. This is a tensor identity (in the slightly generalized sense of the previous remark) and so we can
argue pointwise. We can assume that [V,W ] = 0 (see the proof of [3], 3.1.2). Then

⟨RVWX,Y ⟩ = −(VW ) + (WV ),

where

(VW ) ∶= ⟨∇V∇WX,Y ⟩

(1.3.7)
= ⟨∇V∇WX,Y ⟩ + ⟨∇V I(W,X), Y ⟩

1.3.10,(∇5)
= ⟨∇V∇WX,Y ⟩ + (V ⟨I(W,X), Y ⟩ − ⟨I(W,X),∇V Y ⟩)

= ⟨∇V∇WX,Y ⟩ (0 − ⟨I(W,X),nor(∇V Y )⟩)

= ⟨∇V∇WX,Y ⟩ − ⟨I(W,X), I(V,Y )⟩

where in the third equality the normal part vanishes because Y is tangential. Finally, we obtain

⟨RVWX,Y ⟩ = (WV ) − (VW )

= ⟨(∇W∇V −∇V∇W )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

RV WX

X,Y ⟩ − ⟨I(V,X), I(W,Y )⟩ + ⟨I(W,X), I(V,Y )⟩

As the Gauss equation represents a tensor identity, we have the flexibility to insert individual tangent
vectors into the equation.
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Corollary 1.3.14 (Gauss Equation for K). Let v,w ∈ TpM span a non-degenerate tangent plane of
M . Then

K(v,w) =K(v,w) +
⟨I(v, v), I(w,w)⟩ − ⟨I(v,w), I(v,w)⟩

Q(v,w)
.

Definition 1.3.15. Since I is a (0,2)-tensor with values in X(M)� it can be metrically contracted to give a
normal tensor field on M . The result of this contraction is called the mean curvature vector field. At p in
M it is given by

Hp ∶=
1

n
∑ ϵiI(ei, ei),

where n is the dimension of M and e1, . . . , en any frame of TpM (see here Example 1.2.3, 2.).

Example 1.3.16 (Sectional Curvature of Spheres). Sectional curvature of the n-sphere Sn(r) ∶= {x ∈ Rn+1 ∶
∥x∥ = r} is given by

K =

⎧⎪⎪
⎨
⎪⎪⎩

0, n = 1
1
r2
, n ≥ 2.

Indeed, in the case of n = 1 the result is clear from Example 1.1.6 (2.). Therefore, let n ≥ 2 and denote by

P (u) =
n+1
∑
i=1

ui∂i

the position vector field on Rn+1 . Then P�Sn(r) at every point of Sn(r). Let ∇ be the (flat) connection on
Rn+1 . For all ∑n+1i=1 X(u

i) =X ∈ X(Rn+1) (like in [3], 1.3.10), we have

∇XP =
n+1
∑
i=1
(X(ui)∂i + u

i∇∂i(P )
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
= 0

) =X.

Let U ∶= 1
r
P be the outer unit vector field on Sn(r). Then

⟨I(V,W ), U⟩ = ⟨nor∇VW, U
´¸¶
∈ X(Sn)�

⟩ = ⟨∇VW,U⟩ =
1

r
⟨∇VW,P ⟩

(∇5)
= −

1

r
⟨W,∇V P ⟩ = −

1

r
⟨V,W ⟩ ,

where the fourth equality follows from (∇5) since 0 = V ⟨ W
´¸¶
∈ TpM

, P
´¸¶
∈ TpM

�

⟩. Since I(V,W ) ∈ X(Sn(r))� , it is

proportional to U . Hence,

I(V,W ) = −
1

r
⟨V,W ⟩U.

Since Rn+1 is flat (K = 0), we obtain the following result from Corollary 1.3.14:

K(v,w) = 0 +
1
r2
(⟨v, v⟩

= 1

³¹¹¹·¹¹µ
⟨u,u⟩ ⟨w,w⟩ − ⟨v,w⟩

2
)

⟨v, v⟩ ⟨w,w⟩ − ⟨v,w⟩
2

=
1

r2
.

As seen in the previous example, specific simplifications arise when M has a codimension of 1. We will
explore this scenario in the upcoming discussion.
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1.4 Semi-Riemannian Hypersurfaces (SRHSF)

Definition 1.4.1.

• A semi-Riemannian hypersurface (SRHSF) M of M is a SRSMF of codimension 1.

• The index of all the 1-dimensional spaces TpM� is called co-index of M and it takes values in 0 or 1.

Definition 1.4.2. The signum ϵ of a SRHSF M of M is:

+1, if the coindex of M is 0 i.e. if for all p ∈M and for all 0 ≠ z ∈ TpM�

⟨z, z⟩ > 0.

−1, if the coindex of M is 1 i.e. if for all p ∈M and for all 0 ≠ z ∈ TpM�

⟨z, z⟩ < 0.

Remark 1.4.3. We have that

ind(M) = ind(M) ⇐⇒ ϵ = 1 and ind(M) = ind(M) − 1 ⇐⇒ ϵ = −1.

If M is Riemannian, all SRHSFs are of signum 1 and hence M is also Riemannian. We call it Riemannian
hypersurface (RHSF). If M is Lorentzian (i.e. if M has index equal to 1 according to [3], text under 1.2.1),
we call M :

• spacelike if ϵ = −1 (i.e. if M is Riemannian) and

• timelike if ϵ = 1.

Hypersurfaces are often defined as zero sets of regular functions.

Proposition 1.4.4 (SRHSFs as Zero Sets). Let f ∈ C∞(M), c ∈ f(M). Let M ∶= f−1(c) and assume
that ⟨grad(f),grad(f)⟩ > 0 or ⟨grad(f),grad(f)⟩ < 0 for all p ∈M . Then M is a SRHSF of M with

signum(M) = sgn ⟨grad(f),grad(f)⟩

and U ∶= grad(f)
∥grad(f)∥ is a unit normal vector for M .

Proof.
grad(f)∣p ≠ 0Ô⇒ df ∣p ≠ 0, ∀p ∈M Ô⇒ f is regular

and therefore M is a codimension 1 sub-manifold of M
n+1

(see [2], 1.1.8). For every v ∈ TpM , we have that

⟨grad(f), v⟩ = v(f) = v(f ∣M
´¸¶
= c

) = 0 (1.4.1)

i.e. grad(f)∣p ∈ TpM� . Since TpM� is 1-dimensional, grad(f)∣p spans it. To show that TpM is non-degenerate
it is (by [3], 1.1.10) enough to show that TpM� is non-degenerate. Indeed, let v,w ∈ TpM� . Then there exist
λ,µ ∈ R such that v = λ ⋅ grad(f)∣p and v = µ ⋅ grad(f)∣p . If ⟨v,w⟩ = 0 for all w ∈ TpM� , then

λµ ⟨grad(f),grad(f)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≠ 0

= 0 ∀µ,
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λ = 0 and, consequently, v = 0. Finally, 1
∥grad(f)∥grad(f) = U ∈ TpM� by (1.4.1).

Remark 1.4.5. If M is Lorentzian then, if grad is spacelike, M is timelike and, if grad is timelike, M is
spacelike.

Example 1.4.6.

1. Let f ∶ Rn+1 → R such that
f(u) = ∑(u

i)2.

Then f−1(r2) = Sn(r). Sn(r) is Riemannian since M = Rn+1 .
Also note that grad(f) = 2P , where P is position vector field from Example 1.3.16.

2. Observe that not every SRHSF is (globally) a level set of a C∞-function f (for example, Möbius strip).
However, locally, every SRHSF is of this form.

For SRHSFs the second fundamental form I can be described in simpler terms. Let U be a unit normal
vector field, p ∈M and V ∈ X(M). Then

TpM ∋ w ↦ ⟨I(Vp,w), Up⟩ ∈ R

is linear. Hence, there exists a unique vector S(V )p ∈ TpM such that

⟨S(V )p,w⟩ = ⟨I(Vp,w), Up⟩ , ∀w ∈ TpM.

Varying p we obtain S(V ) ∈ X(M) via a local frame Ei of M :

S(V ) = ∑
i

ϵi ⟨S(V ),Ei⟩Ei = ∑
i

ϵi ⟨I(V,Ei), U⟩Ei

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ C∞

.

Moreover, V ↦ S(V ) is C∞(M)-linear, hence S(V ) ∈ T 1
1 (M).

Definition 1.4.7. Let U be a unit normal vector field of the SRHSF M in M . The (1,1)-tensor field S with

⟨S(V ),W ⟩ = ⟨I(V,W ), U⟩ , ∀V,W ∈ X(M)

is called the shape operator (derived from U ) of M in M .

Lemma 1.4.8 (Form of the Shape Operator). Let S be the shape operator derived from U . Then

S(v) = −∇vU, ∀v ∈ TpM, where p ∈M

and Sp ∶ TpM → TpM is self-adjoint.

Proof. Let V,W ∈ X(M). Then

⟨S(V ),W ⟩
1.4.7
= ⟨I(V,W ), U⟩ = ⟨∇VW,U⟩ = − ⟨W,∇V U⟩ Ô⇒ S(V ) = −∇V U,

where the second equality holds since U is normal and the third one follows from (∇5) since V ⟨W,U⟩
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
= 0

= 0.

Finally, self-adjointness follows from symmetry of I (see Lemma 1.3.11)

⟨S(V ),W ⟩ = ⟨I(V,W ), U⟩ = ⟨I(W,V ), U⟩ = ⟨S(W ), V ⟩ .
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Remark 1.4.9.

1. S describes the shape of M in M ; ∇V U is the change of U in direction V . It describes the behavior
of U and hence also of TpM .

2. In classical terminology, sometimes the (0,2)-tensor

B ∶=↓11 S

is called 2nd fundamental form.

3. If U is only locally defined and we replace U by −U , S changes sign as well. Therefore, even if there
is no global unit normal vector field S is determined up to sign.

We close this section by deriving the form of the sectional curvature for SRHSF.

Corollary 1.4.10 (Gauss Equation). Let S be the shape operator of a SRHSF M ⊆M . If v,w span a
non-degenerate tangent plane in TpM then

K(v,w) =K(v,w) + ϵ
⟨Sv, v⟩ ⟨Sw,w⟩ − ⟨Sv,w⟩

2

Q(v,w)
.

Proof. Up is an ONB of TpM� . Therefore,

TpM
� ∋ I(v,w) = ϵ ⟨I(v,w), Up⟩Up = ϵ ⟨Sv,w⟩Up.

Insert this into Corollary 1.3.14 and note that ⟨Up, Up⟩ = ϵ.

1.5 Geodesics in SRMFSs

We’ll start by adapting ∇VW = ∇VW + I(V,W ) to vector fields on curves.

Proposition 1.5.1. Let α ∶ I →Mn ⊆M be a C∞-curve and let Y ∈ X(α) with Y (t) ∈ Tα(t)M for all
t ∈ I (i.e. Y is tangential to M ). Then

Ẏ = Y ′

´¸¶
tangent

+ I(α′, Y )
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

normal

.

Here

Ẏ (s) =
∇Y

ds
and Y ′(s) =

∇Y

ds
.
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(Note that α̇ = α′ = dα
ds

.)

Proof. Without loss of generality assume that α lies in a single adapted chart domain of M . Then

Y =
n

∑
i=1
Y i∂i∣α, where Y i ∶ I → R.

[3] 1.3.27. implies that

Ẏ =
n

∑
i=1

dY i

ds
∂i∣α +

n

∑
i=1
Y i(∂i∣α) ˙ .

Now
(∂i∣α) ˙ = ∇α′(∂i)

(1.3.7)
= ∇α′(∂i) + I(α′, ∂i)

where the first equality holds by [3], 1.3.27, (iii). Therefore,

Ẏ =
n

∑
i=1

dY i

ds
∂i∣α +

n

∑
i=1
Y i∇α′(∂i∣α) +

n

∑
i=1
Y iI(α′, ∂i∣α)

proves the claim since, by [3], 1.3.27,

n

∑
i=1

dY i

ds
∂i∣α +

n

∑
i=1
Y i∇α′(∂i∣α) = Y

′

and ∑ni=1 Y
iI(α′, ∂i∣α) = I(α′, Y ).

Corollary 1.5.2 (Acceleration). Let α ∶ I →M ⊆M be a C∞-curve. Then

α̈ = α′′ + I(α′, α′),

where α̈ denotes acceleration in M and α′′ acceleration in M .

Proof. From Proposition 1.5.1 (recalling that α̇ = α′) we get that

α̈ = (α̇)′ + I(α′, α̇) = α′′ + I(α′, α′).

Remark 1.5.3. This gives us another nice way of seeing that I describes the shape of M in M . Let p ∈ M ,
v ∈ TpM and γv an M-geodesic with γv(0) = p and γ′v(0) = v. Then γv is ’straight’ in M i.e. γ′′v = 0. Therefore,
all curvature of γv in M comes from it being forced to stay in M i.e., by Corollary 1.5.2, γ̈v(0) = I(v, v).
According to Corollary 1.5.2 a curve γ is an M-geodesic if and only if γ̈ is normal to M . Indeed, assume γ
is an M-geodesic. Then

γ̈ = γ′′ + I(γ′, γ′),

where γ′′ = 0 since γ is an M-geodesic. Therefore, γ̈ is an element of TpM� . Conversely,

γ′′ = γ̈ − I(γ′, γ′) ∈ TpM�,
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while γ′′ ∈ TpM . Therefore, γ′′ = 0 and so γ is an M-geodesic.

Therefore, an M-geodesic moves freely within M but experiences a ’force’ normal to M within M that
confines it to remain on M .

Example 1.5.4 (Geodesics on the Sphere). The geodesics on Sn(r) are precisely the great circles (parametri-
zed with constant speed). A great circle on Sn is a circle Π∩Sn where Π is a 2-dimensional plane through
0 ∈ Rn+1 . Let γ be such a curve (parametrized with unit speed). Then

c = ⟨γ̇, γ̇⟩
∇

dt
Ô⇒ ⟨γ̇, γ̈⟩ = 0Ô⇒ γ̈�γ̇ and γ̇, γ̈ ∈ Π.

Let P ∶ x↦ x be the position vector field on Rn+1 . Then Pγ ∈ Π but

Pγ�γ̇ Ô⇒ γ̈ ∝ Pγ Ô⇒ γ̈�Sn Ô⇒ γ is a geodesic by Remark 1.5.3.

Conversely, let γ be a non-constant geodesic on Sn and let Π be the
plane through 0, γ(0) and where γ̇(0) lies. Parametrize Π ∩ Sn as a
suitable constant speed curve α such that α(0) = γ(0) and α̇(0) = γ̇(0).
From the above, α is a geodesic. By unique solvability of the initial value
problem for the geodesic equation, α = γ .

Example 1.5.5 (Exponential Map of Sn at p).

Let v ∈ TpSn . Then expp maps (by Example 1.5.4) the straight line
tv ∈ TpS

n to the great circle through p tangential to v. Hence,

expp(tv) = cos(t)p + sin(t)v.

The (n − 1)-spheres t = constant are mapped to ’spheres of lat-
itude’; hence Sn−1-spheres in Sn which are given by the inter-
sections of Sn with planes normal to the ’axis’ {−p, p}. For t = kπ
(k ∈ Z) these spheres collapse to p and −p, respectively.
We explicitly see that expp is a diffeomorphism (see [3], 2.1.14) of

Dπ = {v ∈ TpS
n ∶ ∥v∥ < π} to Sn/{−p}.

Therefore, Sn/{−p} is a normal neighborhood of p.

Now, we turn our attention to the simplest SRMFSs—those that appear flat when observed from M .

Definition 1.5.6. A SRSMF M of M is called totally geodesic if I = 0 on M .
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Theorem 1.5.7 (Totally Geodesic SRSMF). For a SRSMF M of M the following are equivalent:

1. M is totally geodesic i.e. I = 0.

2. A curve γ in M is an M-geodesic if and only if it is an M-geodesic.

3. Let p ∈M , v ∈ TpM ⊆ TpM . Then the M-geodesic γv (γv(0) = p, γ̇v(0) = v) lies in M initially
i.e. there exists an open interval I ∋ {0} such that γv(t) ∈M for all t ∈ I .

4. Let c be a C∞-curve in M and v ∈ Tc(0)M . Then the M- and the M-parallel transport of v
along c coincide.

Proof.

(1.→ 4.) Let V be the M-parallel vector field along c with V (0) = v. By Proposition 1.5.1

V̇ = V ′ + I(c′, V )
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
= 0

and V is also M-parallel.

(4.→ 2.) From [3] we know that γ is an M-geodesic if and only if γ′ is M-parallel. By assumption, γ′

is M-parallel if and only if γ′ is M-parallel, which is the case if and only if γ is an M-geodesic.

(2. → 3.) Let α ∶ I → M be the M-geodesic with α(0) = γv(0) = p and α′(0) = v. From 2. we have
that α is also an M-geodesic and from in [3] that α = γv ∣I . Observe here that γv can leave M . For
example, consider an open disc in R2 and observe a radial geodesic γv(t) starting at its centre. For
some t, the geodesic leaves the disc.

(3.→ 1.) Let v ∈ TpM . From Corollary 1.5.2 we get that

γ̈v
´¸¶
= 0

= γ′′v
´¸¶
= 0

+I(v, v) Ô⇒ I(v, v) = 0

and so I = 0, by polarization. 0 = I(v +w, v +w) = I(v, v) + 2I(v,w) + I(w,w) = 2I(v,w).

Example 1.5.8. For S2 exactly the great circles are totally geodesic 1-dimensional submanifolds (see property
3. in the above theorem).

In the following result, we demonstrate that the number of totally geodesic SRSMFs is limited.

Proposition 1.5.9. Let M and N be SRMFSs of M that are complete, connected and totally geodesic.
If there is p ∈M ∩N such that TpM = TpN , then M = N .

Proof. By symmetry, it suffices to prove that if M is connected, N complete and both are totally geodesic,
then M ⊆ N . To this end, let γ be an M-geodesic connecting two points, p and q, in M . From Theorem
1.5.7 (2.) it follows that γ is also an M-geodesic. γ̇(0) ∈ TpM = TpN by assumption and so, by Theorem
1.5.7 (3.) γ is an N-geodesic initially. Since N is complete, γ lies in N for all times. Hence, q is in N .
By Theorem 1.5.7 (4.), TqM = TqN (since parallel transport is an isometry by 1.3.30 from [3] and since all
parallel transports agree). Since M is connected, every q ∈M can be reached by a broken geodesic (see
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[3], 2.1.16). Therefore, any point in M lies in N as well, by iterating the above and so M ⊆ N .

Example 1.5.10.

1. Let W be a k-dimensional subspace of Rnr . We call translates W + x, k-planes. The non-degenerate
k-planes are totally geodesic SRSMFs of Rnr by Theorem 1.5.7 (2.). Moreover, by Proposition 1.5.9, they
are the only totally geodesic SRMFSs of Rnr which are complete and connected.

2. The complete, connected, totally geodesic k-dimensional RSMFs of Sn(r) are the k-great spheres i.e.
the intersections W ∩Sn(r) with W , where W is a (k+1)-plane through 0 in Rn+1 . Indeed, W ∩Sn(r)
is totally geodesic: W ∩ Sn(r) is a sphere in W . By Example 1.5.4 geodesics in W ∩ Sn(r) are (parts
of) great circles in W ∩Sn(r), hence in Sn(r). The claim follows from Theorem 1.5.7 (2.). Conversely, if
M is complete, connected, totally geodesic k-dimensional RSMF of Sn(r), then choose a (k+1)-plane
W through 0 such that TpM = Tp(W ∩Sn(r)) (for example, let W ∶= span(TpM,p)). Proposition 1.5.9
implies that M =W ∩ Sn(r).

Definition 1.5.11. A point p inM ⊆M SRSMF is called umbilic if there exists z ∈ TpM� , called normal curvature
vector, such that

I(v,w) = ⟨v,w⟩ z, ∀v,w ∈ TpM.

If M is Riemannian, for every unit vector
u, we find that I(u,u) = z. Consequently, at
an umbilic point, M bends uniformly in all
directions.

In the Lorentzian scenario, I(u,u) = ±z. Hence, within spacelike directions (i.e., when ⟨u,u⟩ = +1), M
bends toward z, while in timelike directions (i.e., when ⟨u,u⟩ = −1), it bends away from z.

Definition 1.5.12. A SRSMF M ⊆M is called totally umbilic if every p ∈M is umbilic.

In this case, we have
I(V,W ) = ⟨V,W ⟩Z, ∀W,V ∈ X(M),

where Z ∈ X(M)� is called the normal curvature vector field of M . It is C∞ since in a local frame of M

p↦ ϵiZ ∣p = ⟨Ei,Ei⟩ ∣p ⋅Zp
def.
= I(Ei,Ei)∣p ∈ C∞.

In particular, a totally geodesic SRSMF (I = 0) is totally umbilic with vanishing Z .

Example 1.5.13. The spheres Sn(r) are totally umbilic with Z = − 1
r
U , see Example 1.3.16.

In the case of hypersurfaces, things simplify significantly. In this scenario, the normal curvature vector
reduces to a scalar quantity.

Proposition 1.5.14 (Characterizing Totally Umbilic SRHSFs). Let M ⊆ M be a SRHSF. The following
are equivalent:

1. M is totally umbilic.

2. The shape operator of M is scalar i.e. for any choice of unit normal vector U there is a scalar
function kU on the domain of U such that

S(V ) = kUV, ∀V ∈ X(M).
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Proof.

(1. → 2.) Let Z be the normal curvature vector field of M in M (i.e. I(V,W ) (⋆)= ⟨V,W ⟩Z). Then for
all V,W ∈ X(M), we have

⟨S(V ),W ⟩
1.4.7
= ⟨I(V,W ), U⟩ (⋆)= ⟨V,W ⟩ ⟨Z,U⟩ = ⟨⟨Z,U⟩V,W ⟩

hence, on the domain of U , S(V ) = ⟨Z,U⟩
´¹¹¹¹¹¹¸¹¹¹¹¹¶
=∶ kU

V .

(2.→ 1.) As in the proof of Corollary 1.4.10,

I(V,W ) = ϵ ⟨I(V,W ), U⟩U = ϵ ⟨S(V ),W ⟩U 2.
= ϵkU ⟨V,W ⟩U.

If we replace U by −U , S(V ) also changes sign (see Definition 1.4.7) and hence k−U = −kU . Z ∶= ϵkUU
is therefore globally well-defined and we have

I(V,W ) = ⟨V,W ⟩Z.

Remark 1.5.15. The function k from the above proposition (defined up to sign) is often called the normal
curvature function of M in M .

1.6 The Normal Connection and the Codazzi-equation

We have studied the map (V,W ) ↦ ∇VW for V,W ∈ X(M), where ∇VW = ∇VW + I(V,W ). We now
want to study geometry normal to M .

Definition 1.6.1. The normal connection of a SRSMF M ⊆M is the mapping ∇� ∶ X(M)×X(M)� → X(M)� ,
where

∇�V Z ∶= nor(∇V Z), ∀V ∈ X(M), Z ∈ X(M)
�.

Remark 1.6.2. ∇�V Z is also called the cormal covariant derivative (of Z with respect to V ); it measures the
rate of change of Z in the normal direction when p moves tangentially in the direction of V .

Lemma 1.6.3 (Properties of ∇�). ∇� satisfies the following:

(∇1) ∇�V Z is C∞(M)-linear in V ,

(∇2) ∇�V Z is R-linear in Z ,

(∇3) ∇�V (fZ) = V (f)Z + f∇
�
V Z (Leibnitz rule),

(∇5) V ⟨Y,Z⟩ = ⟨∇�V Y,Z⟩ + ⟨Y,∇
�
V Z⟩ (metric condition),

where V ∈ X(M), f ∈ C∞(M) and Z ∈ X(M)� .
(Note that there is no (∇4) since [V,Z] for V ∈ X(M) and Z ∈ X(M)� is not defined!)

Proof. Properties (∇1) − (∇3) follow from Proposition 1.3.9, (∇1) − (∇3) since nor is C∞(M)-linear. (∇5)
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also follows from Proposition 1.3.9 by noting that

⟨∇V Y,Z⟩ = ⟨nor(∇V Y ), Z⟩ for Z ∈ X(M)�.

We want to define ∇V I.

Definition 1.6.4. Let M ⊆M as before and V,X,Y ∈ X(M). Then

(∇V I)(X,Y ) ∶= ∇�V (I(X,Y )
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
∈ X(M)�

) − I(∇VX,Y ) − I(X,∇V Y.)

Remark 1.6.5. It is easy to check that ∇V I ∶ X(M) ×X(M) → X(M)� is C∞-bilinear and symmetric.

Recall that the Gauss equation from Theorem 1.3.13 describes tan(RVWX) (since

⟨RVWX,Y ⟩ = ⟨tan(RVWX), Y ⟩ ,

for Y ∈ X(M)) via I.

Theorem 1.6.6 (Codazzi-equation). Let M ⊆M be a SRSMF and let V,W,X ∈ X(M). Then we have

nor(RVWX) = −(∇V I)(W,X) + (∇W I)(V,X).

Proof. Codazzi-equation is pointwise, so without loss of generality, we can assume that [V,W ] = 0 (see the
proof of Theorem 1.3.13). Then

nor(RVWX) = −(VW ) + (WV ),

where
(VW ) ∶= nor(∇V∇WX)

(1.3.7)
= nor(∇V∇WX) + nor∇V (I(W,X)).

By Lemma 1.3.11, nor(∇V∇WX) = I(V,∇WX) and, by Definition 1.6.1, nor∇V (I(W,X)) = ∇�V (I(W,X)).
Therefore, by Definition 1.6.4,

(VW ) = I(V,∇WX) + (∇V I)(W,X) + I(∇VW,X) + I(W,∇VX),

In −(VW )+(WV ) the first and last terms cancel in pairs and the third terms cancel due to [V,W ] = 0.

Definition 1.6.7. We call Z ∈ X(M)� normal parallel if ∇�V Z = 0 for all V ∈ X(M).

When dealing with constant curvature and hypersurfaces, matters simplify.

Corollary 1.6.8. Let M ⊆M be a SRSMF with constant curvature. Then

1. the Codazzi-equation takes the simpler form

(∇V I)(W,X) = (∇W I)(V,X), ∀V,W,X ∈ X(M).

2. if M is a SRHSF with shape operator S , then

(∇V S)(W ) = (∇WS)(V ), ∀V,W ∈ X(M).
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Proof. 1. By Corollary 1.1.12 RVWX is tangential. Now the result follows easily from Theorem 1.6.6.

2. Let S be derived from U (see Definition 1.4.7). For all X ∈ X(M)

0 = ∇X ⟨U,U⟩ = 2 ⟨∇XU,U⟩ Ô⇒ ∇XU�U,

where the first equality holds since ⟨U,U⟩ = ±1. Since M is a SRHSF, ∇XU is tangential i.e. ∇�XU = 0
for all X and so U is normal parallel. 2. is a pointwise equality so we can assume that all covariant
derivatives of V,W,X with respect to each other vanish at p (see 2.1.17 in [3]). Then, at p,

∇V (S(W )) = (∇V S)(W ) + S (∇VW )
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
= 0

(1.6.1)

by the Leibnitz rule for the tensor derivation ∇V (recall that S ∈ T 1
1 (M)). Therefore,

⟨(∇V S)(W ),X⟩
(1.6.1)
= ⟨∇V (S(W )),X⟩

∇VX ∣p=0, (∇5)
= V (⟨S(W ),X⟩)

1.4.7
= V ⟨I(W,X), U⟩
(∇5)
= ⟨∇(I(W,X)), U⟩ + ⟨I(W,X),∇V U⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 0

,

where the last equality holds since we showed earlier that ∇V U is tangential. Furthermore,

⟨∇(I(W,X)), U⟩ = ⟨nor∇(I(W,X)), U⟩ = ⟨∇�V (I(W,X)), U⟩
1.6.4
= ⟨(∇V I)(W,X), U⟩ ,

where the last equality holds since ∇VW = 0 = ∇VX at p. Hence,

⟨(∇V S)(W ),X⟩ = ⟨(∇V I)(W,X), U⟩
1.
= ⟨(∇W I)(W,X), U⟩ = ⟨(∇WS)(V ),X⟩

and the result follows since X was arbitrary.

Remark 1.6.9 (The Tensor Ĩ). Let M ⊆M be a SRSMF.

1. We define the tensor Ĩ via

Ĩ ∶ X(M) ×X(M)� → X(M)

Ĩ(V,Z) ∶= tan∇V Z

It is easy to check that Ĩ is C∞(M)-bilinear;

Ĩ(V, fZ) = tan∇V (fZ) = tan(f∇V Z) + V (f)Z
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=0

(Z is normal)

= tan(f∇V Z) = f tan(∇V Z) = f Ĩ(V,Z).

Hence, at every p ∈M we have a well-defined R-bilinear map

Ĩ ∶ TpM × TpM� → TpM.

2. By definition, for all V ∈ X(M) and all Z ∈ X(M)� we have the following analogue of (1.3.7):

∇V Z = Ĩ(V,Z)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
tangential

+∇�V Z
´¹¸¹¶
normal

. (1.6.2)
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3. Ĩ does not contain new information since for all V,W ∈ X(M) and all Z ∈ X(M)� , we have that

⟨Ĩ(V,Z),W ⟩ = − ⟨I(V,W ), Z⟩ .

Indeed, by applying V to ⟨Z,W ⟩ = 0 (see (∇5), Proposition 1.3.9) we get that

⟨∇V Z,W ⟩ = − ⟨Z,∇VW ⟩ .

Since
⟨∇V Z,W ⟩

(1.6.2)
= ⟨Ĩ(V,Z) + ∇�V Z

´¹¸¹¶
normal

,W ⟩ = ⟨Ĩ(V,Z),W ⟩

and
⟨Z,∇VW ⟩

(1.3.7)
= ⟨Z, I(V,W ) + ∇VW

´¹¹¹¹¸¹¹¹¹¶
tangential

⟩ = ⟨Z, I(V,W )⟩ ,

the result follows.

4. If some X ∈ X(M)� is important (for what we are trying to calculate), we also use the notation

SZV = Ĩ(V,Z).

From 3. above we get

⟨SZV,W ⟩ = ⟨I(V,W ), Z⟩ = ⟨I(W,V ), Z⟩ = ⟨SZW,V ⟩ ,

because I is symmetric. Therefore, SZ is a self-adjoint linear map. Furthermore, if M is a SRHSF and
Z ≡ U is a unit normal, then this notation is consistent with the one from Definition 1.4.7.

5. The normal connection induces a corresponding operation on vector fields over curves α ∶ I → M ,
where vector fields are normal to M at every point. Let Y ∈ X(α) such that

Y (t) = Tα(t)M
�, for all t.

Then

Y ′ ≡
∇�Y

dt
∶= nor

∇Y

dt
.

Analogs of the usual properties (cf. [3], 1.3.27) hold for ∇
�Y
dt

. Moreover, the analog of Proposition 1.5.1
here is

∇Y

ds
≡ Ẏ = Ĩ(α′, Y )

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
tangent

+ Y ′

´¸¶
normal

Y is called normal parallel if Y ′ = 0, which induces normal parallel transport analogous to the one
from [3], 1.3.28. For more details see [4], Chapter 4, 40.



2
IMPORTANT EXAMPLES OF LORENTZIAN MANIFOLDS

In this chapter, we’ll delve into the most significant examples of Lorentzian manifolds. We’ll start with the
simplest—Minkowski space—and then proceed to explore de Sitter and anti-de Sitter spaces, comprising
the trio of Lorentzian manifolds with constant curvature. Following this, we’ll delve into Robertson-Walker
spacetimes, crucial models in cosmology. Finally, we’ll examine the Schwartzschield half-plane, an essential
model in black hole physics.

2.1 Minkowski Space

Let’s start by introducing some notation. For x, y ∈ Rn we write

⟨x, y⟩ ∶=
n

∑
i=1
xiyi

for the standard scalar product and for x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn) ∈ Rn+1

⟪x, y⟫ ∶= −x0y0 +
n

∑
i=1
xiyi

for the Minkowski scalar product. Writing x = (x0, x̂), y = (y0, ŷ) ∈ Rn+1 , we get

⟪x, y⟫ = −x0y0 + ⟨x̂, ŷ⟩ .

Definition 2.1.1 (Cf. [3], 1.1.5., (ii)). An (n + 1)-dimensional Lorentzian manifold is called Minkowski space if
it is isometric (cf. [3], 1.2.8) to Rn+11 (cf. [3], 1.2.3, (ii)) with the metric

g = −dx0 ⊗ dx0 +
n

∑
i=1
dxi ⊗ dxi = ϵidx

i ⊗ dxi,

where ϵi =
⎧⎪⎪
⎨
⎪⎪⎩

−1, i = 0,

+1, 1 ≤ i ≤ k.

Remark 2.1.2.

1. If n = 3 Minkowski space is the spacetime of special relativity.

30
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2. In ’natural coordinates’ we have (for any n):

gij = ϵiδij is constant

Ô⇒ Γijk = 0, ∀i, j, k (cf. [3], 1.3.9)

Ô⇒ R = 0 (cf. [3], 3.1.3)

Ô⇒ Ric = 0 (cf. [3], 3.3.1)

Ô⇒ S = 0, where S is scalar curvature from [3], 3.3.2

Ô⇒ K = 0 (see Lemma 1.1.2).

The geodesic equation hence is c̈ = 0 (cf. [3], (2.1.2)) and the geodesics are affine-linear parametrized
straight lines.

Definition 2.1.3 (Causality Relations in M ).

• Light cone: C ∶= {x ∈ Rn+11 ∶ ⟪x,x⟫ = 0}.

• Future/past light cone: C± ∶= {x ∈ C ∶ ±x0 ≥ 0}.

• Timelike vectors: I ∶= {x ∈ Rn+11 ∶ ⟪x,x⟫ < 0}.

• Future/past timelike vectors: I± = I± ∶= {x ∈ I ∶ ±x0 > 0}.

• Vectors from J ∶= C ∪ I = {x ∶ ⟪x,x⟫ ≤ 0} are called causal when they are different from 0.

• J± = J± = C± ∪ I± = {x ∈ J ∶ ±x0 ≥ 0}.

• Null/lightlike vectors: C/{0}.

• Spacelike vectors: (Rn+11 /J) ∪ {0}. (Note here that null vector is spacelike by definition!)

• Future (past) pointing null vectors: C+/{0} (C−/{0}).

• Future (past) pointing causal vectors: J+/{0} (J−/{0}).

Lemma 2.1.4. Let x, y ∈ I+ and t > 0. Then

1. tx ∈ I+ and

2. x + y ∈ I+ .

The assertion 1. also holds for I− , C± , J± and Rn+11 /J . The assertion 2. also holds for I− and J± .
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Proof. 1. Let x ∈ I+ . Then ⟪x,x⟫ < 0 and so

⟪tx, tx⟫ = t2 ⟪x,x⟫ < 0 Ô⇒ tx ∈ I.

Since x0 > 0 and t > 0, we get that tx ∈ I+ . The proof is similar for all other cases.

2. Observe that x ∈ I+ if and only if x0 > 0 and ∥x̂∥2 < (x0)2 (i.e. if and only if ⟪x,x⟫ < 0), where ∥ ⋅ ∥ is
Euclidean norm. Let x, y ∈ I+ . Then x0, y0 > 0, x0 + y0 > 0 and

(x0 + y0)2 = (x0)
2 + 2x0y0 + (y0)2

> ∥x̂∥2 + 2 ⋅ ∥x̂∥ ⋅ ∥ŷ∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
≥2⟨x̂,ŷ⟩,

by Cauchy-Schwarz

+∥ŷ∥2

≥ ∥x̂ + ŷ∥2 = ∥(x̂ + y)∥2.

Therefore, x + y ∈ I+ .

Corollary 2.1.5. I± and J± are convex.

Proof. We only prove the claim for I+ since for the other cases the proof is completely analogous. Let
x, y ∈ I+ and t ∈ (0,1). Then t,1 − t > 0 and so, by Lemma 2.1.4 (1.), tx, (1 − t)y ∈ I+ . Finally, by Lemma 2.1.4
(2.), tx + (1 − t)y ∈ I+ .

Next, we’ll delve into the study of isometries within Minkowski space (refer to [3], 1.2.8).

Definition 2.1.6. A mapping ϕ ∶ Rn+11 → Rn+11 is called a Lorentz transformation (L-transformation) if for all
x, y ∈ Rn+11 it holds that

⟪ϕx, ϕy⟫ = ⟪x, y⟫ .

Remark 2.1.7. Recall that in a vector space V with scalar product g there always exists an ONB (cf. [3], 1.1.12)
i.e. a dim(V )-tuple of pointwise orthogonal unit vectors {ei}i , where v ∈ V is called a unit vector if

∣v∣ ∶= ∣g(v, v)∣
1
2 = 1

(cf. [3], 1.1.11). Then any vector x ∈ V has a unique decomposition

x =
dim(V )
∑
i=1

ϵig(v, ei)ei, where ϵi ∶= g(ei, ei),

(cf. [3], 1.1.13). An ONB {b0, . . . , bn} in Rn+11 is often called Lorentz-orthonormal. Then,

⟪b0, b0⟫ = −1, ⟪bi, bi⟫ = 1 for 1 ≤ i ≤ n, ⟪bi, bj⟫ = 0 for i ≠ j.

A simple example is the standard basis {ei}ni=0 .

Proposition 2.1.8. A map ϕ ∶ Rn+11 → Rn+11 is an L-transformation if and only if ϕ is linear and
{ϕ(ei)}

n
i=0 is an orthonormal basis.

Proof. (→) Since ⟪ϕ(ei), ϕ(ej)⟫ = ⟪ei, ej⟫ we conclude that {ϕ(ei)}ni=0 is an orthonormal basis. In order
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to show that ϕ is linear, we write

ϕ(x) =
n

∑
i=0
ciϕ(ei), for some ci ∈ R.

Then

⟪ϕ(x), ϕ(e0)⟫ = ∑ ci ⟪ϕ(ei), ϕ(e0)⟫

= ∑ ci ⟪ei, e0⟫ = −c0.

On the other hand,
⟪ϕ(x), ϕ(e0)⟫ = ⟪x, e0⟫ = −x

0.

Therefore, c0 = x0 and, analogously, ci = xi for all i ∈ {1, . . . , n}. Hence, ϕ(x) = ∑xiϕ(ei) i.e. ϕ is linear.
(←) Let ϕ be linear and {ϕ(ei)}ni=0 an ONB. Then

⟪ϕ(x), ϕ(y)⟫ =
n

∑
i,j=0

xiyj ⟪ϕ(ei), ϕ(ej)⟫ = ⟪x, y⟫ .

Let’s now shift our focus to the matrix representations of Lorentz transformations. Let

Jn = (
−1 0
0 In

) ,

where In is an (n × n)-unit matrix. Then

⟪x, y⟫ = ⟨x, Jny⟩ = −x
0y0 +

n

∑
i=1
xiyi, ∀x, y ∈ Rn+11

where ⟨⋅, ⋅⟩ is the euclidean product in Rn+1 . Hence, A ∈ GL(n + 1,R) is the matrix of an L-transformation
if and only if

⟨x, Jny⟩ = ⟪x, y⟫ = ⟪Ax,Ay⟫ = ⟨Ax,JnAy⟩ = ⟨x,A
tJnAy⟩ ,

hence if and only if
AtJnA = Jn.

Proposition 2.1.9 (The Matrix of an L-transformation). For A ∈ GL(n + 1,R) the following are
equivalent:

1. A is the matrix of a Lorentz transformation.

2. The columns of A are an ONB of Rn+11 .

3. AtJnA = Jn .

Proposition 2.1.10 (Lorentz Group).

1. The set of all Lorentz-transformations Rn+11 , denoted by L(n + 1) = O(1, n), is a group (with
respect to composition).

2. If A is the matrix of an L-transformation, then det(A) = ±1.
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Proof. 1. Let A,B be two matrices of Lorentz transformation. Then

(AB)tJn(AB) = B
tAtJnA
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
Jn

B = Jn,

i.e. AB is a Lorentz transformation as well. Furthermore,

A−1 ∈ O(1, n) ⇐⇒ (A−1)tJn(A
−1) = Jn ⇐⇒ (A

t)−1Jn = JnA ⇐⇒ Jn = A
tJnA.

2. −1 = det(Jn) = det(AtJnA) = −det(A)2.

Example 2.1.11 (L-transformations).

1. For B ∈ O(n,R) we have A ∶= (
1 0
0 B

) ∈ O(1, n). Indeed,

AtJnA = (
1 0
0 Bt

)(
−1 0
0 In

)(
1 0
0 B

) = (
−1 0
0 BtB

) = (
−1 0
0 In

) = Jn.

2. We call a matrix of the form

A ∶=
⎛
⎜
⎝

cosh(η) sinh(η) 0
sinh(η) cosh(η) 0

0 0 In−1

⎞
⎟
⎠

a Lorentz boost. It is a Lorentz transformation;

AtJnA =
⎛
⎜
⎝

cosh(η) sinh(η) 0
sinh(η) cosh(η) 0

0 0 In−1

⎞
⎟
⎠
(
−1 0
0 In

)
⎛
⎜
⎝

cosh(η) sinh(η) 0
sinh(η) cosh(η) 0

0 0 In−1

⎞
⎟
⎠

=
⎛
⎜
⎝

cosh(η) sinh(η) 0
sinh(η) cosh(η) 0

0 0 In−1

⎞
⎟
⎠

⎛
⎜
⎝

− cosh(η) − sinh(η) 0
sinh(η) cosh(η) 0

0 0 In−1

⎞
⎟
⎠
=
⎛
⎜
⎝

−1 0 0
0 1 0
0 0 In−1

⎞
⎟
⎠
= Jn,

where we have used the fact that cosh2(η) − sinh2(η) = 1.

3. Jn,−In+1 ∈ O(1, n);
(Jn)

tJnJn = J
3
n and (In+1)

tJnIn+1 = Jn.

4. For all x ∈ I there exists A ∈ O(1, n) such that Ax = c ⋅ e0 , with ±c > 0 if x ∈ I± . Indeed, span(x) is a
non-degenerate subspace of Rn+11 (i.e. ⟪⋅, ⋅⟫ ∣span(x) is non-degenerate). Using [3], 1.1.10, we get that

x� ∶= {y ∈ Rn+11 ∶ ⟪x, y⟫ = 0}

is non-degenerate and Euclidean (cf. [3], 1.1.15). Therefore, x� has an ONB {y1, . . . , yn} and so
{e0, yi}i=1,...,n is a basis of Rn+11 . Then

x = −⟪x, e0⟫ e0 +
n

∑
i=1
⟪x, yn⟫
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
= 0

yn = x0
´¸¶
= c

e0.

Choose A such that {e0, e1, . . . , en} ↦ {e0, y1, . . . , yn}.
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Proposition 2.1.12. For x, y ∈ Rn+11 /{0} the following are equivalent:

1. ⟪x,x⟫ = ⟪y, y⟫.

2. There exists A ∈ O(1, n) such that y = Ax.

Proof.

(2.→ 1.) This is clear since ⟪y, y⟫ = ⟪Ax,Ax⟫ = ⟪x,x⟫.

(1.→ 2.) We only prove this for x and y timelike. The other cases are proven analogously Set

−c2 ∶= ⟪x,x⟫
´¹¹¹¹¹¸¹¹¹¹¹¶
< 0

= ⟪y, y⟫ .

By Example 2.1.11 (4.) it suffices to consider y = c ⋅e0 , for some c > 0. Without loss of generality, assume
x ∈ I+ (otherwise replace x by Jnx). Moreover, use B ∈ O(n) in order to obtain Bx̂ = d ⋅ e1 (recall,
x = (x0, x̂)) and let, again without loss of generality, x = (x0, x1,0, . . . ,0). Then −(x0)2 + (x1)2 =
⟪x,x⟫ = ⟪y, y⟫ = −c2 i.e.

−(
x0

c
)

2

+ (
x1

c
)

2

= −1,

which is a hyperbola. We may parametrize it by η ↦ (c ⋅ cosh(η), c ⋅ sinh(η)). Then

x =
⎛
⎜
⎝

cosh(η) sinh(η) 0
sinh(η) cosh(η) 0

0 0 In

⎞
⎟
⎠
y = Ty.

From Example 2.1.11 (2.) we know that T ∈ O(1, n). Then A ∶= T −1 ∈ O(1, n), by Proposition 2.1.10.

Lemma 2.1.13 (Cauchy-Schwarz Inequality). Let z ∈ I and let x, y ∈ Rn+11 with ⟪x, z⟫ = ⟪y, z⟫ = 0.
Then

∣ ⟪x, y⟫ ∣ ≤
√
∣⟪x,x⟫ ∣

√
∣ ⟪y, y⟫ ∣, (2.1.1)

with equality if and only if x and y are linearly dependent, and vice versa.

Proof. We can replace x, z, y by Ax,Ay,Az without changing (2.1.1), if A ∈ O(1, n). By Example 2.1.11 (4.),
without loss of generality, we may assume that z = c ⋅ e0 , for c ≠ 0. Then for x = (x0, x̂)

⟪x, z⟫ = 0 ⇐⇒ x0 = 0

and likewise for y. Hence,

⟪x, y⟫ = ⟪(
0
x̂
) ,(

0
ŷ
)⟫ = ⟨x, y⟩

and the statement follows from from the usual Cauchy-Schwarz inequality.

Remark 2.1.14. Note that without the assumption ⟪x, z⟫ = ⟪y, z⟫ = 0 the above lemma is in general false. For
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n = 1 take x = ( 1
2
,1) and y = (− 1

2
,1). Then ⟪x, y⟫ = 5

4
and ⟪x,x⟫ = ⟪y, y⟫ = 3

4
but

5

4
/≤

√
3

4

√
3

4
=
3

4
.

Lemma 2.1.15 (Inverse Cauchy-Schwarz Inequality). For x, y ∈ I+ we have

∣ ⟪x, y⟫ ∣ ≥
√
∣⟪x,x⟫ ∣

√
∣ ⟪y, y⟫ ∣

with equality if and only if x and y are linearly dependent.

Proof. Without loss of generality, we can assume y = c ⋅ e0 for c > 0. Then for x = (x0, x̂) and y = (c,0);

⟪x, y⟫
2
− ∣ ⟪x,x⟫ ∣ ⋅ ∣ ⟪y, y⟫ ∣ = (x0)2c2 − ∣−(x0)2 + ∥x̂∥2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
< 0, x ∈ I+

∣ ⋅ c2

= (x0)2c2 − ((x0)2 − ∥x̂∥2) ⋅ c2 = ∥x̂∥2c2 ≥ 0.

Equality holds if and only if ∥x̂∥2 = 0 i.e. if and only if x = (x0,0), in which case x and y are linearly
dependent.

Proposition 2.1.16 (Time-preserving L-transformation). Let A = (aij)ni,j=0 ∈ O(1, n). Then this facts
are equivalent:

1. a00 > 0.

2. Ae0 ∈ I+ .

3. A(I+) ⊆ I+ .

Proof.

(1. ↔ 2.) A ∈ O(1, n) preserves the causal character of vectors, hence A(I) ⊆ I and so Ae0 ∈ I .
Moreover,

Ae0 =

⎛
⎜
⎜
⎜
⎝

a00
a10
⋮
an0

⎞
⎟
⎟
⎟
⎠

∈ I+ ⇐⇒ a00 > 0.

(3.→ 2.) This is clear because e0 ∈ I+ .

(2.→ 3.) Let x ∈ I+ . By Corollary 2.1.5 I+ is convex and so for all t ∈ [0,1]

x(t) = tx + (1 − t)e0 ∈ I
+ Ô⇒ Ax(t) ∈ I

since A preserves causal character. In particular, (Ax(t))0 ≠ 0, for all t ∈ [0,1]. Since (Ax(0))0 =
Ae0 > 0 by assumption, (Ax(t))0 > 0 for all t ∈ [0,1]. In particular, A(x(1))0 > 0 and so A(x(1)) =
Ax ∈ I+ .
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Definition 2.1.17. The elements of L↑(n + 1) = O↑(1, n) = {A ∈ O(1, n) ∶ a00 > 0} are called time-preserving
or orthochronous Lorentz transformations.

Corollary 2.1.18. L↑(n + 1) is a subgroup of L(n + 1). Moreover, for A ∈ L↑(n + 1) we have

A(I+) = I+ and A(I−) = I−.

Proof. We first prove that L↑ is a subgroup of L(n + 1).

• Let A,B ∈ L↑ . Then

(A ○B)(I+) = A(B(I+))
2.1.16
⊆ A(I+)

2.1.16
⊆ I+

and so A ○B ∈ L↑ , by Proposition 2.1.16 (3.→ 1.).

• We know that A−1e0 ∈ I since A−1 ∈ O(1, n). Assume that A−1e0 ∈ I− . Then A−1(−e0) = −A
−1e0 ∈ I

+

and
−e0
´¸¶
∈ I−

= A(A−1(−e0))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈ I+

∈ I− ∩ I+ = ∅,

which is a contradiction. Therefore, A−1e0 ∈ I+ and so A−1(I+) ⊆ I+ , by Proposition 2.1.16 (2.→ 3.).

Since I+ = A(A−1(I+)) ⊆ A(I+), from Proposition 2.1.16 it follows immediately that A(I+) = I+ . Finally, since
I− = −I+ and A is linear, we are done.

Example 2.1.19 (Time-preserving Lorentz-transformations).

1. For B ∈ O(n) we have

A = (
1 0
0 B

) ∈ L↑(n + 1)

and

A = (
−1 0
0 B

) ∈ L↓(n + 1),

where L↓(n + 1) ∶= L(n + 1)/L↑(n + 1) is called the time-reversing L-transformation.

2. All L-boosts
⎛
⎜
⎝

cosh(η) sinh(η) 0
sinh(η) cosh(η) 0

0 0 In−1

⎞
⎟
⎠

belong to L↑(n + 1) since cosh(η) ≥ 1 for all η ∈ R.

Remark 2.1.20. The following notations for the elements of L are in use:

1. L±(n + 1) ∶= {A ∈ L(n + 1) ∶ det(A) = ±1}.

2. L↑±(n + 1) ∶= L
↑(n + 1) ∩ L±(n + 1).

3. L↓±(n + 1) ∶= L
↓(n + 1) ∩ L±(n + 1).

Definition 2.1.21. A map ϕ ∶ Rn+11 → Rn+11 is called Poincaré-transformation if it is of the form

ϕ(x) = Ax + b,

where A ∈ L(n + 1), b ∈ Rn+11 . We denote the set of such maps by P(n + 1). Moreover, we write

P↑(n + 1) ∶= {ϕ(x) = Ax + b ∶ A ∈ L↑(n + 1)}

and similarly for P↓(n + 1).
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Proposition 2.1.22 (Isometries of Minkowski Space). P(n+1) is the group of isometries of Minkowski
space i.e. ϕ ∶ Rn+11 → Rn+11 is an isometry if and only if ϕ ∈ P(n + 1).

Note that ϕ ∈ P(n+1) is not a linear isometry of Rn+11 if b ≠ 0! Also, distinguish isometries of vector spaces
ϕ ∶ (V, g) → (W,g) (where ϕ ∶ V →W is linear and preserves the scalar product i.e. g(ϕ(x), ϕ(y)) = g(x, y))
from isometries of SRMFs ϕ ∶ (M,g) → (N,h) (where ϕ ∶ M → N is a diffeomorphism and ϕ∗h = g i.e.
(ϕ∗h)∣p(v,w) = hϕ(p)(Tpϕ(v), Tpϕ(w)) = gp(v,w)).

Proof. Let gm = −dx0 ⊗ dx0 +∑
n
i=1 dx

i ⊗ dxi be Minkowski metric. For all ϕ ∈ P(n+ 1), where ϕ(v) = Av + b,
we have that Tpϕ = A (for all p) and A ∈ L(n + 1). Since A preserves scalar product, ϕ is an isometry
(in the latter sense). Conversely, let ϕ be an isometry. Then, if c is a geodesic, so is ϕ ○ c and writing
c = t↦ expp(tX), we obtain the following commutative diagram:

TpRn+11 Tϕ(p)Rn+11

Rn+11 Rn+11 .

Tpϕ

expp expϕ(p)

ϕ

Recall that (using TpRn+11 ≅ Rn+11 ) we have expp(X) = p +X . Then we have for p = 0 from the diagram

ϕ(X) = expϕ(0)(T0ϕ(X)) = T0ϕ
´¸¶
=∶ A

(X) + ϕ(0)
´¸¶
=∶ b

where exp0(X) =X ∈ T0Rn+11 = Rn+11 and A ∈ L(n + 1) since T0ϕ is a linear isometry by definition.

Remark 2.1.23 (Flat L-manifolds). Examples of L-manifolds with R0:

1. Open subsets of Rn+11 .

2. Quotients of Minkowski space:

• Rn+11 /Zn+1 ≅ Tn+1 , (n + 1)-dimensional torus.

• Rn+11 /Ze0 ≅ S1 ×Rn .
• Rn+11 /Ze1 ⊕ ⋅ ⋅ ⋅ ⊕Zen ≅ R × Tn .

2.2 De Sitter Space

After discussing flat space, namely Minkowski space, in the previous section, let’s now shift our focus to
another fundamental spacetime or a family of spacetimes characterized by constant curvature. With this in
mind, let’s consider a function f ∶ Rn+11 → R, where

↦ ⟪x,x⟫ = −(x0)2 +
n

∑
i=1
(xi)2.

Then f ∈ C∞ and

df ∣x = −2x
0dx0 + 2

n

∑
i=1
xidxi ≠ 0, ∀x ≠ 0.

Therefore, every c ∈ R/{0} is a regular value of f .
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Definition 2.2.1. Let r > 0. Then we call the SRHSF (cf. Proposition 1.4.4)

Sn1 (r) ∶= f
−1(r2)

n-dimensional de Sitter space(time).

Remark 2.2.2 (Basic Properties of de Sitter).

1. Sn1 (r) is a one-sheeted hyperboloid in Rn+11 :

2. As a C∞-manifold Sn1 (r) is diffeomorphic to R × Sn−1 via

Sn1 (r) → R × Sn−1

(x0, x̂) ↦
⎛

⎝
x0,

x̂
√
r2 + (x0)2

⎞

⎠
= (x0,

x̂

∥x̂∥e
) .

The inverse is given by
(y0, ŷ) ↦ (y0,

√
(y0)2 + rŷ).

3. A global unit normal can be derived from grad(f). Indeed,

grad(f(x)) = −2x0 (−
∂

∂x0
) + 2

n

∑
i=1
xi

∂

∂xi
= 2

n

∑
i=0
xi

∂

∂xi

(cf. 3.2.6 in [3]), where f(x) = ⟪x,x⟫ = −(x0)2 + ∥x̂∥2 .
Therefore, grad(f) = 2 × the position vector field (cf. Example 1.3.16).

⟪grad(f(x)),grad(f(x))⟫ = 4⟪x,x⟫ = 4f(x) = 4r2 > 0

and so ϵ = 1, implying ind(Sn1 (r)) = 1. Hence, ⟪⋅, ⋅⟫ induces a Lorentzian metric on Sn1 (r).

4. The outwards-pointing unit vector field is

ν(x) ≡ U(x) =
1

2r
grad(f(x)) =

1

r

n

∑
i=0
xi

∂

∂xi
=
1

r
X,

where X is position vector field. Therefore, the shape operator of Sn1 (n) is:

S(V )
1.4.8
= −∇V U

1.3.16
= −

1

r
V, (2.2.1)

since ∇V (X) = ∇V (∑xi ∂
∂xi ) = ∑V (x

i) ∂
∂xi + Γ... = V + 0.

Now the 2nd fundamental form takes the following form:

I(V,W ) = −
1

r
⟪V,W⟫U
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since ⟪I(V,W ), U⟫ 1.4.7
= ⟪S(V ),W⟫ = − 1

r
⟪V,W⟫ and ⟪U,U⟫ = +1. In particular, we see that Sn1 (r)

is totally umbilic (cf. Definition 1.5.11) with the normal curvature vector field Z = − 1
r
U .

5. For the Riemannian curvature Gauss equation yields the following:

⟪R
Sn
1 (r)
VW X,Y ⟫

1.3.13
= ⟪R

Rn+1
1

VW X,Y ⟫ + ⟪I(V,X), I(W,Y )⟫ − ⟪I(V,Y ), I(W,X)⟫

4.
= 0 +

1

r2
(⟪V,X⟫⟪W,Y ⟫ − ⟪W,X⟫⟪V,Y ⟫)

and so

R
Sn
1 (r)
VW X =

1

r2
(⟪V,X⟫W − ⟪W,X⟫V ).

6. For the sectional curvature we find for a non-degenerate tangent plane Π spanned by V and W that

KSn
1 (r)(V,W )

1.3.14
= KRn+1

1 (V,W ) + ϵ
⟪S(V ), V ⟫⟪S(W ),W⟫ − ⟪S(V ),W⟫

2

Q(V,W )

(2.2.1), ϵ=1
= 0 +

1

r2
⟪V,V ⟫⟪W,W⟫ − ⟪V,W⟫

2

Q(V,W )
=

1

r2
Q(V,W )

Q(V,W )
=

1

r2
.

Therefore, de Sitter space has constant curvature 1
r2

.

7. In order to derive the Ricci curvature we choose a frame (Ei)ni=1 of TpSn1 (r) and calculate

Ric(X,Y ) =
n

∑
i=1
ϵi ⟪RXEiY,Ei⟫

5.
=

1

r2

n

∑
i=1
ϵi(⟪X,Y ⟫⟪Ei,Ei⟫

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= ϵi

−⟪Ei, Y ⟫⟪X,Ei⟫)

=
1

r2
(n⟪X,Y ⟫ − ⟪X,Y ⟫)

=
n − 1

r2
⟪X,Y ⟫ .

In other words, Ric = n−1
r2
g, implying

S =
n(n − 1)

r2
,

where the scalar curvature S = C(Ric) (cf. [3], 3.3.2).

8. The Einstein tensor (cf. [3], 3.3.5) is then equal to

G = Ric −
1

2
Sg =

1

r2
((n − 1) −

1

2
n(n − 1))g.

In particular, for n = 4,

G = −
3

r2
g.

Setting Λ ∶= 3
r2
> 0, we obtain

G +Λg = 0 = 8πT,

where T is energy momentum tensor. Sn1 (r) is a solution to the vacuum Einstein equations (cf. [3],
(3.3.17)).
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2.2.1 The Geodesics of de Sitter Spacetime

Remark 2.2.3.

1. In order to determine the geodesics geometrically, we consider p ∈ Sn1 (r) and X ∈ TpSn1 (r)/{0}.
Those two vectors determine a plane E in Rn+11 i.e. E ∶= span{p,X}.

We first consider timelike or spacelike X . Then E is non-degenerate (since p is spacelike) and so
Rn+11 = E ⊕E� (cf. [3], 1.1.9).

2. Define A ∈ L(n + 1) as the reflection on E i.e. let

A∣E ∶= idE and A∣E� ∶= idE� .

Then A is an L-transformation.
Indeed, let x = xE + xE� , y = yE + yE� ∈ E ⊕E� = Rn+11 . Then

⟪Ax,Ay⟫ = ⟪A(xE + xE�),A(yE + yE�)⟫ = ⟪xE − xE� , yE − yE�⟫ = ⟪xE , yE⟫ + ⟪xE� , yE�⟫ = ⟪x, y⟫ .

Moreover, A leaves Sn1 (r) invariant.
Let x ∈ Sn1 (r). Then

f(Ax) = ⟪Ax,Ax⟫ = ⟪x,x⟫ = f(x) = r2

and so A(Sn1 (r)) ⊆ S
n
1 (r). Since A2 = id, A = A−1 , yielding

A(Sn1 (r)) = S
n
1 (r).

3. Therefore, A∣Sn
1 (r) ∈ Isom(Sn1 (r)). We set

F (A∣Sn
1 (r)) ∶= {x ∈ S

n
1 (r) ∶ Ax = x} = S

n
1 (r) ∩E.

F is the fixed point set of the isometry A∣Sn
1 (r) . Lemma 2.2.4 will show that the connected components

of Sn1 (r) ∩E are (as point sets) geodesics of Sn1 (r).

4. In case X ∈ TpSn1 (r) is null we choose a sequence (Xj)j ∈ TpS
n
1 (r) such that Xj is not null for every

j and Xj →X when j →∞. Then the planes Ej spanned by {p,Xj} are non-degenerate (by 1.) and
converge to E (as point sets). Moreover,

expp(tXj) → expp(tX),∀t (expp ∈ C
∞)

and so expp(tX) is a geodesic parametrizing E ∩ Sn1 (r). Hence, also in the null case are Sn1 (r) ∩E
are (null) geodesics (as point sets).

5. By uniqueness of geodesics, in this way we obtain all geodesics.
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Lemma 2.2.4. Let ϕ be an isometry of a SRMF (M,g) and

F ∶= {x ∈M ∶ ϕ(x) = x}

its set of fixed points. Then if F is a C∞-submanifold, it is totally geodesic.

Proof. In this proof we will use property 3. from Theorem 1.5.7. Let p ∈ F , v ∈ TpF ⊆ TpM and let cv ∶ I →M
be a geodesic of M with cv(0) = p and ċv(0) = v. Then since ϕ is an isometry, also ϕ○ cv is a geodesic such
that ϕ(cv(0)) = ϕ(p) = p and (ϕ ○ cv)′(0) = Tpϕ(c′v(0)) = Tpϕ(v) = v since ϕ∣F = idF . Therefore, ϕ ○ cv = cv
by uniqueness of geodesics (cf. [3], 2.1.5) and so cv(t) ∈ F for all t ∈ I and so F is totally geodesic.

Remark 2.2.5. In our case, Lemma 2.2.4 implies Remark 2.2.3 (3.). F = Sn1 (r) ∩E is a 1-dimensional sub-
manifold (as the zero set of (f − r2)∣E); hence flat (cf. Example 1.1.6). Therefore, any parametrization with
constant speed of the connected components of F is a geodesic in F , hence in Sn1 (r).

Remark 2.2.6 (Geometric Interpretation of Geodesics).

1. Assume that X is spacelike. Then ⟪⋅, ⋅⟫ ∣E is positive definite. Hence,

E ∩ Sn1 (r) = {y ∈ E ∶ ⟪y, y⟫ = r
2}

is an ellipse i.e. a closed curve (see the image in Remark 2.2.3).

2. If X is null then ⟪⋅, ⋅⟫ ∣E is positive semi-definite, but degenerate. In this case E ∩ Sn1 (r) is a pair of
parallel straight lines. Indeed,

E ∩ Sn1 (r) = {αp + βX ∶ ⟪αp + βX,αp + βX⟫ = r
2}

= {αp + βX ∶ α2 ⟪p, p⟫
´¹¹¹¹¸¹¹¹¹¶
= r2

+2αβ ⟪p,X⟫
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
=0,
p�X

+β2 ⟪X,X⟫
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=0,

X is null

= r2}

= {αp + βX ∶ α2 = 1, β ∈ R}
= {±p + βX ∶ β ∈ R}

These straight lines are precisely the generators of the hyperboloid as a ruled surface.

3. If X is timelike, then ⟪⋅, ⋅⟫ ∣E is indefinite and non-degenerate. In this case E ∩ Sn1 (r) is a hyperbola
with two connected components

E ∩ Sn1 (r) = {αp + βX ∶ α
2r2 + β2 ⟪X,X⟫ = r2} = {αp + βX ∶ α2 +

⟪X,X⟫

r2
β2 = 1} ,

which is the equation of hyperbola since ⟪X,X⟫ < 0.



CHAPTER 2. IMPORTANT EXAMPLES OF LORENTZIAN MANIFOLDS 43

4. It follows that Sn1 (r) is geodesically complete i.e. expp is defined on all of TpM for every p ∈ M .
Moreover, it is not totally geodesic since the geodesics of Rn+11 are straight lines, which is the case
only in (2.).

2.2.2 Geodesic Conectedness

According to the Hopf-Rinow Theorem (cf. [3], 2.4.2), any connected and geodesically complete Rieman-
nian manifold (RMF) ensures geodesic connectedness. However, De Sitter space contradicts this theorem
within Lorentzian geometry. Precisely, Sn1 (r) is geodesically complete but lacks geodesic connectedness.

Fix p ∈ Sn1 (r) and consider which q ∈ Sn1 (r) can be reached by a geodesic starting at p. If:

• q = p or q = −p the answer is trivial since there exist infinitely many planes containing p and ±p.

• q ≠ ±p then p and q are linearly independent and there exists a unique plane E containing them. If
this plane is not spacelike and p and q happen to be in different connected components of E ∩Sn1 (r),
then there is no geodesic connecting them.

Moreover, all points q that can be reached from −p by a causal geodesic cannot be reached from p.

Analytically, this is the set
{q ∈ Sn1 (r) ∶ ⟪q + p, p⟫ ≤ 0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⟪p, q⟫ ≤ −r2

and q ≠ p}.

Indeed, pick an ONB {e0, e1} in E = span(p, q). Then E∩Sn1 (r) consists of two branches of hyperbola
−(x0)2 +(x1)2 = r2 . If p = p0e0 +p1e1 , then −p20 +p

2
1 = r

2 and −q20 + q
2
1 = r

2 and so we can parametrize
p and q as

p = r(sinh(t), cosh(t))

q = r(sinh(s),± cosh(s)).
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They are on different branches if and only if q = r(sinh(s),− cosh(s)). Then

⟪p, q⟫ = −r2 sin(t) sin(s) − r2 cosh(t) cosh(s) = −r2 cosh(t + s) ≤ −r2.

On the other hand, they are on the same branch if and only if q = r(sinh(s),+ cosh(s)). Then

⟪p, q⟫ = ⋅ ⋅ ⋅ = r2 cosh(t − s) ≥ r2.

Therefore, p and q are on different branches if and only if ⟪p, q⟫ ≤ −r2 , which is the case if and only
if ⟪p + q, p⟫ < 0.

To conclude this section, we’ll delve into the study of isometries of Sn1 (r).

Theorem 2.2.7 (Equality of Isometries). Let (M,g) be a connected SRMF and let ψ1 and ψ2 be
isometries of M . If ψ1(p) = ψ2(p) and Tpψ1 = TPψ2 (for some M ), then ψ1 = ψ2 .

Proof. Set ψ ∶= ψ−12 ○ ψ1 . Then ψ ∈ Isom(M), ψ(p) = p and Tpψ = id. It remains to show that ψ = id. To that
end, let

U ∶= {q ∈M ∶ ψ(q) = q and Tqψ = idTqM} .

Then,

• U ≠ ∅ since p ∈ U .

• U is closed.

• U is open. To see this, let q ∈ U . expq is a local diffeomorphism i.e. there exists a neighborhood U
of q ∈M and a local neighborhood Ũ of 0 in TqM such that expq ∶ Ũ → U is a diffeomorphism. We
consider the following commutative diagram:

Ũ Ũ

U U .

Tqψ=id

expq expq

ψ

(see Lemma 2.2.4). Therefore, on U ,

ψ = expq ○id ○ exp
−1
q = idU .

Finally, since M is connected, U =M and so ψ = idM .

Proposition 2.2.8 (Isometries of De Sitter). The map

L(n + 1) → Isom(Sn1 (r))

A ↦ A∣Sn
1 (r) (2.2.2)

is a group isomorphism. Moreover,

1. Isom(Sn1 (r)) acts transitively (i.e. for all p, q ∈ Sn1 (r) there exists a ψ ∈ Isom(Sn1 (r)) such that
q = ψ(p)). We say that Sn1 (r) is homogeneous (or that no point is preferred).

2. For all X,Y ∈ TSn1 (r) with ⟪X,X⟫ = ⟪Y,Y ⟫ there exists ψ ∈ Isom(Sn1 (r)) such that Tψ(X) =
Y . In this case we say that Sn1 (r) is isotropic (or that no direction is preferred).
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Proof. Let A∣Sn
1 (r) ∶ S

n
1 (r) → Sn1 (r) be as before. Since A∣TSn

1 (r) preserves ⟪⋅, ⋅⟫, A∣Sn
1 (r) ∈ Isom(Sn1 (r)).

1. Let p, q ∈ Sn1 (r). Then ⟪p, p⟫ = r2 = ⟪q, q⟫. By Proposition 2.1.12, there exists A ∈ L(n + 1) such that
Ap = q.

2. By 1. we may without loss of generality assume X and Y to have the same base point p ∈ Sn1 (r). In
p� = TpS

n
1 (r) ≅ Rn1 we find, according to Lemma 2.2.4, that there exists B ∈ L(n) such that BX = Y .

As in Example 2.1.11,

B̃ ∶= (
B 0
0 1

) ∈ L(n + 1).

Now ψ ∶= B̃∣Sn
1 (r) ∈ Isom(Sn1 (r)) satisfies ψ(p) = p and Tψ(X) = BX = Y . That (2.2.2) is injective

is clear since Sn1 (r) contains a basis of Rn+1 . Finally, we show surjectivity. To that end, let ψ ∈
Isom(Sn1 (r)) and fix p ∈ Sn1 (r). For q ∈ ψ(p) ∈ Sn1 (r) we find A ∈ L(n + 1) such that Ap = q (by 1.).
Then p is a fixed point of

ψ1 ∶= A
−1 ○ ψ ∈ Isom(Sn1 (r)).

Hence, Tpψ1 ∶ TpS
n
1 (r) → TpS

n
1 (r) is a linear isometry. Choose B ∈ L(n + 1) such that B(p) = p and

TpB∣Sn
1 (r) = B∣Sn

1 (r) = Tpψ1 (cf. B̃ above). Define

ψ2 ∶= B
−1 ○A−1 ○ ψ.

Then ψ2 ∈ Isom(Sn1 (r)), ψ2(p) = p and Tpψ2 = id. Theorem 2.2.7 implies that ψ2 = id and so ψ = A○B .

Remark 2.2.9. The isometry group of de Sitter space is considered ’maximal’ because any A ∈ L(n + 1)
induces an isometry. It can be demonstrated that any Lorentzian manifold with a maximal isometry group
exhibits constant curvature.

2.3 Anti-de Sitter Space

We now turn to a (family of) space(s) with Lorentzian metrics and constant negative curvature. We will
introduce the respective space as a submanifold of a SRMF, which is no longer Lorentzian but has index 2.
Consider Rn+12 with the metric

ds2 ≡ g = −dx0 ⊗ dx0 − dx1 ⊗ dx1 +
n

∑
i=2
dxi ⊗ dxi

and the map

f ∶ Rn+1 → R

x↦ f(x) = g(x,x) = −(x0)2 − (x1)2 +
n

∑
i=1
(xi)2.

Here again f ∈ C∞ and Txf = 0 if and only if x = 0. Also, any c ∈ R/ {0} is a regular value of f .

Definition 2.3.1. Let r > 0 then we call the SRHSF

Hn
1 (r) = f

−1(−r2)

n-dimensional anti-de Sitter space.



46 Chapter 2.3. ANTI-DE SITTER SPACE

Remark 2.3.2. (Basic Properties of Anti-de Sitter)

1. Hn
1 (r) is a one-sheeted hyperboloid in Rn+12 .

2. The map

Hn
1 (r) → S1 ×Rn−1

(x0, x1, x̃) ↦
⎛

⎝

x0
√
∥x̃∥ + r2

,
x1

√
∥x̃∥ + r2

, x̃
⎞

⎠

is a diffeomorphism with inverse

y ↦ (
√
∥x̃∥ + r2y0,

√
∥x̃∥ + r2y1, ỹ).

3. The normal bundle of Hn
1 (r) is generated by

grad(f)(x) = −2x0 (−
∂

∂x0
) − 2x1 (−

∂

∂x1
) + 2

n

∑
i=2
xi

∂

∂xi

= 2
n

∑
i=0
xi

∂

∂xi
,

which again is proportional to the position vector field X = ∑ni=0 x
i ∂
∂xi . Now

g(grad(f)(x),grad(f)(x)) = 2g(X,X) = 4f(x) = −4r2 < 0

and so ϵ = −1 and ind(Hn
1 (r)) = 2 − 1 = 1. Therefore, Hn

1 (r) is a Lorentzian manifold.

4. For the curvature quantities we obtain the following:

• For the unit normal, we have

ν(x) ≡ U(x) =
1

2r
grad(f)(x) =

1

r

n

∑
i=0
xi

∂

∂xi
=
1

r
X.

Contrary to de-Sitter, now we have ⟪U,U⟫ = 1
r2
⟪X,X⟫ = −1.

• Shape operator

S(V ) = −∇V U = −
1

r
∇VX = −

1

r
V.

• I(V,W ) = 1
r
⟨V,W ⟩U since

⟨I(V,W ), U⟩ 1.4.7= ⟨S(V ),W ⟩ = −
1

r
⟨V,W ⟩ =

1

r
⟨V,W ⟩ ⟨U,U⟩ .



CHAPTER 2. IMPORTANT EXAMPLES OF LORENTZIAN MANIFOLDS 47

• Gauss equation yields for the Riemann curvature:

⟨RVWX,Y ⟩
1.3.13
= 0

´¸¶
Rn+1

2 is flat

+⟨I(V,X), I(W,Y )⟩ − ⟨I(V,Y ), I(W,X)⟩

=
1

r2
(⟨V,X⟩ ⟨W,Y ⟩ ⟨U,U⟩

´¹¹¹¹¹¹¸¹¹¹¹¹¶
−1

−⟨V,Y ⟩ ⟨W,X⟩ ⟨U,U⟩
´¹¹¹¹¹¹¸¹¹¹¹¹¶
−1

)

= −
1

r2
(⟨V,X⟩ ⟨W,Y ⟩ − ⟨W,X⟩ ⟨V,Y ⟩) .

Therefore,

RVWX = −
1

r2
(⟨V,X⟩W − ⟨W,X⟩V ) .

• Sectional curvature:

K
1.3.14
= 0 + ϵ

⟨S(V ), V ⟩ ⟨S(W ),W ⟩ − ⟨S(V ),W ⟩
2

Q(V,W )

= −
1

r2
⟨V,V ⟩ ⟨W,W ⟩ − ⟨V,W ⟩

2

Q(V,W )
= −

1

r2
.

This shows that Hn
1 (r) has constant negative curvature.

• Ricci curvature:

Ric(X,Y ) =
n

∑
i=1
ϵi ⟨RXEiY,Ei⟩

= −
1

r2

n

∑
i=1
ϵi (⟨X,Y ⟩ ⟨Ei,Ei⟩ − ⟨Ei, Y ⟩ ⟨Ei,X⟩)

= −
n − 1

r2
⟨X,Y ⟩ ,

where ϵi = ⟨Ei,Ei⟩ and {Ei}
n
i=1 a local frame. Hence,

Ric = −
n − 1

r2
g.

• Scalar curvature:

S = C(Ric) = −
n(n − 1)

r2
.

• Einstein tensor:
G = Ric −

n

2
Sg = −

1

r2
((n − 1) −

n

2
(n − 1)) ,

which is for n = 4 equal to 3
r2
g and so AdS (i.e. anti-de Sitter) is a solution of the vacuum Einstein

equations with cosmological constant Λ = − 3
r2
< 0 i.e. G +Λg = 0 = T .

Remark 2.3.3. The geodesics of AdS are (again) given by the intersections of the form E ∩Hn
1 (r), where

E ⊆ Rn+1 is a 2-dimensional surface. Here again Hn
1 (r) is not geodesically connected (but it is geodesically

complete!).

Remark 2.3.4. There exist closed timelike geodesics in Hn
1 (r), which often is unwanted. A way around it is to

consider the universal cover H̃n
1 (r) ≅ Rn , where ≅ stands for ’diffeomorphic’. Sometimes AdS is understood

to be H̃n
1 (r).
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2.4 Robertson-Walker Spacetimes

These are also referred to as Friedmann–Lemaître–Robertson–Walker spacetimes, commonly denoted
as FLRW. These spacetimes represent pivotal cosmological models, portraying universes that are both ho-
mogeneous and isotropic. They encapsulate scenarios of universal expansion or contraction and are often
regarded as a standard model in cosmology.

Definition 2.4.1. An (n + 1)-dimensional Lorentzian manifold (M,g) is called a FLRW-spacetime if it is of
the form

M = I × S,

where I is an open interval of R and (S, gs) a complete connected RMF with a constant curvature κ and of
dimension n, with metric

g ∶= −dt⊗ dt + f(t)2gs, (2.4.1)

where f(t)2 is a scale factor and f ∶ I → R+ is a C∞-function.

Remark 2.4.2.

• The above is an example of a warped product.

• A vivid picture of a FLRW-spacetime is:

where St = S × {t} for some t ∈ I interpreted as time, making St into a time-cut (time-slice). ν = ∂
∂t

is
its normal vector in M .

• The most important model spaces are, in cases κ = 1,0,−1, Sn , Rn , and Hn . Other examples involve
quotients of these spaces.

Example 2.4.3.

1. For S = Rn , κ = 0, I = R and f ≡ 1 we have Minkowski space.

2. For S = Sn , κ = 1, I = R and f ≡ 1 we
obtain Einstein’s static universe. Ein-
stein’s static universe is diffeomorphic
to a cylinder. In the 1920. the basic
idea about the universe was that it is
static (time-independent) and this is
the prime model. To make it a so-
lution to the field equations Einstein
introduced the cosmological constant
into his equations.
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2.4.1 Geometry of the FLRW-spacetimes

1. Time slices. Set S(t) ≡ St = {t} × S (which is a level set of h(t, x) = t). Then

ν =
∂

∂t
(2.4.2)

is the unit normal to St . For the shape operator with respect to ν let X,Y,Z be tangential to St and
let without loss of generality their Lie-brackets vanish. Then

⟨S(X), Y ⟩ = ⟨−∇Xν, Y ⟩ = −
1

2
(X ⟨ν, Y ⟩
´¹¹¹¹¸¹¹¹¹¶
= 0

+ν ⟨Y,X⟩
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

f(t)2gs(X,Y )

−Y ⟨X,ν⟩
´¹¹¹¹¹¸¹¹¹¹¹¶
= 0

)

(2.4.2)
= −

1

2
∂t(f

2(t)gs(X,Y ))

= −f(t)ḟ(t)gs(X,Y ) = −
ḟ

f
⟨X,Y ⟩ ,

where in the second equality we used the Koszul formula (cf. (1.3.10) in [3]). Finally,

S(X) = −
ḟ

f
X.

2. Cosmic observers. We will show that the curves t ↦ (t, x0), for some fixed x0 ∈ S , are geodesics.
This models the worldline1 of an observer (spaceship, galaxy...) often called a cosmic observer. Let
γ ∶ t↦ (t, x0). Since γ′(t0) = ∂

∂t
∣
t0

, it suffices to prove that

(∇Mν ν)(t0, p0) = 0,∀(t0, p0) ∈M

since ∇Mν ν = ∇γ′γ
′ = γ′′ . Let (x1, . . . , xn) be coordinates of S at p0 such that (t, x1, . . . , xn) are

coordinates of M at (t0, p0). Using the Koszul-formula we obtain that

2 ⟨∇Mν ν, ∂i⟩ = ν ⟨ν, ∂i⟩ + ν ⟨∂i, ν⟩ − ∂i ⟨ν, ν⟩
´¹¹¸¹¶
≡ −1

since [∂i, ∂j] = [∂i, ν] = [ν, ν] = 0. Because ν ∈ TS� while ∂i ∈ TS ,

⟨∇Mν ν, ∂i⟩ = 0

and so ∇Mν ν is perpendicular to St0 . Therefore, ∇Mν ν = tan(∇Mν ν), where tan is the tangential
projection of the SRSMF I × {p0} of M . Proposition 1.3.10 implies that tan(∇Mν ν) = ∇

I
νν , which is

equal to zero since I is flat. Therefore, ∇Mν ν = 0, as claimed.

3. General geodesics. Let c(s) = (t(s), γ(s)), where t(s) ∈ I and γ(s) ∈ S , be a curve in M such that
t′(s) ≠ 0 and γ′(s) ≠ 0 for all s. Then c′(s) = t′(s)ν

´¹¹¹¹¹¸¹¹¹¹¶
∈ (TSt)�

+γ′(s)
´¹¸¹¶
∈ TSt

and so

∇Mc′ c
′(s) = ∇Mc′ ( t

′ν
´¸¶
∈ X(c)

+γ′)

(∇3)
= t′′ν + t′∇Mt′ν+γ′ν +∇

M
t′ν+γ′γ

′

2.
= t′′ν + (t′)2∇Mν ν

´¹¸¹¶
= 0

+t′∇Mγ′ ν + t
′∇Mν γ

′ +∇Mγ′ γ.

1The world line (or worldline) of an object is the path that an object traces in 4-dimensional spacetime.
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Using (1.3.7), we get

∇Mγ′ γ
′ = ∇Sγ′γ

′ + I(γ′, γ′) = ∇Sγ′γ
′ − ⟨I(γ′, γ′), ν⟩ν = ∇Sγ′γ

′ − ⟨S(γ′), γ′⟩ν.

We can extend γ′ locally to a vector field X on S and lift this to M . Let T be a local extension of t′ν
to a vector field on M . Then [T,X] = 0 since in a basis ∂t, ∂i , as above, T depends only on t and X
only on X and [∂t, ∂i] = [∂i, ∂j] = 0. Therefore, ∇TX = ∇XT and so ∇Mν γ

′ = ∇Mγ′ ν . Now

∇Mc′ c
′(s) = t′′ν − 2t′ S(γ′)

´¹¹¹¸¹¹¹¶
−∇M

γ′
ν

+∇Sγ′γ
′ − ⟨S(γ′), γ′⟩ν.

Note that t′′ν and ⟨S(γ′), γ′⟩ν are perpendicular to St while S(γ′) and ∇Sγ′γ
′ tangential to it. Hence,

c is a geodesic if and only if

0 = t′′ − ⟨S(γ′), γ′⟩
1.
= t′′ + f ′f ⋅ gs(γ

′, γ′)

0 = ∇Sγ′γ
′ + 2t′

f ′

f
γ′ = ∇Sγ′γ

′ + 2
(f ○ t)′

f ○ t
γ′.

Proposition 2.4.4 (Geodesics of FLRW). A smooth curve c = (t, γ) in M is a geodesic if and only if

1. t′′ = −f ′f ⋅ gs(γ′, γ′) and

2. ∇Sγ′γ
′ = −2 (f○t)

′

f○t γ
′ .

In particular, γ is a pregeodesic of S (cf. 2.1.10 in [3] or choose a parametrization such that f ○ t is
constant).

Corollary 2.4.5. For null geodesics (cf. 2.1.9 in [3]) we have that t′(f ○ t) is constant.

Proof. Proof.

0 = f ′ g(c′, c′)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
= 0

(2.4.1)
= −f ′(t′)2 + f ′f2gs(γ

′, γ′)
2.4.4
= −f ′(t′)2 − ft′′ = −(t′(f ○ t))′.

Remark 2.4.6 (Cosmological Redshift). Light emitted from a distant galaxy appears to undergo a shift towards
lower frequencies when observed from Earth. The emitted wavelength remains assumed to be the same,
suggesting that wavelengths have uniformly lengthened during transmission. The energy of a photon is given
by

E = h̵ω =
h̵

λ
,

where h̵ denotes Planck constant, ω frequency and λ wavelength. It is measured by an observer ν according
to

E = −g(c′, ν) = t′,

where c = (t, γ) (and c′ = t′ν + γ′) is the null geodesic (i.e. light ray) emitted by the galaxy.
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If the time of emission is s1 and the time
of absorption s2 , then t′(s1)f(t(s1))

2.4.5
=

t′(s2)f(t(s2)) yields

t′(s1)

t′(s2)
=
f(t(s2))

f(t(s1))
.

Since λ = h̵
E
= h̵
t′
,

E(s1)

E(s2)
=
λ(s2)

λ(s1)
.

Therefore, if f is increasing (which cor-
responds to the universe expanding), then
λ(s2) > λ(s1). (For more details see 12.8 in
[4].)

2.4.2 Curvature for FLRW Spacetimes

1. Let S(t) be a time slice in M i.e. S(t) = {t} × S , where S has a constant curvature κ. Then

RS(X,Y )Z
1.1.12
= κ(gS(Z,X)Y − gS(Z,Y )X),

Ric cf. 2.2.2
= κ(n − 1)gs and

S
cf. 2.2.2
= κ(n − 1)n,

where X,Y,Z ∈ X(S(t)).

2. Claim: tan(RM(X,Y )Z) = RSXY Z + ⟨S(X), Z⟩S(Y ) − ⟨S(Y ), Z⟩S(X). Let X,Y,Z,W ∈ X(S(t)).
Then

⟨tan(RM(X,Y )Z),W ⟩
W ∈X(S(t))
= ⟨RM(X,Y )Z,W ⟩

1.3.13
= ⟨RSXY Z,W ⟩− ⟨I(X,Z), I(Y,W )⟩ + ⟨I(X,W ), I(Y,Z)⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(⋆)

.

In general, I(X,Y ) = ϵ ⟨S(X), Y ⟩ν and so

(⋆)∣free W = − ⟨I(X,Z), I(Y, ⋅)⟩ + ⟨I(X, ⋅), I(Y,Z)⟩
= −ϵ2 ⟨S(X), Z⟩ ⟨ν, ν⟩

´¹¹¸¹¶
= −1

S(Y ) + ϵ2 ⟨S(Y ), Z⟩ ⟨ν, ν⟩
´¹¹¸¹¶
= −1

S(X)

= ⟨S(X), Z⟩S(Y ) − ⟨S(Y ), Z⟩S(X).

tan(RM(X,Y )Z) = κ(gs(Z,X)Y − gs(Z,Y )X) + (−
ḟ

f
)

2

⟨X,Z⟩
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶

= f2gs(X,Z)

Y − (
ḟ

f
)

2

⟨Y,Z⟩
´¹¹¹¹¹¸¹¹¹¹¶

= f2gs(Y,Z)

X,

= κ(gs(X,Z)Y − gs(Y,Z)X) + ḟ
2gs(X,Z)Y − ḟ

2gs(Y,Z)X

= (κ + ḟ2)(gs(X,Z)Y − gs(Y,Z)X)

=
⎛

⎝

κ

f2
+ (

ḟ

f
)

2
⎞

⎠
(⟨X,Z⟩Y − ⟨Y,Z⟩X)
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since S(X) = − ḟ
f
X .

3. Claim: nor(RMXY Z) = 0. By the Codazzi-equation,

nor(RMXY Z) = nor(RXY Z)
1.6.6
= −(∇XI)(Z,Y ) + (∇Y I)(X,Z),

where

∇XI(Y,Z) = ϵ ⟨∇XS(Y ), Z⟩ν

as seen in the end of the proof of Corollary 1.6.8. Therefore,

nor(RMXY Z) = ⟨(∇XS)(Z), Y ⟩ν − ⟨(∇Y S)(X), Z⟩ν = 0

since S ∈ T 1
1 (S(t)) and so (∇XS)(Z)

(∇3)
= ∇X(S(Z)

´¹¹¸¹¹¶
− ḟ

f Z

) − S(∇XZ)
(∇3)
= X(−

ḟ

f
)

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
= 0

Z −����ḟ
f
∇XZ +����ḟ

f
∇XZ .

Similarly, (∇Y S)(X) = 0.

4. Claim: RM(X,ν)ν = f ′′

f
X . Indeed, 3.1.1 in [3] implies that

RM(X,ν)ν = ∇M[X,ν]ν −∇
M
X ∇

M
ν ν
´¹¸¹¶
= 0, by 2.

+∇Mν ∇
M
X ν

= ∇M∇M
X
ν−∇M

ν X −∇
M
ν ( S(X)

´¹¹¹¹¸¹¹¹¶
1.4.8= −∇M

X ν

)

1.4.8
= S(S(X)) + S(∇Mν X) − ∇

M
ν (S(X))

=
ḟ2

f2
X −

�
�
��ḟ

f
∇Mν X + ∇Mν (

ḟ

f
X)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= ∂t ( ḟ

f )X +����( ḟ
f )∇

M
ν X

=
ḟ2

f2
X +

f̈f − (ḟ)2

f2
X =

f̈

f
X.

5. Next we calculate RicM(X,Y ) for X,Y ∈ X(S(t)). To that end, let (Ei)ni=1 be an orthonormal frame
for S(t). Then E1, . . . ,En is an orthonormal frame for M and so

RicM(X,Y )
1.2.8, 2.
=

n

∑
i=1
⟨RM(X,Ei)Y,Ei⟩ − ⟨R

M(X,ν)Y, ν⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=−⟨RM (X,ν)ν,Y ⟩

4.= f ′′

f ⟨X,Y ⟩

,
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by skew-adjointness.

RicM(X,Y ) = ⟨tan(RM(X,Ei)Y ),Ei⟩ +
f ′′

f
⟨X,Y ⟩

2.
= (κ + f2)(gs(X,Y )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

f2 ⟨X,Y ⟩

⟨Ei,Ei⟩ − gs(Ei, Y )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

f2 ⟨Ei, Y ⟩

⟨X,Ei⟩) +
f ′′

f
⟨X,Y ⟩

=
⎛

⎝

κ

f2
+ (

ḟ

f
)

2
⎞

⎠

n

∑
i=1
(⟨X,Y ⟩ ⟨Ei,Ei⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
= 1

−⟨Ei, Y ⟩ ⟨X,Ei⟩) +
f ′′

f
⟨X,Y ⟩

=
⎛

⎝

κ

f2
+ (

ḟ

f
)

2
⎞

⎠
(n − 1) ⟨X,Y ⟩ +

f ′′

f
⟨X,Y ⟩ = (

n − 1

f2
(κ + ḟ2) +

f̈

f
) ⟨X,Y ⟩ .

6. RicM(X,ν) = 0. Indeed,

RicM(X,ν) = −∑⟨RM(X,Ei)Ei, ν⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 0 by 3.

−⟨

∝X, by 4.

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

RM(X,ν)ν, ν⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 0

,

because X�ν .

7. Claim: RicM(ν, ν) = −n f
′′

f
since

RicM(ν, ν) =
n

∑
i=1
⟨RM(ν,Ei)ν
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

4.= − f ′′

f Ei

,Ei⟩ − ⟨R
M(ν, ν)ν, ν⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0,

by the symm. of RM

= −n
f ′′

f
.

8. Scalar curvature:

SM =
n

∑
i=1

RicM(Ei,Ei) − RicM(ν, ν)

5.,7.
= n(

n − 1

f2
(κ + ḟ2) +

f̈

f
) + n

f̈

f

= n(n − 1)
⎛

⎝

κ

f2
+ (

ḟ

f
)

2

+
2

n − 1

f̈

f

⎞

⎠
.

9. Finally, we can express the Einstein equations for Λ = 0. For X,Y tangential to S(t),

G(X,Y ) = RicM(X,Y ) −
1

2
SMg(X,Y )

5.,8.
=

⎛

⎝
(1 −

n

2
) (n − 1)

⎛

⎝

κ

f2
+ (

ḟ

f
)

2
⎞

⎠
− (n − 1)

f̈

f

⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p . . . pressure

⟨X,Y ⟩

and

G(X,ν) = RicM(ν, ν) −
1

2
SMg(ν, ν)

7.,8.
=

n(n − 1)

2

⎛

⎝

κ

f2
+ (

ḟ

f
)

2
⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ρ . . . energy (= mass) density

.
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Since RicM(X,ν) = 0 (by 6.) and g(X,ν) = 0, G(X,ν) = 0. Therefore, for the Einstein equations, we
get

G(X,Y ) = T (X,Y ).

The right hand side is a perfect fluid energy momentum tensor (cf. (3.3.17) in [3]) T (ν, ν) = ρ,
T (X,ν) = 0 and T (X,Y ) = p ⟨X,Y ⟩ i.e.

T = (ρ + p)(ν♭ ⊗ ν♭) + pg.

These equations describe the dynamics of our FLWR spacetime.

Definition 2.4.7. An FLRW spacetime is called a Friedmann model if p = 0.

Remark 2.4.8 (Friedmann Cosmology).
The condition p = 0 is, by 9. above, the second order
ODE for f which can be solved explicitly. In case n = 3,
we obtain:

1. κ = 0, f(t) = C(t − t0)
3
2 .

2. κ = 0, t(θ) = C(θ − sin(θ)), f(t(θ) − t0) = C(1 −
cos(θ)).

3. κ = −1, t(η) = C(sinh(η) − η), f(t(η) − t0) =
C(cosh(η) − 1).

Remark 2.4.9 (Horizons). Consider a null geodesic c(s) = (t(s), γ(s)) in a FLRW spacetime. Then c′(s) =
t′(s)ν + γ′ and

0 = g(c′, c′) = −(t′)2 + f2(t)∥γ′∥2s Ô⇒ ∥γ
′∥s =

∣t′∣

f(t)
.

In case γ′ > 0 we have for the spatial ’component’ γ :

Lgs(γ) = ∫
∞

s0
∥γ′∥sds = ∫

∞

s0

t′(s)

f(t(s))
ds

y=t(s)
= ∫

∞

t(s0)

dy

f(y)
.

If f grows fast enough (e.g. f(t) = t2 , f(t) = et) then L(γ) < ∞ and hence γ is confined to some ball
B(γ(s0),R) in S . This means that in this case some parts of the universe can never be seen i.e. are hidden
behind a ’horizon’.



3
CAUSALITY

’Causality’ refers to the broader inquiry concerning the con-
nection between points within a Lorentzian manifold (LMF) and
their ability to be linked by causal curves—those curves charac-
terized by having a causal tangent vector. In General Relativity
(GR), this inquiry delves into discerning which events can be influ-
enced by a given event. While in some cases causality might not
offer substantial insights, under appropriate conditions, it encap-
sulates the fundamental characteristics of an LMF. For instance,
it provides sufficient conditions for points to be connected by
causal geodesics or to be reached by normal causal geodesics
originating from a spacelike hypersurface. Key aspects of causal-
ity theory have been developed within the context of singularity
theorems by R. Penrose and S. Hawking.

3.1 Basic Notations

Definition 3.1.1. A time orientation on a LMF (M,g) is a map

ζ ∶M → P(TM),

where P denotes the power set of TM , such that:

1. for every p ∈M ζ(p) is one of the connected components of the set of timelike vectors in TpM .

2. for every p ∈M there exists a chart (U,x) of p such that ∂
∂x0 (q) ∈ ζ(p) for every q ∈ U .

We call the pair (M,ζ) a time-oriented LMF and M time-orientable if it possesses a time orientation.

Proposition 3.1.2 (Time Orientability). For a LMF (M,g) these facts are equivalent:

1. M is time-orientable.

2. There exists a continuous timelike vector field on M .

3. There exists a C∞ timelike vector field on M .

(Note that, in particular, there exists a nowhere vanishing C0 , or C∞ , vector field on M .)

55
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Proof.

(3.→ 2.) Clear.

(2.→ 1.) Let X be a continuous timelike vector field and define ζ(p) to be the connected component
of I(0)(⊆ TpM) containing X(p). Pick a chart (x,U) at p such that ∂

∂x0 is timelike on U and
∂
∂x0 ∣p ∈ ζ(p). In a Lorentzian vector space let x ∈ I+(0), y ∈ I . Then y ∈ I+(0) ⇐⇒ ⟨x, y⟩ < 0.

Indeed, any Lorentz-transformation leaves I invariant so, without loss of generality, let x = (a2,0)
for some a ∈ R. y ∈ I+(0) means that y0 > 0 and so ⟨x, y⟩ = −y0a2 < 0. Conversely, assume that
0 > ⟨x, y⟩ = −a2y0 . Then y0 > 0. By choice, ⟨X(p), ∂

∂x0 ∣p⟩ < 0, hence also ⟨X(q), ∂
∂x0 ∣q⟩ < 0, for all

q ∈ U . By the remark in gray, ∂
∂x0 ∣q ∈ ζ(q) for all q ∈ U , which proves the claim.

(1. → 3.) Let ζ be a time orientation and (Uα, xα) a covering of M by charts such that ∂
∂x0

α
∣
q
∈ ζ(q)

for all q ∈ Uα , for every α. Let (ρα)α be a partition of unity subordinate to (Uα)α and set X ∶= ∑ρα ∂
∂x0

α
.

Then X ∈ X(M) and X(p) = ∑ρα
∂

∂x0α
∣
p

´¹¹¹¹¹¹¸¹¹¹¹¹¶
∈ ζ(p)

∈ ζ(p), by the convexity of ζ(p) (see Corollary 2.1.5). In

particular, X is timelike.

Remark 3.1.3.

• All previous examples of LMFs are time-orientable (Minkowski, de Sitter...).

• The concepts of orientability and time-orientability are independent, as illustrated in the following
image.
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Remark 3.1.4.

1. From now on we will only consider LMFs (M,g) that are T2 , 2nd countable, connected and time-
oriented. Such LMFs are called spacetimes.

2. A curve will always mean a piecewise C∞-curve (i.e. a curve having finally many break points with two
distinguished tangent vectors at break points).

3. A causal curve γ (i.e. a curve such that γ̇(t) is causal for all t) is called future directed causal curve
if γ̇(t) ∈ ζ(γ(t)) and past directed causal curve if γ̇(t) ∈ −ζ(γ(t)).

Definition 3.1.5 (Causality Relations). For p, q ∈ (M,g) (spacetime) write

• p≪ q if there exists future directed timelike curve from p to q.

• p < q if there exists a future directed causal curve from p to q.

• p ≤ q if p < q or p = q.

For A ⊆M define the set:

• I+(A) ∶= {q ∈M ∶ ∃p ∈ A such that p≪ q}, called the chronological future.

• J+(A) ∶= {q ∈M ∶ ∃p ∈ A such that p ≤ q}, called the causal future of A.

I−(A) and J−(A) are defined analogously. Observe that I+(A) = ⋃p∈A I+(p) and J+(A) = ⋃p∈A J+(p).

Example 3.1.6.

1. Let M = R2
1 , then:

2. Let

(M,g) = R2
1/Ze0 ≅ (S

1 ×R,−dθ2 + df2),

then:

Remark 3.1.7 (Transitivity of ≪ and ≤). Since one can concatenate pointwise C∞-curves one easily sees that

p ≤ q ∧ q ≤ r Ô⇒ p ≤ r and

p≪ q ∧ q ≪ r Ô⇒ p≪ r.

However, we even have a stronger form of this transitivity often called the push-up principle.
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Proposition 3.1.8 (Push-up Principle). In a spacetime (M,g) for all p, q, r, we have that

p≪ q ∧ q ≤ r Ô⇒ p≪ r and

p ≤ q ∧ q ≪ r Ô⇒ p≪ r.

Proof. We only show the second assertion since the first one follows analogously. If p = q then the statement
is trivial. Therefore, let p < q. Then there exists a future directed causal curve

c1 ∶ [0,1] →M

such that c1(0) = p and c1(1) = q. There also exists a future directed timelike curve

c2 ∶ [1,2] →M

such that c2(1) = q and c2(2) = r. Let E ∈ X(c1) be the parallel transport of ċ2(1) along c1 . SetX(t) = t⋅E(t).
Then X ∈ X(c1).

We can find a 2-parameter map (cf. 2.1.19 in [3]), a variation of c1 , denoted c1,s with variational vector field
X i.e.

c1,s ∶ [0,1] × (−ϵ, ϵ) →M

(t, s) ↦ c1,s(t)

such that c1,0(t) = c1(t), c1,s(0) = p for all s and

c1,s(1) = c2(1 + s) (for s ≥ 0). (3.1.1)

Finally, we want that
∂sc1,s(t)∣s=0 =X(t) = t ⋅E(t). (3.1.2)

Is there such a variation? To convince ourselves that there is, we check for compatibility:

∂s∣0c1,s(1)
(3.1.1)
= c′2(1 + 0) ⋅ 1 = c

′
2(1) = E(1) = 1 ⋅E(1) =X(1). ✓
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How to construct c1,s?

Use Fermi coordinates along c1; take a frame Ei along c1 such that {ċ1(t),E2(t), . . . ,En(t)} is an
ONB of Tc1(t)M for all t ∈ [0,1]. In a tubular neighborhood of c1 we can then define coordinates
as follows: p has coordinates (x1, . . . , xn) ∶ ⇐⇒ p = expc(x1) (∑

n
i=2 x

iEi(x
1)). Now the above four

conditions for c1,s prescribe for every xi = xi(c1,s(t)) ≡ xi(t, s) (i = 1, . . . , n) the following constraints:

This means that, for each i = 1, . . . , n, we have to find a smooth surface xi = xi(t, s) as in the picture,
where the s-derivative of xi is prescribed, for s = 0, and the values at t = 0 and t = 1 are also imposed.
This is obviously feasible for t ∈ (0,1), and the above compatibility checks show that it is also possible
at t = 0 and at t = 1 (since the s-derivatives match up in the ’corners’ (0,0) and (1,0)). Then we have

⟨
∂c1,s

∂t
,
∂c1,s

∂t
⟩ (t,0) = ⟨ċ(t), ċ(t)⟩ ≤ 0

since c1 is a causal curve. Furthermore,

∂

∂s
∣
0

⟨
∂c1,s

∂t
,
∂c1,s

∂t
⟩

(∇5)
= 2 ⟨

∇

∂s
∣
0

∂

∂t
c1,s,

∂

∂t
c1,0

´¹¹¹¹¹¹¸¹¹¹¹¹¶
= ċ1(t)

⟩

2.1.20,[3]
= 2 ⟨

∇

∂t

∂

∂s
∣
0

c1,s,
∂

∂t
c1,0

´¹¹¹¹¹¹¸¹¹¹¹¹¶
= ċ1(t)

⟩

(3.1.2)
= 2 ⟨

∇

dt
(tE(t)), ċ1(t)⟩

∇

dtE≡0= 2 ⟨E(t), ċ(t)⟩ ,

since E is a parallel vector field (see 1.3.11 in [3]). 2 ⟨E(t), ċ(t)⟩ < 0 since E(t) is a future directed
timelike vector field (by definition) and c1(t) is a future directed causal curve. By Taylor’s theorem,
uniformly in t ∈ [0,1] and for s small we get that c1,s is timelike. We define

c(t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

c1,s(t), t ∈ [0,1]

c2(t + s), t ∈ [1,2 − s].

c(t) is piecewise C∞ and timelike from p to r.
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Corollary 3.1.9.

1. I+(A) = I+(I+(A)) = J+(I+(A)) = I+(J+(A)).

2. J+(J+(A)) = J+(A),∀A ⊆M .

Proof.

1. I+(A) ⊆ I+(I+(A)) ⊆ J+(I+(A))
3.1.8
⊆ I+(A).

Analogously, I+(A) ⊆ I+(I+(A)) ⊆ I+(J+(A))
3.1.8
⊆ I+(A).

2. J+ ⊆ J+(J+(A)) ⊆ J+(A), where the first inclusion holds since A ⊆ J+(A) (by Definition 3.1.5) and
the second one by transitivity (see Remark 3.1.7).

Proposition 3.1.10 (Gauss Lemma). Let M be a SRMF and let p ∈ M , 0 ≠ x ∈ Dp ⊆ TpM . Then for
any vx,wx ∈ Tx(TpM) with vx radial, we have

⟨(Tx expp)(vx), (Tx expp)(vx)⟩ = ⟨vx,wx⟩ .

Proof. See the proof of Theorem 2.1.21 in [3].

Lemma 3.1.11. Let (M,g) be a spacetime and p ∈M . Let γ ∶ [0, b] → TpM be a curve with γ(0) = 0
such that it is entirely contained in the domain of expp . If c ∶= expp ○γ ∶ [0, b] →M is a future directed
timelike curve, then γ(t) ∈ I+ ⊆ TpM for all t ∈ (0, b].
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Proof.

• Define a map q ∶ TpM → R where q(x) = ⟨x,x⟩. Choose RNC in p. Then

q(x) = −(x0)2 +
n

∑
i=1
(xi)2

Let ∂
∂x0 be future directed. Now

dq = −2x
0dx0 + 2

n

∑
i=1
xidxi

and so grad(q) = 2∑ni=0 x
i∂i = 2x, where ’gradient’ is referring to the constant scalar product ⟨⋅, ⋅⟩ = gp .

Using Gauss Lemma 3.1.10 we obtain

⟨Tx expp(grad(q)), Tx expp(grad(q))⟩ = ⟨grad(q(x)),grad(q(x))⟩ = 4q(x),

since grad(q) is radial (cf. [3], after 2.1.20). Set P (x) ∶= Tx expp(grad(q)). Then x ∈ I+ ⊆ TpM implies
that P (x) is timelike and future directed. Indeed, P (x) is future directed since

⟨P (x), ∂x0⟩
3.1.10
= ⟨grad(q), e0⟩ = 2 ⟨x, e0⟩ < 0.

• Suppose that γ ∈ C∞ (without breaks). We have that q(γ(0)) = q(0) = 0 and ċ(0) = (expp ○γ)
′(0) =

T0 expp
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
=id

(γ̇(0))
[3],(2.1.14)
= γ̇(0). Therefore, γ̇(0) is future directed and timelike and so there exists ϵ > 0

such that γ(t) ∈ I+ for all t ∈ (0, ϵ). Indeed, suppose there exists tn ↘ 0 such that γ(tn) ∉ I+ . Then

γ(tn)−

= 0

³·µ
γ(0)

tn
∉ I+ and so

γ̇(0) = lim
n→∞

γ(tn) − γ(0)

tn
∉ I+ ∶ ☇

To show that γ(t) ∈ I+ ⊆ TpM for all 0 < t ≤ b we first calculate

d

dt
q(γ(t)) = ⟨grad(q)∣

γ(t), γ̇(t)⟩

3.1.10
= ⟨Tγ(t) expp(grad(q)), Tγ(t) expp(γ̇(t))⟩

= ⟨P (γ(t)), ċ(t)⟩

Indirectly, assume that there exists some t1 ∈ (0, b] such that q(γ(t1)) = 0. Without loss of generality
assume t1 to be minimal. Then q(γ(0)) = q(γ(t1)) and so, by the mean value theorem, there exists
t0 ∈ (0, t1) such that

0 =
d

dt
∣
t=t0

q(γ(t)) = ⟨P (γ(t0)), ċ(t0)⟩ < 0

since ċ(t) is future directed and timelike (by assumption) and P (γ(t0)) is (by the previous point) also
future directed and timelike (FDTL) for γ(t0) ∈ I+ . But, this is clearly a contradiction.

• Finally, assume that γ is piecewise C∞ and let 0 ∶= b0 < b1 < ⋅ ⋅ ⋅ < bN ∶= b be a partition with γ∣[bi,bi+1] ∈
C∞ . We proceed by induction.

1. If N = 1, we are done (see the second point of this proof).
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2. Step from N −1→ N . By induction assumption γ([0, bN−1]) ⊆ I+ . Then the previous point implies
that

d

dt
q(γ(b+N−1)) = ⟨P (γ(bN−1)), ċ(bN−1)⟩ < 0

since γ(bN−1) ∈ I+ by induction assumption and ċ(bN−1) is FDTL by assumption on c. Therefore,
γ̇(b+N−1) is FDTL. As in the previous point, it follows that γ([bN−1, bN ]) ⊆ I+(γ(bN−1)) ⊆ I+ .

Definition 3.1.12. Let Ω ⊆M be open and A ⊆ Ω. Then the relative future of A in Ω is

I+Ω(A) ∶= {q ∈ Ω ∶ ∃p ∈ A such that p≪ q}

and the relative past

I−Ω(A) ∶= {q ∈ Ω ∶ ∃p ∈ A such that p≫ q} ,

where ≪ and ≫ are referring to curves in Ω. We define J+Ω(A) and J−Ω(A) analogously.

Corollary 3.1.13 (Local Causality). Let (M,g) be a spacetime, p ∈M , Ω a normal neighborhood of p
(with a starshaped set Ω̃ ∈ TpM such that expp ∶ Ω̃→ Ω is a diffeomorphism, cf. 2.1.14 in [3]). Then

1. I±Ω(p) = expp(I
±(0) ∩ Ω̃).

2. J±Ω(p) = expp(J
±(0) ∩ Ω̃).

Proof.

1. (⊆) Let q ∈ I+Ω(p). Then by definition of I+Ω(p), there exists a FDTL curve c from p to q in Ω. Lemma
3.1.11 now implies that γ ∶= exp−1p ○c ∈ I

+(0) ∩ Ω̃ and so (exp−1p ○c)(1) = exp
−1
p (q) ∈ I

+(0) ∩ Ω̃. In other
words, q ∈ expp(I

+(0) ∩ Ω̃).
(⊇) Let x ∈ I+(0) ∩ Ω̃. Then t ↦ tx is, for t ∈ (0,1] a segment in I+(0) ∩ Ω̃. The Gauss Lemma 3.1.10
implies that t↦ expp(tx) is a FDTL geodesic from p to expp(x) in Ω and so expp(x) ∈ I

+
Ω(p).

2. (⊇) Let x ∈ J+(0) ∩ Ω̃. Then by applying the Gauss Lemma 3.1.10 we conclude that t ↦ expp(tx) is a
future directed causal geodesic from p to expp(x) in Ω, which implies that expp ∈ J

+
Ω(p).

(⊆) Let q ∈ J+Ω(p). Choose a sequence (qi)i∈N such that qi ≫ q and qi → q in Ω, for every i.

Now p ≤ q ≪ qi , where ≤ and ≪ are relations in Ω. Applying Proposition 3.1.8, we conclude that p≪ qi
and so qi ∈ I+Ω(p). By 1., we get that exp−1p (qi) ∈ I

+(0) ∩ Ω̃ and so

exp−1p (q) = lim
i→∞

exp−1p (qi) ⊆ I
+(0) ∩ Ω̃

Ω̃

= J+(0) ∩ Ω̃,

which clearly holds in a Minkowski case.
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One essential fact in causality theory is that I±(A) are always open. In order to prove this, we first show
the following proposition.

Proposition 3.1.14. ≪ is an open relation i.e. if p ≪ q then there exist neighborhoods U of p and V
of q such that p′ ≪ q′ for all p′ ∈ U and q′ ∈ V .

Proof. If p≪ q we know that there exists a FDTL c ∶ [0,1] →M such that c(0) = p and c(1) = q. Let p̃ = c(ϵ),
where ϵ is so small that there exists a normal neighborhood Ω of p̃ with p ∈ Ω (for example, take Ω to be a
convex neighborhood of p and ϵ so small that c(ϵ) ∈ Ω). Let U ∶= I−Ω(p̃)

3.1.13
= expp̃(I

−(0) ∩ Ω̃). Then U is
open (since expp is a diffeomorphism) and p ∈ U . Therefore, U is an open neighborhood of p. Now choose
V analogously around q̃ ∶= c(1 − ϵ).

Finally, if p′ ∈ U and q′ ∈ V then p′ ≪ p̃≪ q̃ ≪ q′ and so p′ ≪ q′ and we are done.

Corollary 3.1.15. For all A ⊆ Ω, I±Ω(A) ⊆ Ω is open.

Proof. From Proposition 3.1.14 we get that I±Ω(p) ⊆ Ω are open.

I±Ω(A) = ⋃
p

I±Ω(p) ⊆ Ω

is open as it is a union of open sets.

In what follows, we’ll delve into the properties and interrelationships of sets I+ and J+ .

Remark 3.1.16.

1. Even for A ⊆M closed /Ô⇒ I±(A) is closed. For example, consider I±(p) ∈ R2
1 .

2. Also, J±(A) need not be closed. For example, consider R2
1/ {1,1}.
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Proposition 3.1.17. Let A ⊆M , then

1. I+(A) = (J+)○(A), where ○ denotes interior of a set.

2. J+(A) ⊆ I+(A), with equality if and only if J+(A) is closed.

Proof. 1. Since I+(A) ⊆ J+(A) is open and so I+(A) ⊆ J+(A)○ .
Conversely, let p ∈ J+(A)○ . Choose q ∈ (J+)○(A) ∩ I−(p) ≠ ∅ (because p ∈ J+(A)○ and p ∈ I−(p)).
Therefore, there exists an r ∈ A such that r ≤ q ≪ p. Applying Proposition 3.1.8 we immediately get
that r ≪ p. In other words, p ∈ I+(A).

2. (a) If Ω is a normal neighborhood of p then J+Ω(p) = I
+
Ω(p)

Ω
. This follows from Corollary 3.1.13 and

the causality in Minkowski space.

(b) It is sufficient to prove the claim for a single point i.e. to prove that J+(p) ⊆ I+(p) since then

J+(A) = ⋃
p∈A

J+(p) ⊆ ⋃
p∈A

I+(p)
´¹¹¹¸¹¹¹¶
⊆ I+(A)

⊆ I+(A).

In order to prove that J+(p) ⊆ I+(p) we first note that p ∈ I+(p).
Suppose that p < q(∈ J+(p)) i.e. suppose that there exists a
future directed causal curve from p to q. Let Ω be a normal
neighborhood of q. Choose q− on c with q− ∈ J−Ω(q). Then q ∈

J+Ω(q
−), where J+Ω(q

−)
(a)
= I+Ω(q

−)
Ω
. But,

I+Ω(q
−) ⊆ I+(J+(p))

3.1.8
= I+(p)

and so q ∈ I+(p).

(c) The equality case: if J+(A) = I+(A) holds then J+(A) is clearly closed. Conversely, if J+(A) is
closed, then

I+(A) ⊆ J+(A) = J+(A) ⊆ I+(A).

In Riemannian geometry, compact manifolds are usually considered friendly objects. However, in
Lorentzian geometry, they often serve as useful counterexamples due to the following proposition.

Proposition 3.1.18. A compact spacetime contains a closed timelike curve.

Proof. {I+(p) ∶ p ∈M} is an open cover of M . Hence, there exist p1, . . . , pN such that

M =
N

⋃
i=1
I+(pi),

where without loss of generality we may assume that

I+(pi) ⊈ I
+(pj), for i ≠ j (3.1.3)

(otherwise remove I+(pi)). If p1 ∈ I+(pi) for some n ≥ 2 then I+(p1) ⊆ I
+(p1), which is a contradiction to

(3.1.3). Therefore, p1 ∈ I+(p1) and so there exists a FDTL curve from p1 to p1 .
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Now, we establish specific ’causality conditions’ designed to prevent such instances.

Definition 3.1.19. A spacetime M is called:

1. chronological, if there do not exist closed timelike curves.

2. causal, if there do no exist closed causal curves.

3. strongly causal, if for every p ∈M and for every neighborhood U of p there exists a neighborhood V
such that any causal curve starting and ending in V has to remain in U .

Remark 3.1.20.
strongly causal Ô⇒ causal Ô⇒ chronological

however

strongly causal
1.

/⇐Ô causal
2.

/⇐Ô chronological.

To see this let

1. M = {R2
1/Z ⋅ (1,0)} /(G1 ∪G2), where G1 = {(

1
8
, s) ∶ s ≥ − 1

8
} and G2 = {(−

1
8
, s) ∶ s ≤ 1

8
}.

2. M = R2
1/Z ⋅ (1,−1).
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We now introduce the analog to the Riemannian distance function (see Section 2.3 in [3]).

Definition 3.1.21. The length of a curve c ∶ [a, b] →M is

L(c) ∶= ∫
b

a

√
∣ ⟨ċ(t), ċ(t)⟩ ∣dt.

Remark 3.1.22. Observe that null curves satisfy L(c) = 0.

Definition 3.1.23. For p, q ∈M define time separation (or Lorentzian distance) by

τ(p, q) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

sup{L(c) ∶ c FD causal from p to q} , if p < q

0, if p /< q.

Remark 3.1.24.

• Observe that τ(p, q) = ∞ is allowed here. For example, in Lorentz cylinder τ ≡ ∞.

• Moreover, note that τ is not symmetric.

Example 3.1.25.

1. Minkowski space. For p < q τ(p, q) =
√
∣⟪p − q, p − q⟫ ∣. Indeed,

γ ∶ t↦ qt + (1 − t)p, (0 ≤ t ≤ 1)

is a causal future directed curve from p to q and we have

τ(p, q) ≥ L(γ) = ∫
1

0
∣ ⟪q − p, q − p⟫ ∣

1
2 dt =

√
∣⟪q − p, q − p⟫ ∣.

Conversely, if p − q is timelike, then (using a Poincaré transformation), without loss of generality we
can assume that p = (0, . . . ,0) and q = (T,0, . . . ,0). Let c be any future directed causal curve from p
to q. Then ċ0 > 0. After reparametrization, ċ(t) = t and so c(t) = (t, ĉ(t)), with ĉ ∶ [0, T ] → Rn .

L(c) = ∫
T

0

√
∣⟪(1, ˙̂c), (1, ˙̂c)⟫ ∣dt = ∫

T

0

√
1 − ∥ ˙̂c∥2dt ≤ ∫

T

0
1dt = T =

√
∣⟪q − p, q − p⟫ ∣.

If case p− q is null, without loss of generality let p = 0 and q ∈ C+(0). Then all causal curves from p to
q are null and so

τ(p, q) = 0 =
√
∣⟪p − q, p − q⟫ ∣.

2. In Lorentz cylinder R2
1/Z, we have

τ(p, q) = ∞

for all p, q ∈M .
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Proposition 3.1.26 (Properties of τ ). In a spacetime (M,g) we have

1. τ(p, q) > 0 if and only if p≪ q.

2. For p ≤ q and q ≤ r we have the reverse triangle inequality:

τ(p, q) + τ(q, r) ≤ τ(p, r).

3. τ ∶M ×M → R is lower semicontinuous i.e.

∀p, q ∈M∀ϵ > 0∃U(p), V (q) ∶ τ(p′, q′) > τ(p, q) − ϵ,∀p′ ∈ U∀q′ ∈ V.

Proof.

1. (←) If p≪ q then there exists a FDTL curve c from p to q. But, L(c) > 0 and so τ(p, q) > 0.
(→) If τ(p, q) > 0 Then, by definition, there exists a future directed causal curve c from p to q with
L(c) > 0. c contains a timelike segment (∫ ∥ċ(t)∥dt > 0 Ô⇒ ∃t0 ⟨ċ(t0), ċ(t0)⟩ < 0 Ô⇒ ⟨c(t), c(t)⟩ < 0
on some interval). Choose p1, q1 on c with p1 ≪ q1 . Then p ≤ p1 ≪ q1 ≤ q and so p≪ q, by Proposition
3.1.8.

2. • Let τ(p, q) < ∞ and τ(q, r) < ∞. Let also ϵ > 0. Then there exists a future directed causal curve
c1 from p to q with L(c1) ≥ τ(p, q) − ϵ as well as a future directed causal curve c2 from q to r
with L(c2) ≥ τ(q, r) − ϵ.

τ(p, r) ≥ L(c1 ∪ c2) = L(c1) +L(c2) ≥ τ(p, q) + τ(q, r) − 2ϵ,

which proves the result since ϵ may be chosen arbitrarily small.

• Let τ(p, q) = ∞ or τ(q, r) = ∞. Without loss of generality assume that there exists a future
directed causal curve from p to q of arbitrarily great length. Concatenation of this curve with any
FD causal curve from q to r results in a curve from p to r with τ(p, r) = ∞.

3. • If τ(p, q) = 0, there is nothing to show.

• Let 0 < τ(p, q) < ∞ and 0 < ϵ < τ(p,q)
2

. Choose c ∶ [0,1] → M FD causal from p to q with

L(c) ≥ τ(p, q) − ϵ
2
(> 3

4
τ(p, q)). Also choose δ1 ∈ (0,1) such that

L (c∣[0,δ1]) <
ϵ

4
(<

τ(p, q)

8
) but greater than 0

and δ2 ∈ (0,1) such that

L (c∣[δ2,1]) <
ϵ

4
(<

τ(p, q)

8
) but greater than 0.
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Let p1 = c(δ1) and p2 = c(1 − δ2). Then we define U ∶= I−(p1) and V ∶= I+(p2). L(c∣[0,δ1]) > 0
and so τ(p, p1) > 0 i.e. p ≪ p1 (by 1.). Since I−(p1) is open U is a neighborhood of p and,
analogously, V is a neighborhood of q. Let p′ ∈ U , q′ ∈ V . Then we have

τ(p′, q′)
2.
≥ τ(p′, p1) + τ(p1, p2) + τ(p2, p

′)

≥ 0 +L (c∣[δ1,1−δ2]) + 0

= L(c) −L (c∣[0,δ1]) −L (c∣[1−δ2,1])

≥ τ(p, q) −
ϵ

2
−
ϵ

4
−
ϵ

4
= τ(p, q) − ϵ.

• Consider τ(p, q) = ∞. This condition implies the existence of future-directed causal curves from p
to q of any length. Using a construction similar to the previous point, we establish neighborhoods
around p and q. Within these neighborhoods, all points have arbitrarily large time separations
from each other.

Remark 3.1.27. In general, τ is not (upper semi-)continuous. To see this let M ∶= R2
1/ {0 × [−1,1]}.

All causal curves from p to q have to pass through the ’tunnel’ and so they are almost null and τ(p, q) small.
But there are causal curves from p to q′ which have greater length.

3.2 Variation of Curves

In this section, we’ll explicitly delve into the relationship between geodesics and the largest curves. The
primary tool employed is the variation of a given curve using a two-parameter map, as previously introduced.

Definition 3.2.1. A curve c ∶ [a, b] → M is called a pregodesic if there exists a (C∞-)function α ∶ [a, b] → R
such that for all t ∈ [a, b]

∇

dt
ċ(t) ≡ c̈(t) = α(t)ċ(t).

(Note that acceleration is colinear with velocity in the above equation.)

Remark 3.2.2 (On Pregeodesics).

1. Any geodesic is a pregeodesic with α ≡ 0.
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2. Any reparametrization of a geodesic is a pregeodesic. Indeed, assume c is a geodesic. Then for
c̃ = c ○ ϕ we have

∇

dt
˙̃c(t) =

∇

dt
((ċ ○ ϕ) ⋅ ϕ̇) = ϕ̈ ⋅ ċ ○ ϕ + ϕ̇2

∇

dt
ċ

´¸¶
c̈ = 0

○ϕ =
ϕ̈

ϕ̇
˙̃c.

3. Conversely, any pregeodesic can be reparametrized as a geodesic. To this end, let c̃ be a pregeodesic
with

∇

dt
˙̃c = α ˙̃c. (3.2.1)

Set

ϕ(t) ∶= ∫
t

a
e∫

τ
a α(s)dsdτ.

Then ϕ̇ = e∫
t
a α(s)ds , ϕ̈ = ϕ̇ ⋅ α(t) and so

α =
ϕ̈

ϕ̇
. (3.2.2)

We show that c = c̃ ○ ϕ−1 is a geodesic. First,

ċ(s) = (c̃ ○ ϕ−1) ˙(s) = ˙̃c ○ ϕ−1(s)
1

ϕ̇(ϕ−1(s))

and so

∇

ds
ċ =

∇

ds
( ˙̃c ○ ϕ−1(s)

1

ϕ̇(ϕ−1(s))
)

= (
∇

ds
˙̃c) ○ ϕ−1(s) ⋅

1

(ϕ̇(ϕ−1(s)))2
+ ˙̃c ○ ϕ−1(s) ⋅

−

= α, by (3.2.2)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

ϕ̈(ϕ−1(s)) ⋅
1

ϕ̇(ϕ−1(s))

(ϕ̇(ϕ−1(s)))2

(3.2.1)
= (α ⋅ ˙̃c) ○ ϕ−1(s) ⋅

1

(ϕ̇(ϕ−1(s)))2
− (α ⋅ ˙̃c) ○ ϕ−1(s) ⋅

1

(ϕ̇(ϕ−1(s)))2
= 0.

Remark 3.2.3. In the proof of Proposition 3.1.8 we saw that, if c ∶ [a, b] →M is causal and cs ∶ [a, b] →M is
a variation of c with s ∈ (−ϵ, ϵ) and variation vector field X = ∂cs

∂s
∣
s=0 with g ( ∇

dt
X, ċ) < 0, then cs is timelike

for s small on t ∈ [a, b]. Indeed, recall that

⟨
∂cs
∂t

,
∂cs
∂t
⟩ ∣
s=0
= ⟨ċ(t), ċ(t)⟩ ≤ 0,

because c is causal. Furthermore,

∂

∂s
∣
0

⟨
∂cs
∂t

,
∂cs
∂t
⟩ = 2 ⟨

∇

ds
∣
0

∂cs
∂t

,
∂cs
∂t
∣
s=0

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
ċ(t)

⟩ = 2 ⟨
∇

dt

∂cs
∂s
∣
0

, ċ(t)⟩ = 2 ⟨
∇

dt
X, ċ⟩ < 0,

which implies that ⟨∂cs
∂t
, ∂cs
∂t
⟩ < 0 for s ∈ (−ϵ0, ϵ0) for all t ∈ [a, b], where ϵ0 > 0 small enough.
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Lemma 3.2.4 (Deforming Causal Curves Into Timelike Curves). Let c ∶ [a, b] →M be causal but not a
null pregeodesic. Then arbitrarily close to c (in the compact-open topology) there is a timelike curve
with the same endpoints.

Let K be a compact set in [a, b] and let U ⊆M be an open set. Then the compact-open topology on
{c ∶ [a, b] →M ∣ c continuous} is generated by the subbase V (K,U) ∶= {c ∶ [a, b] →M ∣ c(K) ⊆ U}. Since
M is metrizable this just amounts to locally uniform convergence.

Proof. Without loss of generality let [a, b] = [0,1] (otherwise reparametrize the curve).

(a) If there exists t0 ∈ [0,1] such that ċ(t0) is timelike then c contains a timelike segment. By the proof
of Proposition 3.1.8 there exists a deformation of c into a timelike curve with the same endpoints.
Therefore, it suffices to consider the case where c is null everywhere.

(b) Let us first consider the case when c is null, C∞ , unbroken and is not a pregeodesic. Then

g(ċ, ċ) = 0 Ô⇒ 0 =
d

dt
g(ċ, ċ) = 2g(ċ, c̈)

and so c̈(t)�ċ for all t ∈ [0,1]. Since ċ(t) is null, ċ(t)� = Rċ ⊕ E(t) in Tc(t)M for E(t) spacelike.
Therefore, for all t there exist a(t), b(t) ∈ R and e(t) ∈ E(t)such that

c̈(t) = a(t)ċ(t) + b(t)e(t).

If b(t) = 0 for all t then c̈ = a ⋅ ċ and so c is a pregeodesic, which contradicts our assumption. Therefore,
there exists a t0 such that b(t0) ≠ 0 and so

⟨c̈, c̈⟩ ∣t0 = a(t0)
2 ⟨ċ, ċ⟩
´¸¶
= 0

∣t0 + b(t0)
2 ⟨e(t0), e(t0)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

> 0

> 0.

Therefore,
⟨c̈, c̈⟩ ≥ 0 but not ≡ 0. (3.2.3)

Choose Y0 ∈ Tc(0)M timelike such that ⟨Y0, ċ(0)⟩ < 0 (this is possible since ċ(0) is null). Let Y be the
parallel transport of Y0 along c. Then Y is timelike and

⟨Y (t), ċ(t)⟩ < 0 for all t. (3.2.4)

Now set X ∶= αY + βc̈ where α,β ∈ C∞ are to be determined so that α(0) = β(0) = α(1) = β(1) = 0
and g(X ′, ċ) < 0. Once we get that, we are done because then at a variation cs of c (as in Remark
3.2.3); just set cs(t) ∶= expc(t)(sX(t)). Then

c0(t) = c(t)

cs(0) = c(0)

cs(1) = c(1)

and
∂s∣0cs(t) =X(t).

We have that ⟨c̈, ċ⟩ = 0 and so

0 =
d

dt
⟨c̈, ċ⟩ = ⟨

...
c, ċ⟩ + ⟨c̈, c̈⟩ . (3.2.5)
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Now
⟨X ′, ċ⟩

Ẏ =0
= α̇ ⟨Y, ċ⟩ + β̇ ⟨c̈, ċ⟩

´¸¶
= 0

+β ⟨c̈, ċ⟩
(3.2.5)
= α̇ ⟨Y, ċ⟩ − β ⟨c̈, c̈⟩ . (3.2.6)

Let

γ ∶=
⟨c̈, c̈⟩

⟨Y, ċ⟩

(3.2.3),(3.2.4)
≤ 0 but not ≡ 0. (3.2.7)

Then there exists a C∞-function β ∶ [0,1] → R such that β(0) = β(1) = 0 and

∫
1

0
β(t)γ(t)dt = −1.

Finally, set α(t) ∶= ∫
t
0 (βγ + 1)(s)dt. Then α(0) = 0 = α(1) and we also have from (3.2.6) that

⟨X ′, ċ⟩ = (βγ + 1) ⟨Y, ċ⟩
´¹¹¸¹¶

< 0, by (3.2.4)

−β ⟨c̈, c̈⟩
(3.2.7)
< β ⟨c̈, c̈⟩ − β ⟨c̈, c̈⟩ = 0.

(c) Consider c to be piecewise C∞ and null. If one of the segments of c is not a pregeodesic then by
(b), it can be deformed into a timelike segment and then by (a), c can be deformed into a timelike
curve. We can assume, without loss of generality, that all segments are pregeodesics, except for c itself,
which is not a null pregeodesic. According to (a), it suffices to consider the scenario where there is
just one breakpoint, i.e., there exists t ∈ (0,1) such that c is C∞ on both [0, t0] and [t0,1], where ċ(t−0)
and ċ(t+0) are linearly independent (otherwise it wouldn’t be a breakpoint). Denote by Y ± the parallel
transport of ċ(t±0) along c.

c∣[0,t0] is a pregeodesic Ô⇒ ċ ∥ Y − on [0, t0] and they have the same orientation

c∣[t0,1] is a pregeodesic Ô⇒ ċ ∥ Y + on [t0,1] and they have the same orientation.

Set Y ∶= Y + − Y − . Then on [0, t0]

⟨Y, ċ⟩ = ⟨Y +, ċ⟩
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
< 0

−⟨Y −, ċ⟩ < 0, (3.2.8)
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where ⟨Y −, ċ⟩ = 0 since Y − ∥ ċ and ċ is null. Analogously, on [t0,1]

⟨Y, ċ⟩ = ⟨Y +, ċ⟩ − ⟨Y −, ċ⟩
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
> 0

> 0. (3.2.9)

Let α ∶ [0,1] → R be continuous and smooth on [0, t0] and [t0,1] with α(0) = α(1) = 0, α′ > 0 on
[0, t0], α′ < 0 on [t0,1]. Set X = αY . Then X(0) = 0 =X(1) and

⟨X ′, ċ⟩
Y ′=0
= α′ ⟨Y, ċ⟩

(3.2.8),(3.2.9)
< 0

from this, as before, the claim follows.

Remark 3.2.5.
In general, a null pregeodesic
cannot be deformed into a time-
like curve with the same end-
points. For example, this holds
true in Minkowski space R3

1 .

Lemma 3.2.6. Let c be a null geodesic and let cs be a variation of c with variation vector field
X (= ∂cs

∂s
∣
0
) such that X�ċ in the endpoints. If there exists a sequence si → 0 with csi timelike then

X�ċ everywhere.

Proof. Without loss of generality, we can assume that either si > 0 or si < 0 for all si . Then,

lim
i→∞

g(ċs, ċs)

si
= lim
si→0

g(ċsi , ċsi) −

= 0

³¹¹¹¹¹¹·¹¹¹¹¹µ
g(ċ, ċ)

si
=
∂

∂s
∣
0

g(ċs, ċs)

and so
∂

∂s
g(ċs, ċs)∣

s=0
≤ 0 or

∂

∂s
g(ċs, ċs)∣

s=0
≥ 0 for all t ∈ [0,1].

But by Remark 3.2.3,

∂

∂s
g(ċs, ċs)∣

s=0
= 2g (

∇X

dt
, ċ) Ô⇒ g (

∇X

dt
, ċ) ≥ 0 or g (

∇X

dt
, ċ) ≤ 0 for all t ∈ [0,1]. (3.2.10)

Now

∫
1

0
g (
∇X

dt
, ċ)dt

c̈=0
= ∫

1

0
((
d

dt
g(X, ċ)) − g(X, c̈))dt = g(X, ċ)∣

1

0
= 0,

by assumption. Using (3.2.10), for all t ∈ [0,1]

g (
∇X

dt
, ċ) =

d

dt
g(X, ċ),

which implies that g(X, ċ) is constant on [0,1], hence equal to zero.

Next, we introduce the notion of a Jacobi field. These fields adhere to a specific ordinary differential
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equation (ODE) and, simultaneously, they serve as variation vector fields for geodesic variations. More
precisely, we define a variation cs of c as a geodesic variation if all curves of the form t ↦ cs(t) are
geodesics. We denote by J the corresponding variational vector field, i.e., let

J(t) ∶=
∂cs(t)

∂s
∣
s=0
.

Then
∇2

∇t2
J =
∇

∂t

∇

∂t

∂cs
∂s
∣
s=0

[3],2.1.20
=

∇

∂t

∇

∂s

∇cs
∂t
∣
s=0

[3],3.1.6
=

∇

∂s

∇

∂t

∂cs
∂t
∣
s=0
+R(J, ċ)ċ = 0,

where the term ∇
∂t
∂cs
∂t
= 0 because cs is a geodesic.

Definition 3.2.7. A vector field along a geodesic c is called a Jacobi field (JF) if it satisfies the Jacobi equation
(JE)

∇2

dt2
J +R(ċ, J)ċ = 0.

Remark 3.2.8 (On the Jacobi Equation).

• The Jacobi equation is a linear ODE of 2nd order. Hence, given J(0) and ∇
dt
J(0) there is a unique

global solution to the Jacobi equation with these initial data J along all of c.

• The vector space of Jacobi fields on c has dimension 2n(= dim(M)).

• The Jacobi equation is sometimes also called equation of geodesic deviation.

Lemma 3.2.9 (Jacobi Fields and Geodesic Varitions). Let J be a C∞-vector field along a geodesic c.
These facts are equivalent:

1. J is a Jacobi field.

2. There is a geodesic variation of c with variation vector field J .

Proof.

(2.→ 1.) See above Definition 3.2.7.

(1. → 2.) Choose any curve σ such that c(0) = σ(0), J(0) = σ′(0). Choose also X ∈ X(σ) with
X(0) = ċ(0) so that ∇X

ds
(0) = ∇

dt
J(0).

Such an X exists. Indeed, let A,B ∈ X(σ) be parallel with A(0) = ċ(0) and B(0) = J ′(0) and set
X(s) ∶= A(s) + sB(s). Then X(0) = A(0) = ċ(0) and

∇X

ds
(0) = A′(0)

´¹¹¹¸¹¹¹¶
= 0

+B(0) + s ⋅ 0 = B(0) = J ′(0). ✓

Set cs(t) ∶= expσ(s)(tX(s)). We show that cs is a geodesic variation of J .

(a) We have c0(t) = expσ(0)(tX(0)) = expc(0)(tċ(0)) = c(t) and, clearly, all cs are geodesics.
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(b) Set J̃ ∶= ∂cs
∂s
∣
0

then by (2. → 1.) J̃ is a Jacobi field along c and we have to show that J̃ = J .

Hence, by Remark 3.2.8 it suffices to show that J(0) = J̃(0) and J ′(0) = J̃(0). Indeed, we have

J̃(0) =
d

ds
∣
s=0

expσ(s)(0) =
d

ds
σ(s)∣

s=0 = J(0)

and

J̃ ′(0) =
∇

dt

∂

∂s
expσ(s)(tX(s))∣t=0=s

2.1.20,[3]
=

∇

∂s

∇

∂t
expσ(s)(tX(s))∣t=0=s

(2.1.14),[3]
=

∇

∂s
T0 expσ(s)(X(s))∣s=0

=
∇

∂s
X(s)∣

s=0 = J
′(0).

Example 3.2.10 (Jacobi Fields).

1. Trivial Jacobi fields. Let c be a geodesic, then

J(t) ∶= (at + b)ċ(t)

is a Jacobi field along c. Indeed,

∇2

dt2
J(t) =

∇

dt
(aċ + (at + b)c̈)

c̈=0
= ac̈ = 0

and
R(ċ, J)ċ = (at + b)R(ċ, ċ)

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
= 0

ċ = 0.

Corresponding geodesic variations are:

cs(t) ∶= c(bs + t) Ô⇒ ∂s∣0cs(t) = b ⋅ ċ(t)

cs(t) ∶= c((1 + as)t) Ô⇒ ∂s∣0cs(t) = at ⋅ ċ(t)

2. In M = Rnnu (i.e. flat space with index ν) we have R = 0. Hence, the Jacobi equation is ∇
2

dt2
J = d2

dt2
J = 0

and so the general solution is
J(t) = tX(t) + Y (t)

with X,Y parallel i.e. X,Y constant. The corresponding geodesic variation is given by

cs(t) = c(t) + s(tX(t) + Y (t)).

3. Let M have constant curvature i.e. let R(X,Y ) 1.1.12
= κ(⟨Z,X⟩Y − ⟨Z,Y ⟩X). Let also c be a geodesic

with η ∶= g(ċ, ċ) and X,Y ∈ X(c) be parallel vector fields along c which are normal to ċ. Let

J(t) ∶= sηκ(t)X(t) + cηκ(t)Y (t)

with

sδ ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sin(
√
δt), δ > 0

t, δ = 0

sinh(
√
∣δ∣t), δ < 0
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and

cδ(t) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

cos(
√
δt), δ > 0

1, δ = 0

cosh(
√
∣δ∣(t)), δ < 0

for δ ∈ R. Then s′′δ = −δsδ and c′′δ = −δcδ . Therefore,

∇2

dt2
J = −ηκ ⋅ J.

On the other hand,
R(ċ, J)ċ = κ(g(ċ, ċ)J − g(J, ċ)ċ) = κηJ,

since g(ċ, ċ) = η and g(J, ċ) = 0 since J�c. Therefore, the Jacobi equation holds. We can sketch the
three cases:

Next, our focus will be on variations of geodesics that are perpendicular to a SRMF.

Remark 3.2.11 (Reminder on SRSMFs). Let P be a SRSMF of a SRMF M , then for X,Y ∈ X(P ), we have

∇MX Y (p)
(1.3.7)
= ∇PXY (p)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ TpP

+ I(X(p), Y (p))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ NpP ≡ TpP

�

where the second fundamental form Ip ∶ TpP × TpP → NpP is bilinear, symmetric and given by

I(X,Y ) ∶= nor(∇MX Y ).
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Similarly, we have Ĩp ∶ TpP ×NpP → TpP (see (1.6.2)) defined via

Ĩ(X,ν) ∶= tan(∇MX ν).

Then by Remark 1.6.9, 3.,
⟨Ĩp(X,ν), Y ⟩ = − ⟨Ip(X,Y ), ν⟩ ,

for ν ∈ X(P )� . Hence, for X fixed we have

Ĩp(X, ⋅) = −(Ip(X, ⋅))t ∶ NpP → TpN.

Lemma 3.2.12. Let P ⊆ M be a SRSMF. Let c be a geodesic in M with c(0) = p ∈ P and ċ(0)�P .
Finally, let J be a Jacobi field along c. These facts are equivalent:

1. J is the variational vector field of a geodesic variation cs of c with cs(0) ∈ P and ċs(0) ∈ Ncs(0)P
for all s.

2. We have J(0) ∈ TpP and tan (∇
M

dt
J(0)) = Ĩ(J(0), ċ(0)).

We call any such J a P -Jacobi field.

Proof.

(1.→ 2.) We have σ(s) ∶= cs(0) ∈ P and so J(0) = ∂
∂s
∣
0
cs = σ

′(0) ∈ TpP . Let X ∈ X(P ). Then,

⟨X(σ(s))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ Tc(s)P

, ċs(0)
´¹¹¸¹¶
�P

⟩ = 0

for all s. Therefore,

0 =
d

ds
∣
s=0
⟨X(σ(s)), ċs(0)⟩

= ⟨
∇M

ds
∣
s=0
X(σ(s)), ċ(0)⟩ + ⟨X(p),

∇

∂s

∇

∂t
cs∣

s=0=t
⟩

1.6.9,4.
= ⟨

∇P

ds
∣
0

X(σ(s))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ TpP

+Ip(σ̇(0),X(p)), ċ
´¸¶
�P

⟩ + ⟨X(p),
∇

∂t

∇

∂s
cs∣

s=0=t
⟩

= ⟨Ip(σ̇(0),X(p)), ċ(0)⟩ + ⟨X(p),
∇

∂t
J(0)⟩

3.2.11,(3.2.11)
= −⟨Ĩp(J(0), ċ(0))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
tangential

−
∇

∂t
J(0), X(p)

´¹¹¸¹¹¶
tangential

⟩

= ⟨tan(
∇

dt
J(0)) − Ĩp(J(0), ċ(0)),X(p)⟩

since X was arbitrary,

tan(
∇

dt
J(0)) = Ĩp(J(0), ċ(0)).

As in Example 3.2.10 define cs by
cs(t) ∶= expσ(s)(tX(s))
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with

σ(0) = c(0) = p ∈ P

σ̇(0) = J(0)

X(0) = ċ(0)
∇

ds
X(0) =

∇

dt
J(0)

where, in addition, we need σ ∶ [0,1] → P , X(s) ∈ Nσ(s)P for all s. Once we have this we are done
because then cs(0) = σ(s) ∈ P , ċs(0) = X(s) ∈ Nσ(s)P and ∇

ds
∣
0
cs(t) = J(t) exactly as in Example

3.2.10.

• To begin with we note that σ(s) ∈ P can be achieved since, by assumption, TpP ∋ J(0) = σ̇(0).

• In order to construct X-transport ċ(0) normal-parallel along σ (i.e. nor∇
MU
ds
= 0, see Remark

1.6.9, 5.) to obtain U(0) = ċ(0) and U(s) ∈ Nσ(s)P for all s. Let V (s) ∈ Nσ(s)P be the normal-
parallel transport along σ of nor (∇J

dt
(0)), so that V (s) ∈ Nσ(s)P for all s. Set

X(s) ∶= U(s) + sV (s) ∈ Nσ(s)P.

Then

• X(0) = U(0) = ċ(0).

• we have to verify that
∇

ds
X(0) =

∇

dt
J(0).

We start with normal components:

nor(
∇X

ds
(0)) = nor(

∇U

ds
+ V (0)) = nor(

∇J

dt
(0)) ,

where nor (∇U
ds
) = 0 because U is normal-parallel. Finally, in order to show that

tan(
∇X

ds
(0)) = tan(

∇U

ds
(0))

we calculate

tan(
∇X

ds
) = tan(

∇U

ds
+ V (0)) =

∇U

ds
(0), (3.2.11)

since V (0)�P and nor (∇U
ds
(0)) = 0 because U is normal parallel. For Y ∈ X(P ), we have

⟨tan(
∇X

ds
(0)) , Y (0)⟩

(3.2.11)
= ⟨

∇U

ds
(0), Y (0)⟩

=
d

ds
∣
s=0
⟨

�P
³¹·µ
U(s)

∥P
³¹·µ
Y (s)⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 0

−⟨

�P
³¹·¹µ
U(0),

∇Y

ds
(0)⟩

1.5.1
= −⟨U(0)

´¹¸¹¶
ċ(0)

, Ip(σ̇(0)
´¸¶
J(0)

, Y (0))⟩

= −⟨ ċ(0)
´¸¶
normal

, Ip(J(0), Y (0))⟩

3.2.11,(3.2.11)
= ⟨Ĩp(J(0), ċ(0)), Y (0)⟩ = ⟨tan

∇M

dt
J(0), Y (0)⟩ ,

where the last equality holds by assumption. Since Y was arbitrary, we are done.
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Definition 3.2.13.

1. Let c be a geodesic with c(0) = p. We say that q = c(t) is conjugate to p of order µ if

µ ∶= dim{nontrivial Jacobi fields J along c with J(0) = 0 = J(t)} > 0,

where by ’nontrivial’ we mean ’not tangential to c’.

2. Let P be a SRSMF, c a geodesic of M with c(0) = p ∈ P and ċ(0) ∈ NpP . We say that P has a
focal point along c at t of order µ if

µ ∶= dim{P-Jacobi fields along c with J(t) = 0} > 0.

Recall here the definition of P-Jacobi field from Lemma 3.2.12.

Remark 3.2.14. If J is a JF along a geodesic c, J(0)�ċ(0) and J(t0)�ċ(t0) then J(t)�ċ(t) for all t. Indeed,

⟨J, ċ⟩
′
= ⟨J ′, ċ⟩ + 0, where J ′ = ∇J

dt
. Therefore, ⟨J, ċ⟩′′ = ⟨J ′′, ċ⟩ + 0 JE

= ⟨RJċ, ċ⟩ = 0 and so there exist a, b ∈ R
such that ⟨J(t), ċ(t)⟩ = a + tb. If this function vanishes at two different t-values, it must be identically zero.
In particular, if ċ(0)�P and J is a P-JF along c, then J(t)�ċ(t) for all t (J(0) ∈ TpP and so J(0)�ċ(0) also,
if J(t0) where t0 is a focal point, is equal to zero then J(t0)�ċ(t0)).

Remark 3.2.15 (The Size of µ). Let dim(M) = n and dim(P ) = m. We know that dim{J ∶ JF along c} = 2n.
If J is a P-JF then J(0) ∈ TpP and this reduces the dimension by n −m. Also, tan(J ′(0)) = Ĩp(J(0), ċ(0))
reduces further m dimensions. Therefore,

dim{P-Jacobi fields along c} = 2n − (n −m) −m = n.

Since the trivial Jacobi field J(t) = tċ(t) is a P-JF (J(0) = 0 ∈ TpP , J ′(t) = ċ(t) Ô⇒ J ′(0) = ċ(0) and
tan(J ′(0)) = 0 = Ĩp(J(0), ċ(0))),

µ ≤ n − 1.

Example 3.2.16 (Focal Points).

1. Conjugate points can be viewed as focal points for P = {p}.

2. Let M = Sn and P = {p}. Let c be a geodesic parametrized by unit speed. Then c has a conjugate
point at t = k ⋅ π (k ∈ N) of order µ = n − 1. Indeed, let E be parallel along c. Then from Example
3.2.10 (3.), we know that J(t) = sin(t) ⋅E(t) is a JF along c and J(0) = 0, J(kπ) = 0. Since there are
n − 1 linearly independent E which are perpendicular to c, it follows that µ = n − 1.

3. Let P = Sn ⊆ Rn+1
´¹¸¶
RMF

= M . Let also p ∈ Sn and c(t) = (1 − t)p. Then ċ(t) = −p and so c is a unit

speed geodesic emanating orthogonally from P . Let E ∈ TpSn and E(t) parallel vector field along c
with E(0) = E . By 3.2.10 (2.), we have that J(t) = (1 − t)E(t) is a JF along c. In fact, J is a P-JF
(J(0) = E ∈ TpP ) and

tan(
∇J

dt
(0)) = tan(−E) = −E.

By Example 1.3.16, I(X,Y ) = ⟨X,Y ⟩ ċ(0) (c points inward) and so

⟨Ĩ(X, ċ(0)), Y ⟩ = − ⟨I(X,Y ), ċ(0)⟩ = − ⟨X,Y ⟩ ⟨ċ(0), ċ(0)⟩ ∥ċ(t)∥=1= − ⟨X,Y ⟩ .

Hence, Ĩ(X, ċ(0)) = −X and so Ĩ(J(0)
´¸¶
= E

, ċ(0)) = −E . We have that J(1) = 0 = c(1) is a focal point of

P = Sn . The order of c(1) is n since there exist n linearly independent E ’s as above.
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4. Cylinder. Let P = Sk ×Rn−k ⊆ Rk+1 ×Rn−k = Rn+1 =M . Similarly to 3. c(t) = ((1− t)p1, p2) has a focal
point at t = 0 of order k.

5. De Sitter or hyperbolic space. Similarly, one sees that zero is a focal point for geodesics c(t) = (1−t)p.
Take E(t) and J(t) as above.

Proposition 3.2.17 (Null Geodesics Are Not Maximizing After Their First Focal Point). Let P be a
spacelike SMF of a spacetime M . Let c ∶ [0, b] → M be a null geodesic with c(0) = p ∈ P and
ċ(0) ∈ NpP . Set q ∶= c(b). If P has a focal point along c before q i.e. if there exists some t0 ∈ (0, b)
such that c(t0) is a focal point then there exists a TL curve from P to q arbitrarily close to c (in the
compact-open topology).

Example 3.2.18. Let M = R3
1 and P = {1} × S1 ⊆ R × R2 = R3 = M . Consider p ∶= (1,1,0). Let

c(t) = (1 − t)p =
⎛
⎜
⎝

1 − t
1 − t
0

⎞
⎟
⎠
. Then c(t) is a null geodesic since ⟪p, p⟫ = 0 and ċ(0)�P .
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Indeed, write P as

{(1, cos(t), sin(t)) ∶ t ∈ [0,2π]} .

Then TpP = ⟨(0,0,1)⟩
⊺ and so

p ∈ NpP . Let b > 1 and set

q ∶= c(b) = (1−b,1−b,0) =∶ (β,β,0).

Then β < 0. As before, we
have that (0,0,0)⊺ is a focal
point of P . Let also pϵ ∶=
(1, cos(ϵ), sin(ϵ)). Then,

⟪q − pϵ, q − pϵ⟫ = ⟪(β − 1, β − cos(ϵ),− sin(ϵ))⊺, (β − 1, β − cos(ϵ),− sin(ϵ))⊺⟫

= −(β − 1)2 + (β − cos(ϵ))2 + sin2(ϵ) = 2 β
´¸¶
< 0

(1 − cos(ϵ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

> 0

< 0

and so the connecting line

cϵ(t) ∶= pϵ +
t

b
(q − pϵ) =

⎛
⎜
⎝

1 − t
cos(ϵ) + t

b
(β − cos(ϵ))

sin(ϵ) (1 − t
b
)

⎞
⎟
⎠

is a timelike geodesic from pϵ to q which for ϵ→ 0 converges to c uniformly on [0, b].

In preparation for proving Proposition 3.2.17, we require the following lemma.

Lemma 3.2.19. Let M be a SRMF, c ∶ [a, b] → M smooth, Z ∈ X(c) and let P ct,s ∶ Tc(t)M → Tc(s)M
be parallel transport along c. Then

d

dt
P ct,s(Z(t)) = P

c
t,s (
∇Z

dt
) ,

with t ↦ P ct,s(Z(t)) being a C∞-curve in the finite-dimensional vector space Tc(s)M where we take
d
dt

.

Proof. Let Ei ∈ X(c), for i = 1, . . . , n be a parallel frame along c. Then we can write Z(t) = Zi(t)Ei(t),
where Zi(t) are C∞-functions and so

P ct,s(Z(t)) = Z
i(t)Ei(s).

Indeed, τ ↦ Zi(t)Ei(τ) is parallel and has value Z(t) at τ = t and so its value at τ = s is

P ct,s(Z(t)). Therefore, d
dt
P ct,s(Z(t)) = (Z

i)′(t)Ei(s). Also, ∇Z
dt
(t)

(Ei)′=0
= (Zi)′(t)Ei(t) and so P ct,s (

∇Z
dt
) =

(Zi)′(t)Ei(t).

Lemma 3.2.20. Let P ⊆M be a SRSMF of a spacetime, c ∶ [0, b] →M a geodesic with c(0) = p ∈ P ,
ċ(0) ∈ NpP . Then

T ∶= {t ∈ (0, b] ∶ P has focal point along c in t}

is compact.
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Corollary 3.2.21. In the situation of Lemma 3.2.20 we have the following:

If T ≠ ∅ then there exists a minimum of T i.e. there is a first focal point.

Proof. See 3.2.20.

a) Set V ∶= {P-Jacobi fields along c}, choose any Riemannian metric h on M and define for J ∈ V

∥J∥ ∶= supt∈[0,b]∣J(t)∣h + sup ∣
∇J

dt
(t)∣

h
.

Then (V, ∥ ⋅ ∥) is an n-dimensional (=dim(M)) normed vector space (see Remark 3.2.15) and ∥ ⋅ ∥ is a
norm on V (∥J∥ = 0 Ô⇒ J = 0).

b) Claim: T is closed in (0, b]. Indeed, let ti ∈ T , ti → t ∈ (0, b]. We want to show that t ∈ T . There exists
Ji ∈ V , Ji ≠ 0 with Ji(ti) = 0 and without loss of generality ∥Ji∥ = 1 (otherwise normalize, if needed).
Then the unit sphere in V is compact and so there exists a convergent subsequence, called Ji where
Ji → J ∈ V and Ji(ti) = 0. Then ∥J∥ = 1 and so J ≠ 0 is a P-JF. Consider parallel transport w.r.t. g,
where g is the original metric, along c:

P cs,t ∶ Tc(s)M → Tc(t)M.

Then,

∣J(t)∣h = ∣J(t) − P cti,tJ(ti) + P
c
ti,tJ(ti) − P

c
ti,t

= 0

³¹¹¹¹·¹¹¹µ
Ji(ti) ∣h

≤ ∣J(t) − P cti,t

→ J(ti)
³¹¹·¹µ
J(ti) ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i→∞Ð→

+C∥J(ti) − Ji(ti)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→ 0

∥∣h → 0,

where in the last inequality we used continuous dependence on initial conditions of parallel transport.
Therefore, J(t) = 0 and so t ∈ T .

c) Claim: There exists ϵ > 0 such that T ⊆ [ϵ, b]. Assume that there exist ti ∈ T such that ti → 0. Then as
in b), there exist Ji ∈ V such that Ji → J in V with Ji(ti) = 0, ∥Ji∥ = 1 = ∥J∥, J(0) = limi→∞ Ji(ti) = 0.
Since J is a P-JF,

tan(
∇J

dt
(0)) = Ĩ(J(0)

´¸¶
= 0

, ċ(0)) = 0.

We show that also nor (∇J
dt
(0)) = 0 because then ∇J

dt
(0) = 0. Since J(0) = 0, we would get that J ≡ 0,

which would be a contradiction to ∥J∥ = 1.

∣nor(
P cti,0J(ti) − J(0)

ti − 0
)∣
h

→ ∣nor(
∇J

dt
(0))∣

h
,

where
P c

ti,0
J(ti)−J(0)
ti−0 converges to d

dt
∣
0
P ct,0(J(t))

3.2.19
= P ct,0 (

∇J
dt
(t)) ∣

t=0 = P
c
0,0(J

′(0)) = J ′(0). Fur-
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thermore,

∣nor(
P cti,0J(ti) − J(0)

ti − 0
)∣
h

=
1

ti
∣nor(P cti,0(J(ti) − Ji(ti)))∣h

=
1

ti
∣nor [∫

ti

0
P cτ,0 (

∇J

dτ
(τ) −

∇Ji
dτ
(τ))dτ + J(0) − Ji(0)] ∣

h

≤
1

ti
∫

ti

0
∣P cτ,0 (

∇(J − Ji)

dτ
(τ)) ∣

h

dτ

≤
C

ti
∫

ti

0
∥J − Ji∥dτ = C∥J − Ji∥ → 0

(for some constant C > 0), so nor (∇J
dt
(0)) = 0.

Proof. See 3.2.17. Let t0 ∈ (0, b) be the first focal point of P along c. Let J ≠ 0 be a P-JF along c with
J(t0) = 0. Since t0 is the first focal point, J(t) ≠ 0 for all t ∈ (0, t0).

a) Claim: There exists a δ ∈ (0, b − t0) such that J on [0, t0 + δ] can be written as J = f ⋅ U , where U
is a spacelike unit vector field along c and f ∶ [0, t0 + δ] → R is C∞ and f > 0 on (0, t0), f < 0 on
(t0, t0 + δ). Indeed, by Remark 3.2.14, since J is a P-JF, J�ċ on [0, b]. Since ċ is null, there could be
points where J is proportional to ċ. We show this is not the case. Suppose there exists t1 ∈ (0, t0) and
that there exists some β ∈ R such that J(t1) = βċ(t1). Set

J̃(t) ∶= J(t) −
βt

t1
ċ(t).

Then J̃ is a trivial Jacobi field (see Example 3.2.10 (1.)). In fact, J̃ is even a P-JF:

• J̃(0) = J(0) + 0 ∈ TpP . ✓

• tan (∇J̃
dt
(0))

c̈=0,ċ(0)�P
= tan (∇J

dt
(0)) = Ĩp(J(0), ċ(0)) = Ĩp(J̃(0), ċ(0)). ✓

But, J̃(t1) = 0 and so c(t1) is a focal point and t1 < t0 . ☇ Therefore, J is nowhere proportional to ċ
on (0, t0) and so J is spacelike on (0, t0). Let {Ei}i=1,...,n be a parallel frame field along c and write
J(t) = J i(t)Ei(t). J(t0) = 0 and so J i(t0) = 0 for all i, implying that

J i(t) = J i(t0)
´¹¹¹¹¹¹¸¹¹¹¹¹¶
= 0

+∫
1

0

d

ds
J i(t0 + s(t − t0))ds = (t − t0)∫

1

0

dJ i

ds
(t0 + s(t − t0))ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ Y i(t)

.

Then setting Y (t) ∶= Y i(t)Ei(t) ∈ X(c) yield

J(t) = (t0 − t)Y (t).

By the same argument, if J(0) = 0 then Y (0) = 0 and so Y (t) = t ⋅ Ỹ (t) Altogether, we can write

J(t) = γ(t)Y (t),

where

γ(t) =

⎧⎪⎪
⎨
⎪⎪⎩

t(t0 − t), if J(0) = 0

(t0 − t), if J(0) ≠ 0.
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This holds on [0, t0 + δ] and Y ∈ X(c) implies that Y is spacelike on (0, t0). If J(0) ≠ 0 then Y (0) ≠ 0.

If J(0) = 0 then ∇J
dt
(0) ≠ 0 (otherwise J ≡ 0 since J is a Jacobi field).

J ′(t) = (γ(t)Y (t))′ = (t0 − 2t)Y + t(t0 − t)Y
′ (3.2.12)

and so 0 ≠ J ′(0) = t0Y (0) implies that Y (0) ≠ 0. Similarly, 0 ≠ J ′(t0) = −t0Y (t0) implies Y (t0) ≠ 0.
Claim: Y (0) and Y (t0) are spacelike. If J(0) ≠ 0 then Y (0) = 1

γ(0)J(0) ∈ TpP is spacelike. If J(0) = 0
then ⟨J, ċ⟩ = 0 and so

0 =
d

dt
⟨J, ċ⟩

c̈=0
= ⟨J ′, ċ⟩ Ô⇒

∇J

dt
�ċ.

We now show that ∇J
dt

is not proportional to ċ at t = 0. Suppose Y (0) = βċ(0). Then,

∇J

dt
(0)

(3.2.12)
= t0Y (0) = t0βċ(0)

and so J(t) = t ⋅ t0βċ(t). But then J(t0) = t
2
0βċ(t0) ≠ 0. ☇ (t0 is a focal point.) Therefore, Y (0) and

hence also J ′(0) is spacelike. We now show that also J ′(t0) is spacelike: J ′�ċ and if we suppose that
Y (t0) is proportional to ċ(t0), Y (t0) = βċ(t0). Then

J ′(t) = {
t0 − 2t

−1
} ⋅ Y (t) + {

t(t0 − t)

t0 − t
} ⋅ Y ′(t)

←Ð if J(0) = 0

←Ð if J(0) ≠ 0

and

J ′(t0) = {
−t0

−1
} ⋅ Y (t0) = {

−t0

−1
} ⋅ βċ(t0).

Just like before, we obtain

J(t) = (t0 − t) ⋅ {
t0

−1
} ⋅ βċ(t0)

but this contradicts, in the first case, J(0) = 0 and, in the second, J(0) being spacelike if J(0) ≠ 0
(since the vector we get is null). Therefore, Y (t0) is spacelike. Finally, Y is spacelike on [0, t0] and,

by continuity, Y is spacelike even on [0, t0] for some small δ > 0. Set U ∶=
Y

∣Y ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⟨U,U⟩=1

(since Y is a spacelike

vector field, ∣Y ∣ is never zero) and
f ∶= γ ⋅ ∣Y ∣ .

f ⋅U = γ ⋅ Y = J and so f is C∞ and f > 0 on (0, t0) and f < 0 on (t0, t0 + δ).

b) Claim: There exists a δ ∈ (0, b−t0) and V ∈ X(c) such that V (0) = J(0), V (t0+δ) = 0, V �ċ on [0, t0+δ]
and ⟨∇

2V
dt2
+R(ċ, V )ċ, V ⟩ > 0 on (0, t0 + δ). To this end, let δ > 0 as in a) and take the following ansatz

V ∶= (f + g) ⋅U = J + g ⋅U (3.2.13)

with g to be determined. Then V ′ = J ′ + g′U + gU ′ and V ′′ = J ′′ + g′′U + 2g′U ′ + gU ′′ . Therefore,

∇2V

dt2
+R(ċ, V )ċ =

�
��∇
2J

dt2
+ g′′U + 2g′U ′ + gU ′′ +����R(ċ, J)ċ + gR(ċ, U)ċ

J is a JF
= g′′U + 2g′U ′ + g (

∇2U

dt2
+R(ċ, U)ċ)
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and so

⟨
∇2V

dt2
+R(ċ, U)ċ, V ⟩

(3.2.13)
= (f + g)(g′′ ⟨U,U⟩

´¹¹¹¹¹¹¸¹¹¹¹¹¶
= 1

+2g′ ⟨U ′, U⟩
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
= 0

+g ⟨U ′′ +R(ċ, U)ċ, U⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶= l

)

= (f + g)(g′′ + g ⋅ l).

Choose a > 0 such that l ≥ −a2 on [0, t0 + δ] and set

g(t) ∶= b̃(eat − 1)

with b̃ > 0 such that g(t0 + δ) = −f(t0 + δ). This is possible since f(t0 + δ) < 0. Then V (t0 + δ)
(3.2.13)
= 0

and V (0)
g(0)=0
= J(0). (f + g) > 0 on (0, t0] (since g > 0 everywhere and f > 0 on (0, t0)) and

(f + g)(t0 + γ) = 0. Without loss of generality, t0 + δ is the first zero of f + g. Then on (0, t0 + δ),

⟨
∇2V

dt2
+R(ċ, V )ċ, V ⟩ = (f + g)(g′′ + g ⋅ l),

since V �ċ (J = f ⋅ U , U�ċ where f ≠ 0 i.e. on (0, t0) ∪ (t0, t0 + δ) and, by continuity, on [0, t0 + δ]).
Moreover, (f + g)(g′′ + gl) > 0 on (0, t0 + δ) because g′′ + gl = a2g + a2b̃ + gl ≥ a2b̃ > 0.

c) Claim: There exists A ∈ X(c) with A(0) = I(V (0), V (0)), A(t0 + δ) = 0 and

−⟨V ′′ −RV ċċ, V ⟩ + (⟨V,V
′⟩ + ⟨A, ċ⟩)′ < 0

on [0, t0 + δ]. We have

⟨I(J(0), J(0)), ċ(0)⟩ 3.2.11
= − ⟨Ĩ(J(0), ċ(0)), J(0)⟩

J P-JF
= −⟨tan(J ′(0)), J(0)

´¸¶
tangential

⟩ = ⟨J ′(0), J(0)⟩ (3.2.14)

and ⟨V,V ′⟩ = ⟨J + b̃(eat − 1)U,J ′ + ab̃ ⋅ eatU + b̃(eat − 1)U ′⟩. Now, ⟨J,U ′⟩ = f ⟨U,U ′⟩
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
= 0

= 0 and so

⟨J + b̃(eat − 1)U,J ′ + ab̃ ⋅ eatU + b̃(eat − 1)U ′⟩ = ⟨J, J ′⟩ + ⟨V, ab̃ ⋅ eatU⟩ + b̃(eat − 1) ⟨U,J ′⟩ .

For t = 0,

⟨V,V ′⟩ (0) = ⟨J, J ′⟩ (0) + ab̃⟨V (0)
´¹¸¹¶
b)= J(0)

, U(0)⟩ = ⟨J, J ′⟩ (0) + ab̃ ⋅ f(0) = ⟨J, J ′⟩ (0) + ab̃ ⋅ ∣J(0)∣. (3.2.15)

We distinguish the following three cases:

i) Case: ⟨I(J(0), J(0)), ċ(0)⟩ ≠ 0. Write

I(J(0), J(0)) = αX0,

where X0 ∈ NpP with ⟨X0, ċ(0)⟩ = −1. Then

−α = ⟨αX0, ċ(0)⟩ = ⟨I(J(0), J(0)), ċ(0)⟩
(3.2.14)
= − ⟨J ′(0), J(0)⟩
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and so α = ⟨J ′(0), J(0)⟩. Let X ∈ X(c) be parallel with X(0) = X0 . Then ⟨X(t), ċ(t)⟩ = −1 for
all t (since ⟨X0, ċ(0)⟩ = −1 and parallel transport is an isometry). Set

A(t) ∶= (⟨V (t), V ′(t)⟩ +
ab̃ ⋅ ∣J(0)∣

t0 + δ
(t − t0 + δ)) ⋅X(t).

Then

A(0)
(3.2.15)
= (⟨J(0), J ′(0)⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= α

+�����
ab̃ ⋅ ∣J(0)∣ −�����

ab̃ ⋅ ∣J(0)∣) ⋅X(0) = αX0 = I(J(0)
´¸¶
V (0)

, J(0)) (3.2.16)

and
A(t0 + δ) = (⟨V (t0 + δ), V

′(t0 + δ)⟩ + 0)X(t0 + δ) = 0,

since V (t0 + δ) = 0. Also,

(V V ′ + ⟨A, ċ⟩)′
⟨X,ċ⟩=−1
= (����⟨V,V ′⟩ −����⟨V,V ′⟩ −

ab̃ ⋅ ∣J(0)∣

t0 + δ
(t − t0 − δ))

′

= −
ab̃∣J(0)∣

t0 + δ
< 0

on [0, t0 + δ]. This proves c) since, by b), −⟨V ′′ −RV ċċ, V ⟩ ≤ 0 on [0, t0 + δ].

ii) Case: ⟨I(J(0), J(0)), ċ(0)⟩ = 0 and J(0) ≠ 0. Choose X ∈ X(c) parallel such that ⟨X, ċ⟩ = −1 and
choose X ∈ X(c) parallel such that Z(0) = I(J(0), J(0)). Then by assumption, ⟨Z, ċ⟩ ≡ 0. Set

A(t) ∶= (⟨V (t), V ′(t)⟩ +
ab̃ ⋅ ∣J(0)∣

t0 + δ
(t − t0 − δ)) ⋅X(t) + (1 −

t

t0 + δ
) ⋅Z(t).

Then,

A(0)
(3.2.16)
= ⟨J(0), J ′(0)⟩X(0) +Z(0)

(3.2.14)
= − ⟨I(J(0), J ′(0)), ċ(0)⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 0, by assumption of ii)

X(0) + I(J(0), J(0))

= I(J(0), J(0)),
A(t0 + δ) = 0 + 0 ⋅Z(t0 + δ) = 0

and

(⟨V,V ′⟩ + ⟨A, ċ⟩)′
i)
= −

ab̃ ⋅ ∣J(0)∣

t0 + δ
< 0,

which proves the claim.

iii) J(0) = 0. Let u0 ∶= t0 + δ and pick f ∈ C∞([0, t0 + δ]).
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Pick u1 and u2 in (0, t0 + δ) such that f̃ ≡ −1 on [0, u1] and on [u2, t0 + δ
´¹¹¸¹¹¶
= u0

]. Let ϵ > 0 such that

ϵ <mint∈[u1,u2] ⟨V
′′ −RV ċċ, V ⟩ (t),

which is possible by b). Now set
f ∶= −ϵ ⋅ f̃

and define X as in ii) and set

A(t) ∶= (⟨V,V ′⟩ + f(t))X(t).

Then
A(0) = (⟨J(0)

´¸¶
= 0

J ′(0)⟩ + ab̃ ⋅ ∣J(0)
´¸¶
= 0

∣ + f(0)
´¸¶
= 0

) = 0 = I( V (0)
´¹¸¹¶
= J(0) = 0

, V (0)),

A(t0 + δ) = (0 + f(t0 + δ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 0

)X(t0 + δ) = 0

and
(⟨V,V ′⟩ + ⟨A, ċ⟩)′

⟨X,ċ⟩=−1
= ϵ ⋅ f̃ ′.

Therefore,

−⟨V ′′ −RV ċċ, V ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥ 0 on [t0, t0 + δ]

+(⟨V,V ′⟩ + ⟨A, ċ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= ϵ ⋅ f̃ ′

)′ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

≤ ϵ ⋅ f̃ = −ϵ, on [0, u1]

< 0, on [u1, u2], by definition of ϵ

≤ ϵ ⋅ f̃ = −ϵ, on [u2, u0].

Hence, −⟨V ′′ −RV ċċ, V ⟩ + (⟨V,V ′⟩ + ⟨A, ċ⟩)′ < 0 on [0, t0 + δ].

d) We now construct a variation cs of c∣[0,t0+δ] such that ċs is timelike for 0 < ∣s∣ small. Set σ(s) ∶=

expPp (sJ(0)) where σ ∶ (−ϵ, ϵ) → P is smooth, σ(0) = 0, σ̇(0) = J(0)
b)
= V (0), ∇

P σ̇
ds
(0) = 0 (in fact,

∇Pσ
ds
≡ 0 since σ is a P-geodesic). Choose a variation cs of c with cs(0) = σ(s), cs(t0+δ) = c(t0+δ) =∶ q̃,

∂cs
∂s
∣
0
= V (V is a transversal velocity) and ∇

ds
∂cs
∂t
∣
s=0 = A (A is a transversal acceleration). Why is this

possible? As in the proof of Proposition 3.1.8, pick Fermi-coordinates x1, . . . , xn along c and find for
each i = 1, . . . , n a surface (depending on (t, s)) xi(t, s) = xi ○ cs(t).
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By Proposition 1.5.1,

∇Mσ

ds
∣
0

=
∇P σ̇

ds
∣
s=0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 0

+I( σ̇(0)
´¸¶
= J(0)

, σ̇(0)) = I(J(0), J(0)) = A(0).

Let f ∶ [0, t0 + δ] × [−ϵ0, ϵ0] → R such that

f(t, s) ∶= ⟨ċs(t), ċs(t)⟩ .

By Taylor expansion in the s-variable we get

f(t, s) = f(t,0) + s
∂f

∂s
(t,0) +

1

2
s2
∂2f

∂s2
(t, θ ⋅ s),

where θ = θ(t, s) ∈ (0,1). Here f(t,0) = ⟨ċ(0), ċ(0)⟩ = 0 (because c is null), ∂f
∂s
∣
0
= 2 ⟨ ∇

∂s
∣
0
∂cs
∂t
, ċ⟩ =

2⟨ ∇
∂t

∂cs
∂s
∣
s=0

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
= V

ċ⟩ = 2 d
dt
⟨V, ċ⟩
´¹¹¸¹¶

b)= 0

−2⟨V, c̈
´¸¶
= 0

⟩ and

1

2

∂2

∂s
∣
0

f(t, s) =
∂

∂s
∣
0

⟨
∇

∂s
ċs, ċs⟩ =

∂

∂s
∣
0

⟨
∇

∂t

∂cs
∂s

, ċs⟩

= ⟨
∇V

∂t
,
∇V

∂t
⟩ + ⟨

∇

∂s

∇

∂t

∂cs
∂s
∣
s=0
, ċ⟩

[3],3.1.6
= ⟨

∇V

∂t
,
∇V

∂t
⟩ + ⟨

∇

∂t

∇

∂s

∂cs
∂s
∣
0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= A

+R(ċ, V )V, ċ⟩

= ⟨
∇V

dt
,
∇V

dt
⟩ + ⟨

∇

dt
A, ċ⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
c̈=0= ⟨A, ċ⟩′

−⟨R(ċ, V )ċ, V ⟩

= (⟨V,V ′⟩ + ⟨A, ċ⟩)′ − (⟨V ′′ −R(V, ċ)ċ, V ⟩) < 0,

on [0, t0 + δ], by c). Since [0, t0 + δ] is compact, there exists ϵ0 > 0 such that ∂2f
∂s2
(t, θ ⋅ s) < 0 on

[0, t0 + δ] × [−ϵ0, ϵ0] and so for s ∈ [−ϵ0, ϵ0]/ {0}, cs is timelike. Finally,

cs∣[0,t0+δ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

timelike

∪ c∣[t0+δ,b]
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

null

can be ’pushed up’ to a timelike curve from P to q arbitrarily near to cs ∪ c. Hence, altogether, there
exists a timelike curve from P to q arbitrarily near c.

Lemma 3.2.22. Let P ⊆M be a spacelike SMF, c ∶ [0, b] →M a null geodesic with p ∶= c(0) ∈ P but
ċ(0) ∉ NpP . Then arbitrarily close to c there exists a timelike curve from P to q = c(b).
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Proof. Since ċ(0) ∉ NpP , there exists an X ∈ TpP such that ⟨X, ċ(0)⟩ ≠ 0, without loss of generality let
⟨X, ċ(0)⟩ > 0. Let X ∈ X(c) be the parallel transport of X =X(0) along c and set

V (t) ∶= (1 −
t

b
)X(t).

Then, V (0) = X and V (b) = 0. Now construct a variation cs of c with ∂cs
∂s
∣
0
= V , cs(0) ∈ P and cs(b) = q for

all s. (to see that this is possible use Fermi coordinates). ⟨ċs, ċs⟩ ∣s=0 = ⟨ċ, ċ⟩ = 0 (c is null) and

∂

∂s
⟨ċs(t), ċs(t)⟩ ∣s=0 = 2 ⟨

∇V

dt
, ċ(t)⟩ = −

2

b
⟨X(t), ċ(t)⟩ = −

2

b
⟨X, ċ(0)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

> 0

Taylor of 1st order
Ô⇒ ⟨ċs(t), ċs(t)⟩ < 0

for 0 < s small and so cs is timelike for such s.

Combining Lemma 3.2.4, Lemma 3.2.20 and Lemma 3.2.22 yields the following theorem.

Theorem 3.2.23. Let M be a spacetime, P ⊆ M spacelike SMF, c ∶ [0, b] → M a causal curve with
p = c(0) ∈ P . Then arbitrarily close to c there is a timelike curve from P to q ∶= c(b) unless c is (up
to reparametrization) a null geodesic with ċ(0) ∈ NpP without a focal point before b.

3.3 Convex Sets

Definition 3.3.1 (Cf. [3], 2.2.4). An open subset U ⊆M is called convex if it is a normal neighborhood of each
of its points i.e. for every p ∈ U there exists Ũ ⊆ TpM starshaped and open such that expp ∶ Ũ → U is a
diffeomorphism.

Remark 3.3.2. If U is convex and p, q ∈ U then there exists a unique geodesic in U from p to q (cf. [3], 2.1.15).

Proposition 3.3.3 (Existence of Convex Sets). Every point p in a SRMF M possesses a basis of
neighborhoods consisting of convex sets.

Proof. Cf. [3], 2.2.7.

Remark 3.3.4. If U,V ⊆M are convex, then U ∩ V need not be convex.

Lemma 3.3.5 (Intersection of Convex Sets). Let C1,C2 ⊆M be convex and suppose C1 and C2 are
contained in a convex set D ⊆M . Then the intersection C1 ∩C2 is convex.

Proof. Proof. Cf. [3], 2.2.11.
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Definition 3.3.6. An open covering U = {Uα}α of a SRMF M is called a convex cover if

Uα1 ∩ ⋅ ⋅ ⋅ ∩Uαn is convex ∀αj ,∀n ∈ N.

Remark 3.3.7. If (X,d) is a metric space and U is an open cover ofX then there exists the Lebesgue number
of U i.e. there exists δ > 0 such that for any A ⊆X with d(A) < δ, where d denotes the diameter of A, there
exists some U ∈ U such that A ⊆ U .

Lemma 3.3.8. Let M be a C∞-manifold (T2 and second-countable) and let V be an open cover of
M . Then there exists an open cover U of M such that, if U1, U2 ∈ U with U1 ∩U2 ≠ ∅, there exists a
V ∈ V such that U1 ∪U2 ⊆ V . In particular, U is a refinement of V .

Proof. Let d be a metric on M inducing the manifold topology (e.g. d = dg for some Riemannian metric g
on M ). Let (Km) be a sequence of compact subsets of M such that M = ⋃mKm and Km ⊆ K

○
m+1 for all

m. For any m set
Vm ∶= {V ∩Km ∶ V ∈ V} .

Then Vm is an open covering of the compact metric space Km , hence there is a Lebesgue number δm and,
without loss of generality, δm+1 < δm for all m. Set K−1 =K0 = ∅.

For any m ≥ 1 cover Km/K
○
m−1 by finitely many (Km/K

○
m−1 is compact) open sets Umi that lie in

K○m+1/Km−2 and for which d(Umi) < δm+3
2

, 1 ≤ i ≤ im . Then

U ∶= {Umi ∶ 1 ≤ i ≤ im,m ∈ N}

has the claimed property. Indeed, let Umi ∩Ukj ≠ ∅ and, without loss of generality, m ≤ k. Since Umi ⊆K
○
m+1

and Ukj ⊆M/Kk−2 , we must have k − 2 <m+ 1. In particular, k − 2 ≤m ≤ k. Now, d(Umi) <
δm+3
2
≤ δk+1

2
and

d(Ukj) <
δk+3
2
< δk+1

2
. Since Umi∩Ukj ≠ ∅, d(Umi∪Ukj) ≤ d(Umi)+d(Ukj) < δk+1 and, since Umi∪Ukj ⊆Kk+1 ,

by the definition of Lebesgue number, there exists a V ∈ V such that Umi ∪Ukj ⊆ V ∩Kk+1 ⊆ V .

Proposition 3.3.9. Let M be a SRMF, V an open cover. Then there exists a convex cover U of M
that is a refinement of V (i.e. for all U ∈ U there is a V ∈ V such that U ⊆ V ).

Proof. Let
U1 ∶= {U ⊆M ∶ U is convex and ∃V ∈ V such that U ⊆ V } .

Then, by Proposition 3.3.3, U1 is a cover of M and a refinement of V . By Lemma 3.3.8, there exists an open
cover U2 of M such that, if U1, U2 ∈ U2 and U1 ∩U2 ≠ ∅, there exists U ∈ U1 with U1 ∪U2 ⊆ U . Now set

U ∶= {U ⊆M ∶ U is convex and ∃W ∈ U2 with U ⊆W} .
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Again, by Proposition 3.3.3, U is an open cover of M and U is a refinement of U2 , hence of U1 and, hence,
of V . Finally, let U1, . . . , Uk ∈ U and U1 ∩ ⋅ ⋅ ⋅ ∩ Uk ≠ ∅. U1 ∈ W1 and U2 ∈ W2 , where W1,W2 ∈ U2 , and
W1∩W2 ≠ ∅. By construction, there exists U ∈ U1 such that U1∪U2 ⊆W1∪W2 ⊆ U . By Lemma 3.3.5, U1∩U2

is convex. Moreover,
(U1 ∩U2) ∪U3 ⊆ U1 ∪U3 ⊆ Ũ ∈ U1

implies that U1 ∩U2 ∩U3 is convex. Continuing in this way we get that U1 ∩ ⋅ ⋅ ⋅ ∩Uk is convex.

Definition 3.3.10. Let U be a convex subset of a spacetime M . For any p, q ∈ U let σpq be the unique
geodesic in U from p to q with σ(0) = p and σ(1) = q. Then we call

∆(p, q) ≡ Ð→pq ∶= σ̇pq(0) = exp
−1
p (q) ∈ TpM

the displacement vector of p and q.

Remark 3.3.11.

• Recall from [3] 2.2.9 that exp−1p (q) = E
−1(p, q).

• Clearly, σ(t) = expp(t ⋅ exp
−1
p (q)) = expp(t ⋅

Ð→pq) for t ∈ [0,1].

Lemma 3.3.12. Let M be a convex spacetime (e.g. a convex set in a given spacetime) and let p, q ∈M
such that p ≠ q. Then:

1. q ∈ J+(p) ⇐⇒ ∆(p, q) = exp−1p (q) =
Ð→pq ∈ TpM is FD causal.

2. q ∈ I+(p) ⇐⇒ ∆(p, q) is FD timelike.

3. I+(p) = J+(p).

4. The relation ≤ is closed (i.e. pn → p, qn → q and pn ≤ qn for all n implies p ≤ q).

5. Every causal curve c ∶ [0, b) →M with its image contained in a compact set can be continuously
extended to b.

Proof. By Corollary 3.1.13 we have for starshaped Ω̃ ∈ TpM a diffeomorphism expp ∶ Ω̃→ Ω such that

J+(p) = expp(J
+(0) ∩ Ω̃)

I+(p) = expp(I
+(0) ∩ Ω̃).

This immediately gives 1., 2. and 3. because those properties hold in Minkowski space.

4. p = q is trivial so let p ≠ q. Without loss of generality assume pn ≠ qn . By [3] 2.2.9., (p, q) ↦ Ð→pq =∆(p, q)
is continuous. Since ⟨ÐÐ→pnqn,

ÐÐ→pnqn⟩ ≤ 0 for all n, ⟨Ð→pq,Ð→pq⟩ ≤ 0 and so Ð→pq is causal. Moreover, if X is a
timelike vector field on M then ⟨ÐÐ→pnqn,X⟩ < 0 for all n. By continuity, ⟨Ð→pq,X⟩ ≤ 0. If ⟨Ð→pq,X⟩ were
equal to zero then Ð→pq would be spacelike. ☇ Therefore, Ð→pq is FD causal if all ÐÐ→pnqn are FD causal.

5. Let tj → b. Then, by compactness, (c(tj))j has at least one cluster point. We need to show that there
is only one such point (because then we have a continuous extension). Suppose p and q are cluster
points. Then there exists tj ↗ b such that c(t2j) → p and c(t2j+1) → q for j → ∞. Without loss of
generality assume c is future directed. Then

c(t2j) ≤ c(t2j+1) ≤ c(t2j+2)
4.
Ô⇒ p ≤ q ≤ p.

1. now implies that ∆(p, q) is both past and future directed, that is ∆(p, q) = 0, which yields p = q.
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3.4 Quasi-Limits

The exploration of causality involves understanding the limits of causal curves. However, assuming these
curves to be only pointwise C∞ leads to challenges. The limit of a sequence of pointwise C∞-curves may not
itself be pointwise C∞ . To address this, we introduce the concept of a quasi-limit of a sequence of causal
curves—these are imperfect approximations, akin to broken geodesics, where closeness is determined by a
convex covering. Employing this concept allows us to simplify complex global causality problems into more
manageable local ones.

Definition 3.4.1. Let K be a convex covering of a spacetime M and let (cn)n be a sequence of FD causal
curves. A limit sequence of (cn)n with respect to K is a finite or infinite sequence of points p0 < p1 < p2 < . . .
such that there exists a subsequence (cnm)m and parameter values tm,0 < tm,1 < tm,2 < . . . such that

1. 1a) for every j

lim
m→∞

cnm(tm,j) = pj .

2b) pj , pj+1 and cnm([tm,j , tm,j+1]) lie in some
K ∈ K for all m ≥m(j).

2. If (pi)i is infinite, then (pi)i does not converge.
If (pi)i is finite so that p0 < p1 < ⋅ ⋅ ⋅ < pN then
N ≥ 1 and no strictly longer sequence satisfies
1.

Remark 3.4.2. For each j as above, since K(j) is convex, there exists a unique causal radial geodesic γj in
K(j) from pj to pj+1 . The causal geodesic polygon γ ∶= γ0 ∪ γ1 ∪ γ2 ∪ . . . is called a quasi-limit of (cn)n .

Example 3.4.3.

1. Consider R2
1 and Cn , where Cn is a straight line segment from (0,0) to (n + 1

n
, n). Every limit sequence

lies on the null geodesic γ(s) = (s, s). Up to reparametrization, γ is hence the unique quasi-limit of
(cn)n .

2. Consider R2
1/ {(1,1)} and Cn as above. Every accumulation point of (cn(t)) for t ∈ R must be on

{(s, s) ∶ s ≥ 0}. However, for any limit sequence pj = (sj , sj) we can never have sj < 1, sj+1 > 1. Such
points cannot both lie in a convex set (because there doesn’t exist a geodesic connecting them). For
example, pj = (1 − 1

j
,1 − 1

j
) is a limit sequence and s↦ (s, s) for s ∈ [0,1] is a quasi-limit.

3. Consider now R2
1 and Cn a straight line segment from 0 to (n + 1

n
, (−1)nn). Both s ↦ (s, s) and
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s↦ (s,−s) for s ≥ 0 are quasi-limits.

4. Lastly, consider R2
1 and let Cn be the straight line segment from 0 to (1,1 − 1

n
). Then p0 ∶= (0,0) <

p1 ∶= (1,1) is a limit sequence.

Proposition 3.4.4. Let K be a convex covering of M , let cn ∶ [0, bn) →M (for bn ≤ ∞) or cn ∶ [0, bn] →
M (for bn ≤ ∞) be FD causal curves with limn→∞ cn(0) = p ∈ M . Then the following facts are
equivalent:

1. The sequence (cn)n possesses a quasi-limit with respect to K.

2. There exists a neighborhood U of p such that infinitely-many cn are not entirely contained in
U .

Proof.

(1. → 2.) Let p ∶= p0 < p1 < . . . be a limit sequence. Choose disjoint neighborhoods U0, U1 of p0, p1 .
Since cnm(tm,1) → p1 almost all cnm(tm,1) ∈ U1 and, hence, not in U0 . Therefore, U0 is the required
neighborhood.

(2.→ 1.)

a) Let U be a locally finite refinement of K such that for all U ∈ U there exists a K ∈ K such that
U ⊆ K and U is compact. (For example, let (χα)α∈A be a partition of unity subordinate to K
and let U ∶= {supp(χα)○ ∶ α ∈ A}.) By 2., we may assume that there exists U0 ∈ U , where U0 is
a neighborhood of p, and that infinitely many cn leave U0 . Let (c(1)n )n be the subsequence of
curves which leave U0 and set

tn,1 ∶= inf{t > 0 ∶ c(1)n (t) ∉ U0} .

Then c
(1)
n (tn,1) ∈ ∂U0 . Due to compactness, there exists a subsequence, denoted again by

c
(1)
n (tn,1), and we define p1 to be the corresponding limit. Now since c

(1)
n (0) < c

(1)
n (tn,1), by

Lemma 3.3.12 (4.), p0 ≤ p1 . But, p1 ∈ ∂U0 while p0 ∈ U0 and so p0 ≠ p1 (in particular, the limit
sequence contains more than one point).) Now choose U1 ∈ U , a neighborhood of p1 . If infinitely
many c(1)n leave U1 , go on with the construction. When repeating obey the following selection
criterion for Ui: If more than one U ∈ U contains pi then select as Ui one which has been used
the least times before pi . (⋆)
This construction yields 1. in Definition 3.4.1. Therefore, it remains to verify 2. from Definition 3.4.1.
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b) If p0 < p1 < . . . is infinite, it is not converging. Suppose to the contrary i.e. suppose pj → q ∈M .
Let q ∈ V ∈ U . Now almost every pj lies in V . V is compact by assumption and U is locally finite.
Thus, only finitely many U ∈ U meet V while almost all Uj meet V (because pj ∈ Uj ∩ V for
almost every j) and so one of the U ’s has been selected infinitely often. However, V was always
was a candidate for for these pj but has only been selected finitely many times since only finitely
many of the pj lie in ∂V . ☇

c) Suppose the construction terminates after finitely many steps p0 < p1 < ⋅ ⋅ ⋅ < pk i.e. assume that
only finitely many (c(k)n )n leave Uk and so there exists a subsequence (c(k+1)n )n ⊆ Uk (i.e. tail
ends remain in Uk). Uk is compact and so, by Lemma 3.3.12 (5.), c(k+1)n can be continuously
extended to their endpoints bn (if not anyways defined on [0,∞) - in this case, reparametrize
so that cn is defined on [0, bn) for bn < ∞). Since Uk is compact, without loss of generality,
c
(k+1)
n (bn) → q ∈ Uk .

• Case 1: Assume q = pk and that the finite sequence is extendible by some pk+1 > pk such
that p0 < p1 ⋅ ⋅ ⋅ < pk < pk+1 has property 1. Then on Uk we would have

c(k+1)n (tn,k+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→ pk+1

< c(k)n (bn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
→ q

Ô⇒ pk < pk+1 ≤= pk,

which, by Lemma 3.3.12 (4.), implies pk = pk+1 since Uk ⊆ K(k) for some K(k) ∈ K. But
this is a contradiction to Lemma 3.3.12 (1.). Therefore, pk+1 does not yield an extension and
p0 < p1 ⋅ ⋅ ⋅ < pk is the limit sequence.

• Case 2: Let q ≠ pk . Set pk+1 ∶= q. Then pk+1 > pk (q ≥ pk by Lemma 3.3.12 and q ≠ pk) and
p0 < p1 < ⋅ ⋅ ⋅ < pk < pk+1 satisfies 1. (from Definition 3.4.1) by construction and 2. (from the
same definition) by Case 1, so it yields a limit sequence.

Remark 3.4.5. If (pj)j is infinite, then the quasi-limit γ = γ1 ∪γ2 ∪ . . . is future-inextendible i.e. if γ is defined
on [0, b) then it can’t be extended continuously to b. Indeed, let pi ∶= γ(ti), pi < pi+1 . Then ti < ti+1 . If γ could
be extended to [0, b] continuously then ti ↗ t ≤ b. But then pi = γ(ti) converges, which is a contradiction to
Definition 3.4.1 (2.).

3.5 Cauchy Surfaces

Cauchy surfaces function as a sort of snapshot, offering a comprehensive view of how causality is
organized within the spacetime framework.

Definition 3.5.1. A subset A ⊆M of a spacetime is called achronal if there are no p, q ∈ A such that p≪ q.
Hence, A is achronal if and only if any timelike curve meets A at most once i.e. if and only if A∩I+(A) = ∅.

Example 3.5.2. Let M = Rn1 . Then the following three sets are all achronal:

1. Spacelike hyperplane A1 .

2. The (n − 1)-dimensional hyperbolic
space A2 .

3. Future cone A3 .
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Remark 3.5.3. We note the following facts on achronal sets:

1. If A ⊆ B and B is achronal, then A is achronal as well.

2. If A is achronal, then A is also achronal. To this end, suppose there exists p≪ q ∈ A. Then there exist
pn, qn ∈ A such that pn → p and qn → q. Since ≪ is open, by Proposition 3.1.14, pn ≪ qn for n large,
which is a contradiction to A being achronal.

3. If A is a hypersurface, then A being spacelike does not imply that A is achronal. An example of this
would be the Lorentz cylinder. On the contrary, if A is a hypersurface, A being achronal does not
imply that it is spacelike. For example, consider the null cone in R2

1 .

Definition 3.5.4. The edge of an anchoral subset A is defined as the following set:

edge(A) = {p ∈ A ∣
for all open neighborhoods U of p there is a timelike

curve γ in U from I−U(p) to I+U(p) such that γ ∩A = ∅
} .

Example 3.5.5. Let M be an n-dimensional Minkowski space.

1. All A′is from Example 3.5.2 have edge(Ai) = ∅.

2. Let A4 ∶= {0} ×B with B ⊆ Rn−1 . Then edge(A4) = {0} × ∂B . Indeed, let A4 ∋ p = (0, b) for b ∈ B○ . Let
U0 ∶= Bϵ ⊆ B , for ϵ > 0 suitable and let

U = (I+(U0) ∪U0 ∪ I
−(U0)) ∩ {(t, x) ∶ ∣t∣ < ϵ} .

Every timelike curve γ ∶ I−U(p) → I+U(p) intersects A4 , so p ∉ edge(A4).

Let now p = (0, b) ∈ {0} × ∂B . Then for any neighborhood V of b ∈ Rn−1 , V /B ≠ ∅ with respect
to Rn−1 . Hence, for every open neighborhood U of p (with respect to Rn) there exists p′ = (0, b′) ∈
({0}×Rn−1/B)∩U ∧= V /B and a timelike curve γ connecting I−U(p) and I+U(p) which meets {0}×Rn−1
only in p′ and, hence, it does not intersect A4 .
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Remark 3.5.6. If A is achronal, then A/A ⊆ edge(A). Indeed, let p ∈ A/A. Then for every open neighborhood
U of p there exists a timelike curve γ from I−U(p) to I+U(p) passing through p. A is achronal (see Remark
3.5.3 (2.)) and so γ contains no further points on A and none on A. Therefore, p ∈ edge(A).

Lemma 3.5.7. If A ⊆M is achronal, then edge(A) is closed.

Proof. Let p ∈ edge(A). We show that p ∈ edge(A). Let U be a neighborhood of p in M and let V ⊆ U
be an open neighborhood of p contained in I+U(I

−
U(p)) ∩ I

−
U(I

+
U(p)). Since p ∈ edge(A), there is some

p′ ∈ V ∩ edge(A). It follows that there is a timelike curve c ∶ [−1,1] → V with

p± ∶= c(±1) ∈ I
±
V (p

′)

such that c∩A = ∅. Note that p± ∈ V ⊆ I+U(I
−
U(p))∩I

−
U(I

+
U(p)) implies that we can extend c to some timelike

and future directed curve
c1 ∶ [−2,−1] → U

such that c1(−2) ∈ I−U(p) and c1(−1) =
p− . Similarly, we can also extend c to
c2 ∶ [1,2] → U so that c2(2) ∈ I+U(p)
and c2(1) = p+ . Define c̃ ∶= c1 ∪ c ∪ c2 .
Now, if c̃ ∩ A = ∅, then p ∈ edge(A). To
see that this is the case, indirectly sup-
pose that there exists some p∗ ∈ c1 ∩ A.
Since p− ∈ I

−
V (p

′), p′ ∈ I+V (p−) and so (as
I+V (p−) is open) I+V (p−) is a neighborhood
of p′ . p′ ∈ edge(A) ⊆ A and so there ex-
ists a p′′ ∈ A ∩ I+V (p) and so there exists
a TLFD curve γ from p− to p′′ . c1 ∪ γ is
FDTL and it intersects A in two points; in
p∗ and p′′ , which is a contradiction to A
being achronal.

Our next aim is to see under which hypotheses (on the edge(A)) an achronal set is a C0-hypersurface.

Definition 3.5.8. A subset S of an n-dimensional differentiable manifold M is called topological hypersurface
if for every p ∈ S there is an open neighborhood U of p in M and a homeomorphism φ ∶ U → V , with some
V ⊆ Rn open, such that

φ(U ∩ S) = V ∩ ({0} ×Rn−1).

Example 3.5.9. The subset S ∶= C+(0) ⊆ Rn1 is a C0-hypersurface with, for example, φ ∶ Rn → Rn , where

(x0, x̂) ↦ (x0 − ∥x̂∥, x̂).
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Theorem 3.5.10 (Brouwer). Let U ⊆ Rn be open and φ ∶ U → Rn continuous and injective. Then
φ(U) is open in Rn and φ ∶ U → φ(U) is a homeomorphism.

Proposition 3.5.11 (Achronal Hypersurfaces). Let A ⊆ M be achronal. Then the following facts are
equivalent:

1. A ∩ edge(A) = ∅.

2. A is a topological hypersurface (i.e. a C0-hypersurface).

Proof. (1.→ 2.) Let A be a topological hypersurface with U,V,φ as in Definition 3.5.8 for some p ∈ A.
Then p ∉ edge(A) (by assumption) and so there exists U , an open neighborhood of p such that any
TLFD curve in U from I−U(p) to I+U(p) intersects A. Without loss of generality, U is a chart domain
for a chart φ ∶ U → φ(U) ⊆ Rn , where φ = (x0, . . . , xn−1) and ∂

∂x0 is FD on U (for example, take
φ = expp). By shrinking U further, we obtain an open neighborhood of p, V ⊆ U , such that:

i) φ(V ) = (a − δ, b + δ) ×N
open
⊆ R ×Rn−1 for some a, b ∈ R, δ > 0 and N ⊆ Rn−1 open.

ii) {x ∈ V ∶ x0 = a} ⊆ I−U(p) and {x ∈ V ∶ x0 = b} ⊆ I+U(p).

Let y ∈ N ⊆ Rn−1 . Then the curve α ∶ [a, b] → V such that s ↦ φn−1(s, y) is timelike from I−U(p) to
I+U(p) and, hence, it meets A. Since A is achronal, it does so precisely once. Let h(y) ∈ [a, b] be such
that φ−1(h(y), y) ∈ A.
We claim that the map h ∶ N → (a, b) is continuous. Indeed, let (ym)m be a sequence in N such
that ym → y ∈ N . Suppose h(ym) ↛ h(y). Since h(N) ⊆ is contained in the compact interval [a, b],
without loss of generality, h(ym) → r ≠ h(y). Let q ∶= φ−1(h(y), y) ∈ A. The curve s ↦ φ−1(s, y)
is TL and both q and φ−1(r, y) ≠ q are contained in it and so φ−1(r, y) ∈ I−V (q) ∪ I

+
V (q)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
open

. Since

φ−1(h(ym), ym) → φ−1(r, y), there exists m0 with

φ−1(h(ym0), ym0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈ A

∈ I−V ( q
´¸¶
∈ A

) ∪ I+V (q),
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which is a contradiction to A being achronal. V ∩A = φ−1({(h(y), y) ∶ y ∈ N}) i.e. in terms of φ A is
the graph of h. Write φ = (φ0, φ′) and let ψ ∶ V → Rn , where

ψ(p) ∶= (φ0(p) − h(φ′(p)), φ′(p)). (3.5.1)

Then ψ is continuous (since φ is) and bijective with the inverse

ψ−1(x0, x′) = φ−1(x0 + h(x′), x′). (3.5.2)

In fact,
ψ ○ φ−1 ∶ φ(V )

´¹¹¹¸¹¹¶
open in Rn

→ ψ(V )
´¹¹¹¸¹¹¶
⊆ Rn

is continuous and injective. Therefore, by Theorem 3.5.10, ψ○φ−1(φ(V )) = ψ(V ) is a homeomorphism.
Finally,

ψ(V ∩A) = ψ ○ φ−1({(h(y), y) ∶ y ∈ N})
(3.5.1)
= {(0, y) ∶ y ∈ N}

= {0} ×N
(3.5.2)
= ψ ○ φ−1((a − δ, b + δ) ×N

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= φ(V )

) ∩ ({0} ×N)

= ψ(V ) ∩ ({0} ×Rn−1)

and so A is a C0-hypersurface.

(2. → 1.) Let p ∈ A. Since 1. is local, we may suppose, by Corollary 3.1.13, that M = Rn1 . Let
(φ,U) be as in Example 3.5.9 with U connected and φ ∶ U → V a homeomorphism such that
φ(U ∩ A) = V ∩ ({0} × Rn−1) =∶ V1 . In particular, we have that φ1 ∶= φ∣U∩A ∶ U ∩ A → V1 is a
homeomorphism.

Let π ∶ Rn → Rn−1 be the projection (x0, x′) ↦ x′ . Then any vertical line t ↦ (t, x′) is TL and, since
A is achronal, it meets A at most once. Therefore, π∣U∩A is injective and π ○ φ−11 ∶ V1 → π(U ∩ A)
is continuous and bijective. Applying Theorem 3.5.10, we get that π ○ φ−11 is a homeomorphism and
π(U ∩ A) is open. Let now f ∶ π(U ∩ A) → R where f(x′) ∶= pr0

´¸¶
x→ x0

○π−1(x′). f is continuous and

U ∩A = graph(f) = {(f(x′), x′) ∶ x′ ∈ π(U ∩A)}. U/A decomposes into two connected components:

U+ = {(x0, x′) ∈ U ∶ x0 > f(x′)} ,

U− = {(x0, x′) ∈ U ∶ x0 < f(x′)} .

I−U(p) and I+U(p) are open and connected (cf. Corollary 3.1.13). Since A is achronal, they lie in U/A.
The vertical line through p meets I+U(p) and I−U(p) as well as U− and U+ (in the right order). Therefore,
I−U(p) ⊆ U

− and I+U(p) ⊆ U
+ and so any TLFD curve γ from I−U(p) to I+U(p) goes from U− to U+ and

so, since the image of γ is connected, γ must meet ∂U− = ∂U+ = U ∩A ⊆ A and so p ∉ edge(A).
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Corollary 3.5.12 (Closed Achronal Hypersurfaces). Let A ⊆ M be achronal. Then the following are
equivalent:

1. edge(A) = ∅.

2. A is a closed topological hypersurface.

Proof.

(1. → 2.) A ∩ edge(A) = ∅ and so A is a C0-hypersurface by Proposition 3.5.11. By Remark 3.5.6,
A/A ⊆ edge(A) = ∅ and so A = A, implying that A is closed.

(2.→ 1.) By Proposition 3.5.11, A ∩ edge(A) = ∅. Since edge(A) ⊆ A = A, edge(A) = ∅.

Definition 3.5.13. B ⊆M is called a future set (or past set) if I+(B) ⊆ B (or I−(B) ⊆ B).

Example 3.5.14. For M = Rn1 B ∶= {x = (x0, x̂) ∈ R ×Rn−1 ∶ x0 − ∣x̂∣ ≥ 0} is a future set in Rn1 .

Remark 3.5.15. B is a future set if and only if M/B is a past set.

Corollary 3.5.16. Let ∅ ≠ B ≠M be a future set. Then ∂B is an achronal closed C0-hypersurface.

Proof. We need to show that ∂B is achronal and edge(∂B) = ∅.

• Let p ∈ ∂B and q ∈ I+(p). Then I−(q) is an open neighborhood of p ∈ ∂B . Therefore, I−(q) ∩B ≠ ∅
and so q ∈ I+(B) ⊆ B . I+(∂B) is therefore contained in B○ . Analogously, I−(∂B) ⊆ (M/B)○ .
I±(∂B) ∩ ∂B = ∅ and so ∂B is achronal.

• According the first point, any TL γ from I−(p) to I+(p) has to meet ∂B and so edge(∂B) = ∅.

Definition 3.5.17. B ⊆M is acausal if for all p, q ∈ B p ≮ q.

Remark 3.5.18.

• B is acausal if and only if every causal curve meets B at most once.

• B being acausal implies that B is achronal but the other direction is not true. For example, consider
C+ ⊆ Rn1 .

Definition 3.5.19. A Cauchy hypersurface (or Cauchy surface) is a subset S ⊆ M that is met by any inex-
tendible timelike curve precisely once.

Example 3.5.20. Consider Ai from Example 3.5.2 for i = 1,2,3.
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Lemma 3.5.21. Let A ⊆M be closed and c ∶ [0, b) →M/A be PD, causal and past inextendible with
c(0) ∶= p. Then,

1. for all q ∈ I+M/A(p) there exists a curve c̃ ∶ [0, b) →M/A with c̃(0) = q such that c̃ is PDTL and
past inextendible.

2. unless c is a null pregeodesic without conjugate points, there will exist c̃ ∶ [0, b) →M/A PDTL
with c̃(0) = p = c(0).

Proof. Without loss of generality assume b = ∞ and (c(n))n∈N is non-convergent. Now choose a metric on
M that induces the manifold topology (for example let d = dh , where h is the Riemannian metric).

1. Set p0 ∶= q ≫M/A p. c(1) ≤ c(0) ≪ p0 and so, by Proposition 3.1.8, c(1) ≪ p0 and there exists a TL
curve γ1 from p0 to c(1). Now pick p1 on γ1 such that 0 < d(p1, c(1)) < 1. c(2) ≪ p1 and so there
exists a PD TL curve γ2 from p1 to c(2). Pick a point p2 on γ2 so that 0 < d(p2, c(2)) < 1

2
.

Iterate this and get c(k) ≪ pk ≪ pk−1 and d(c(k), pk) < 1
k
. Finally, obtain a PDTL curve c̃ starting in

p0 and containing all pk . (All constructions are within M/A.)
It only remains to show that c̃ is past inextendible. To this end, assume c̃ could be continuously
extended to some endpoint p̃. Then pk → p̃ and

d(c(k), p̃) ≤ d(c(k), pk)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

< 1
k

+d(pk, p̃)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
→ 0

→ 0,

which contradicts the assumption that (c(k))k does not converge.

2. Suppose that c is a null pregeodesic without conjugate points. Then there exists some a > 0 such that
c is a null pregeodesic without conjugate points on [0, a]. By Theorem 3.2.23 (with P = {c(0)} and
M/A instead of M ), there exists a PDTL curve from c(0) to c(a) in M/A. Since p = c(0) ≫ c(a),
p ∈ I+M/A(c(a)). Now apply 1. with q = c(0).

Remark 3.5.22.
The condition in 2. cannot be
dropped. Let c be an inex-
tendible null geodesic without
conjugate points like in the pic-
ture below. Then no TLPD curve
c̃ from 0 = c(0) avoids A.
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Proposition 3.5.23 (Properties of Cauchy Surfaces). Let S be a Cauchy surface (CS) for M . Then,

1. S is achronal.

2. S is a closed C0-hypersurface.

3. every inextendible causal curve meets S (non-uniquely, in general).

Proof.

1. If there were a TL curve c meeting S twice, then we could just extend it to the past and future i.e.
obtain an inextendible TL curve γ̃ intersecting S twice. ☇

2. a) We show that M = I−(S)∪̇S∪̇I+(S). In
particular, S =M/(I+(S)∪I−(S)) is closed
since I+(S) and I−(S) are open. S ∩
I±(S) = ∅ and also I+(S)∩I−(S) = ∅ since
through any p ∈M we find an inextendible
timelike curve which has to intersect S .

b) We now claim that S = ∂I+(S) = ∂I−(S). To this end, note that I±(S) ∪ S
a)
= (I∓(S))c is closed

(since I∓(S) is open) and so ∂I+(S) = I+(S) ∩M/I+(S) ⊆ (I+(S) ∪ S) ∩ (I−(S) ∪ S) = S .
Conversely, S ⊆ ∂I+(S) holds for any subset S of a Lorentzian manifold. Analogously, we obtain
∂I−(S) = S .

c) We now show that edge(S) = ∅ since then, by Corollary 3.5.12, S is a closed C0-hypersurface. By
b), every TL curve from I−(S) to I+(S) must meet S (since a curve is always a connected set).
Therefore, edge(S) = ∅.

3. Suppose there exists a causal and inextendible curve c not meeting S . By a), without loss of generality
let c ⊆ I+(S). Now choose p ∈ c and q ∈ I+M/S(p). By Lemma 3.5.21, there exists a PDTL curve c̃ in
M/S which is past inextendible. Maximally extend c̃ to the future in order to obtain a TL inextendible
curve in M/S . This lead us to a contradiction with Definition 3.5.19.

Theorem 3.5.24 (The Projection ρ). Let X be a TL C∞-vector field on a spacetime M and S a Cauchy
surface in M . Define ρ ∶M → S where

p↦ ρ(p)
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so that ρ(p) is the unique point where the integral curve of X through p intersects S .

ρ is well-defined, continuous, C0 , open and ρ∣S = idS . In particular, S is connected (since M is).

Proof.

a) Maximal integral curves are inextendible (and TL, since X is TL) by definition and so ρ is well-defined.

b) Let FlX ∶ D ⊆ M × R → M be the flow of X with maximal domain D (which is open). S ⊆ M
is a C0-hypersurface (by Proposition 3.5.23) and so S × R is a C0-hypersurface in M × R. Then
D(S) ∶= (S ×R) ∩D is a C0-hypersurface. ψ ∶= FlX ∣D(S) ∶D(S) →M is now continuous and bijective.
If p ∈ M , then t ↦ FlXt (p) intersects S (by definition of CS) and so there exists a t0 such that
FlXt0(p) = q ∈ S i.e.

p = FlX−t0(q) = FlX (−t0, q)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
∈D(S)

,

which shows that ψ is surjective. Suppose now that FlX(t1, q1) = FlX(t2, q2), where (ti, qi) ∈ D(S)

for i = 1,2. Then q2 = FlX(t1 − t2, q1) and so the flow line through q1 meets S also in q2 . Since S is
achronal, q1 = q2 . But then FlXt1(q1) = FlXt2(q1) (by uniqueness of integral curves) implies that t1 = t2
and so ψ is also injective.
D(S) and M are both C0-manifolds and so, by Theorem 3.5.10, ψ is a homeomorphism and therefore
open. Let π ∶M ×R → R so that (p, t) ↦ t. Then π is open and continuous. ρ = π ○ ψ−1 and so ρ is
open and continuous.

c) If p ∈ S then p is the unique intersection of FlX(p) with S and so ρ(p) = p.

Corollary 3.5.25. Any two Cauchy surfaces S1, S2 are homeomorphic.

Proof. Let X ∈ X(M) be TL
and define ρ1, ρ2 as in Theo-
rem 3.5.24 with respect to S1, S2 .
Then ρ1∣S2 ∶ S2 → S1 and ρ2∣S1 ∶
S1 → S2 are inverses of one
another and hence homeomor-
phisms.
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3.6 Global Hyperbolicity

Global hyperbolicity stands as the most stringent among the causality criteria (refer to Definition 3.1.19),
tightly linked to the presence of a Cauchy surface. In a way, globally hyperbolic spacetimes are counterparts
of complete RMFs since a remnant of the Hopf-Rinow theorem holds. Within a globally hyperbolic set, for
any p < q, there exists a causal geodesic that maximizes between p and q. Additionally, time separation is
continuous on globally hyperbolic sets.

Definition 3.6.1. X ⊆M (where M is a spacetime) is called globally hyperbolic (GH) if

1. the strong causality condition holds on X i.e. for all p ∈ X and all U neighborhoods of p there exists
V ⊆ U such that for all causal γ starting and ending in V , γ ⊆ U .

2. for every p, q ∈X ,

J(p, q) ∶= J+(p) ∩ J−(q)

is compact and a subset of
X . J(p, q) is sometimes called
causal diamond.

Remark 3.6.2. In 1. it would suffice to suppose that X is causal (Bernal/Sanchez, 2007. 1).

Lemma 3.6.3 (Non-imprisonment). Let K ⊆ M be compact and let strong causality hold on K .
Furthermore let c ∶ [0, b) →M (b ≤ ∞) be a future-inextendible causal curve starting in K i.e. with
c(0) ∈K . Then there exists t0 ∈ (0, b) such that for all t ≥ t0 , c(t) ∉K .

Proof. Indirectly assume that there exist si ∈ (0, b) such that si < si+1 , si ↗ b and c(si) ∈ K for all i. K is
compact and so, without loss of generality, c(si) → p ∈ K . c is future inextendible and therefore there exist
ti ∈ (0, b), ti ↗ b and c(ti) ↛ p. Choosing subsequences we can get that there exists U , a neighborhood of
p, such that c(ti) ∉ U and s1 < t1 < s2 < t2 < . . . . For any p ∈ V ⊆ U , where U and V are neighborhoods
of p and for i large enough c(si), c(si+1) ∈ V while c([si, si+1]) ⊈ U , which is a contradiction to strong
causality.

Remark 3.6.4. Let p ∈M , U a normal neighborhood of p, expp ∶ Ũ → U diffeomorphism for Ũ star-shaped
and P̃ ∈ X(Ũ) the position vector field v ↦ vv . Then P ∶= (expp)∗P̃ ∈ X(U) is called the position vector field
on U . Let q̃ ∶ TpM → R, where q̃(v) = ⟨v, v⟩ ≡ gp(v, v) be the quadratic form corresponding to gp and set
q ∶= q̃ ○ exp−1p ∶ U → R. Both p̃ and p are radial and, by the proof of Lemma 3.1.11,

grad(q̃) = 2P̃ . (3.6.1)

Let p1 ∈ U and wp1 ∈ Tp1U = Tp1M and set x1 ∶= exp−1p (p1) ∈ Ũ . expp is a diffeomorphism and so there
exists a unique wx1 ∈ Tx1(TpM) ≅ TpM with Tx1 expp(wx1) = wv1 . Then

⟨grad(q)∣p1 ,wp1⟩
[3],(3.2.16)
= wp1(q) = Tx1 expp(wx1)(q) = wx1(q ○ expp)

= wx1(q̃) = ⟨grad(q̃),wx1⟩
(3.6.1)
= 2 ⟨P̃ (x1),wx1

⟩ .

Since P̃ (x1) is radial, by Proposition 3.1.10,

2 ⟨P̃ (x1),wx1
⟩ = 2 ⟨Tx1 expp(P̃ (x1)), Tx1 expp(wx1)⟩ = ⟨2P (p1),wp1⟩

1Check https://arxiv.org/abs/gr-qc/0611138 for more information.

https://arxiv.org/abs/gr-qc/0611138
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and so
grad(q) = 2P. (3.6.2)

Moreover,

⟨P,P ⟩ ○ expp(x) = ⟨Tx expp(P̃ (x)), Tx expp(P̃ (x))⟩
3.1.10
= ⟨P̃ (x), P̃ (x)⟩ for x ∈ Ũ . (3.6.3)

Proposition 3.6.5. Let M be a LMF, U a normal neighborhood of p ∈M and p ∈ U . If there exists a
TL curve from p to p then the radial geodesic σ from p to p is the unique (up to reparametrization)
longest causal curve in U from p to p.

Proof. We have σ(t) = expp(t ⋅ exp
−1
p (p)) for t ∈ [0,1]. Let r(p′) = ∣ exp−1p (p

′)∣ be the radius function on U .
Then for r ≠ 0, U1 ∶=

P
r

is a unit vector field since

∣ ⟨U1, U1⟩ ∣ = ∣ ⟨P,P ⟩ ∣ ⋅
1

r2
(3.6.3)
= (∣P̃ ∣2 ○ exp−1p )

1

∣ ⋅ ∣2
○ exp−1p = 1.

Let α ∶ [0, b] → U be FDTL from p to p. By Lemma 3.1.11, β ∶= exp−1p ○α remains in I+(0) ⊆ TpM (for t > 0).
Therefore, α(t) ∈ expp(I

+(0)) for all t > 0. In particular, exp−1p (p) ∈ I
+(0) and so σ is FDTL. Now write

α′(t)
´¹¸¹¶

TL

= −⟨α′(t)
´¹¸¹¶

TL

, U1(α(t))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

TL

⟩U1(α(t)) +N(t).

Hence N(t) is spacelike (as it is orthogonal to U1).

∣α′(t)∣ = −(⟨α′(t), α′(t)⟩)
1
2 = [⟨α′(t), U1(α(t))⟩

2
− ⟨N(t),N(t)⟩

2
]

1
2 ≤ ∣ ⟨α′(t), U1(α(t))⟩ ∣. (3.6.4)

For any x ∈ I+(0) and p′ = expp x, r(p
′) = ∣ exp−1p (p

′)∣ = ∣x∣ =
√
−q̃(x) =

√
−q(p′). Therefore, r =

√
−q and so

grad(r) = −
1

2
√
−q

grad(q)
(3.6.1)
= −

1

2
√
−q
⋅ 2P = −

1

r
P = −U1. (3.6.5)

α′(t) and U1(α(t)) are TL and so

∣ ⟨α′(t), U1(α(t))⟩ ∣ = − ⟨α
′(t), U1(α(t))⟩

(3.6.5)
= ⟨grad(r), α′(t)⟩ =

d(r ○ α)

dt
. (3.6.6)

All of this holds wherever α is smooth, hence except for break points.

L(α) = ∫
b

0
∣α′(t)∣dt

(3.6.4),(3.6.6)
≤ ∫

b

0

d(r ○ α)

dt
dt = r(α(b)) − r(

= p
³·µ
α(0))
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
= 0

= r(p) = L(σ).

Equality holds if and only if for all t

∣α′(t)∣
(3.6.6)
= − ⟨α′(t), U1(α(t))⟩ ⇐⇒ N(t) = 0. (3.6.7)

Then α′(t) = − ⟨α′(t), U1(α(t))⟩U1(α(t)) and so

β′(t) = − ⟨α′(t), U1(α(t))⟩ ⋅
P̃ (β(t))

∣β(t)∣
.
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Indeed, α = expp ○β and so α′ = T expp ○β
′ . Finally,

β′

−⟨α,U1 ○ α⟩
= (T expp)

−1 ○U1 ○ expp ○β =
(expp)

∗P

r ○ expp
○ β =

P̃ (β(t))

∣β(t)∣
.

β′ is proportional to β(t) and so, from ODE theory we know that there exists a C∞-function h ∶ (0, b) → (0,∞)
and y ∈ TpM where ∣y∣ = 1, such that β(t) = h(t) ⋅ y. This holds for t > 0 but, since β is C∞ , it even holds on

[0,1]. Let x ∶=∆(p, p) = exp−1p (p). Since β(p) = x we get that y = β(b)
h(b) =

x
h(b) and so β(t) = h(t)

h(b)x
∣y∣=1
= h(t)

∣x∣ x.
Therefore,

α(b) = expp(β(t)) = expp (
h(t)

h(b)
x) = σ (

h(t)

h(b)
) ⇒ α′(t) = Tβ(t) expp (

h′(t)

h(b)
x) ,

implying

∣α′(t)∣ =
∣h′(t)∣

h(b)
∣x∣ = ∣h′(t)∣.

α′ is TL and so ∣α′(t)∣ ≠ 0 for all t and so h′(t) > 0 for all t or h′(t) < 0 for all t. Now by (3.6.5),
h′(t) = (r ○ α)′(t). Since h(0) = 0, h(t) = (r ○ α)(t) implies that α(t) = σ ( r○α(t)

r(p) ) i.e. α is indeed a
reparametrization of σ. σ is the unique longest TL curve from p to p.
Finally, suppose there exists some causal curve c from p to p with L(c) > L(r). L(c) > 0 and so c is not
a null pregeodesic. According to Lemma 3.2.4, there exists a variation cs of c with cs TL for 0 < ∣s∣ small.
Then cs → c as s → 0 in C1 , implying that L(cs) → L(c) > L(σ). Therefore, there exists s small such that
L( cs
´¸¶

TL

) > L(σ). ☇

Lemma 3.6.6. Let K ⊆M compact such that strong causality holds on K . Let cn ∶ [0,1] →M be FD
causal, cn(0) → p, cn(1) → q ≠ p and cn([0,1]) ⊆K . Then there exists a FD causal geodesic polygon
γ from p to q and a subsequence (cnm)m such that limm→∞L(cn) ≤ L(γ).

Proof. By Proposition 3.4.4, since all cn have to leave a neighborhood of p there exists a limit sequence
p0 = p < p1 < . . . .

a) We sow that the limit sequence is finite. Assume it was infinite. Then by Remark 3.4.5 there exists a
FD and inextendible quasi-limit. By Definition 3.6.1, cn([0,1]) ⊆ J(p, q) for all n ∈ N. Therefore, by
Lemma 3.6.3 γ leaves K and never returns and so pi ∉K for i large. However, cnm(tm,i) → pi and so
cnm(tm,i) ∉K for i,m large, which is a contraction to cn([0,1]) ⊆K .

b) By a), from Remark 3.4.5, there exists quasi-limit γ , a FD causal geodesic polygon from p = p0 to
q = pN . By definition, pi, pi+1, cnm([tm,i, tm,i+1]) ⊆ K̃ for K̃ convex. Then by Proposition 3.6.5

L(cnm ∣[tm,i,tm,i+1]) ≤ ∣∆(pm,i, pm,i+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
exp−1pm,i

(pm,i+1)

∣

and so

L(cnm) ≤
N−1
∑
i=0
∣∆(pm,i, pm,i+1)∣ Ð→

N−1
∑
i=0
∣∆(pi, pi+1)∣ = L(γ),

since ∆ is continuous on K̃ ’s. Therefore, 0 ≤ L(cnm) ≤ 2L(γ) for m large and so there exists a
subsequence, without loss of generality, cnm itself such that there exists limL(cnm) and limL(cnm) ≤
L(γ).
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Theorem 3.6.7 (Avez-Seifert Theorem). Let p < q in (a spacetime) M with J(p, q) compact and such
that strong causality holds in each point of J(p, q) (e.g. M globally hyperbolic). Then there exists a
causal geodesic γ from p to q with

L(γ) = τ(p, q)

i.e. of maximal length.

Proof. By definition of τ , there exists a FD causal cn ∶ [0,1] → M such that cn(0) = p, cn(1) = q and such
that L(cn) → τ(p, q). By Definition 3.6.1 cn([0,1]) ⊆ J(p, q) for all n ∈ N. By Lemma 3.6.6, there exists
FD causal geodesic polygon γ from p to q such that τ(p, q) = limmL(cnm) ≤ L(γ) ≤ τ(p, q). Therefore,
L(γ) = τ(p, q). If γ had any break points then by Proposition 3.6.5 we could find a strictly longer curve.

Indeed, let p̃ be a break point, U a convex neighborhood around p̃, p a point before the break point and p̂
a point after the break. Then we can replace γ between p and p̂ by radial geodesic of greater length.

Proposition 3.6.8. Let X ⊆ M be open and globally hyperbolic. Then τ ∶ X ×X → R (where τ is a
time separation function in X) is finite and continuous.

Proof. By Theorem 2, τ < ∞ on X ×X and, by Proposition 3.1.26, τ is lower semicontinuous. Suppose that
τ is not upper semicontinuous. Then there exist δ > 0, pn → p, qn → q such that

τ(pn, qn) ≥ τ(p, q) + δ. (3.6.8)

Choose cn ∶ [0,1] →X , cn(0) = pn , cn(1) = qn and

L(cn) ≥ τ(pn, qn) −
1

n
. (3.6.9)

X is open and therefore there exist p−, q+ ∈ X such that p− ≪ p, q+ ≫ q. pn ∈ I+(p−), qn ∈ I−(q+) for n
large. cn([0,1]) ⊆ I+(p−) ∩ I−(q+) ⊆ J(p−, q+) =∶K , where K is compact in X by assumption.
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By assumption, strong causality holds on K (see Definition 3.6.1). Therefore, by Lemma 3.6.6, there exists a
FD causal geodesic polygon γ from p to q and a subsequence (cnm)m such that

lim
m→∞

L(cnm) ≤ L(γ) ≤ τ(p, q). (3.6.10)

But, by (3.6.9), L[cnm] ≥ τ(pnm , qnm) −
1
nm

(3.6.8)
≥ τ(p, q) + δ − 1

nm
and so (3.6.10) implies that τ(p, q) ≥

limL[cnm] ≥ τ(p, q) + δ, which is a contradiction.

Proposition 3.6.9. Let X ⊆M be open and globally hyperbolic. Then ≤ is closed on X .

Proof. Let pn ≤ qn , pn → p, qn → q in X . If p = q, we are done. Let p ≠ q. Then there exists subsequences,
without loss of generality the same ones, such that pn ≠ qn i.e. pn < qn . Choose FD causal cn ∶ [0,1] → X
such that cn(0) = pn and cn(1) = qn . As in Proposition 3.6.8, pick p−, p+ ∈ X so that cn([0,1]) ⊆ J(p−, q+).
Then by Lemma 3.6.6 there exists a FD causal geodesic polygon from p to q. In particular, p ≤ q.

3.7 Index Forms and Lengths of Curves

In this section we introduce tools on calculus of variations to study the length of curves in a variation
[a, b] × (−δ, δ) →M

(t, s) ↦ cs(t) ≡ c(t, s)

of base curve c(t) = c0(t) = c(t,0). Then V ∈ X(c), V (t) = ∂s∣0cs(t) is the variation vector field of cs and
for any s ∈ (−δ, δ) let

Lc(s) ∶= ∫
b

a
∣ċs(t)∣dt

denote the length of cs .

Definition 3.7.1. If L = Lc is twice differentiable, we call

L′(0) ∶=
dL

ds
∣
s=0

and L′′(0) ∶=
d2L

ds2
∣
s=0

first and second variation of arclength, respectively.

Remark 3.7.2. If ∣c′∣ > 0 everywhere, then either c is spacelike or timelike everywhere. We call

ϵ ∶= sgn ⟨c′, c′⟩ = ±1

the signum of c.

Lemma 3.7.3. If c has signum ϵ then

L′(0) = ϵ∫
b

a
⟨
ċ(t)

∣ċ(t)∣
, V ′(t)⟩dt.

Proof. Since ∣ ⟨∂tc(t,0), ∂tc(t,0)⟩ ∣ = ∣ ⟨ċ(t), ċ(t)⟩ ∣ > 0, there exists δ0 > 0 such that ∣ ⟨∂tc(t, s), ∂tc(t, s)⟩ ∣ > 0
for all (t, s) ∈ [a, b] × [−δ0, δ0] and so ∣∂tc(t, s), ∂tc(t, s)∣

1
2 = ∣∂tc(t, s)∣ is C∞ . Therefore,

L′(0) = ∫
b

a
∂s∣0∣∂tcs(t)∣dt.



CHAPTER 3. CAUSALITY 107

For s small, sgn ⟨∂tc(t, s), ∂tc(t, s)⟩ = ϵ and so ∣∂tc(t,0)∣ = (ϵ ⟨∂tc(t, s), ∂t(t, s)⟩)
1
2 .

∂s∣∂tcs(t)∣ =
1

�2
(ϵ ⟨∂tc(t, s), ∂tc(t, s)⟩)

− 1
2 �2ϵ ⟨∂tcs,

∇

ds
∂tcs

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
= ∇

dt∂scs

⟩

∂s∣0∣∂tcs(t)∣ = (ϵ ⟨ċ(t), ċ(t)⟩)−
1
2 ϵ ⟨ċ(t), V ′(t)⟩ = ϵ ⟨

ċ(t)

∣ċ(t)∣
, V ′(t)⟩ .

Definition 3.7.4.
Let c ∶ [a, b] → M be a piecewise smooth curve. A variation cs
of c is called piecewise smooth variation if c ∶ (t, s) ↦ cs(t) is
continuous and there exist break points

a = t0 < t1 < ⋅ ⋅ ⋅ < tk+1 = b

such that c∣[ti−1,ti]×(−δ, δ) is smooth for all i ∈ N. Then V = ∂s∣0cs
is piecewise smooth as well. ċ has breaks at ti (for 1 ≤ i ≤ k). Let

∆ċ(ti) ∶= ċ(t
+
i ) − ċ(t

−
i ) ∈ Tc(ti)M .

Proposition 3.7.5. Let c ∶ [a, b] → M be a piecewise smooth curve with constant velocity v = ∣ċ(t)∣
for all t ∈ [1, b] and signum ϵ. Let cs(t) be a piecewise smooth variation of c with break points
t1 < ⋅ ⋅ ⋅ < tk . Then

L′(0) = −
ϵ

v
∫

b

a
⟨c̈(t), V (t)⟩dt −

ϵ

v

k

∑
i=1
⟨∆ċ(ti), V (ti)⟩ +

ϵ

v
⟨ċ(t), V (t)⟩ ∣

b

a
.

Proof. From Lemma 3.7.3 we know that

L′(0) =
k

∑
i=0
L′c∣[ti,ti+1]

(0) =
k

∑
i=0

ϵ

v
∫

ti+1

ti
⟨ċ(t), V ′(t)⟩dt.

Here ⟨ċ(t), V ′(t)⟩ = ∂t ⟨ċ, V ⟩ − ⟨c̈, V ⟩ and so

∫
ti+1

ti
⟨ċ(t), V ′(t)⟩dt = ⟨ċ, V ⟩ ∣ti+1ti

− ∫
ti+1

ti
⟨c̈, V ⟩dt.

Summing over i we get the claim.

In addition to the transversal velocity vector field V , we also consider the transversal acceleration vector
field:

A =
∇

∂s
∣
0

∂cs
∂t
∈ X(c).

If ∣ċ∣ > 0, then any Y ∈ X(c) can be uniquely decomposed as Y = Y ⊺ + Y � , where Y ⊺ = 1
⟨ċ,ċ⟩ ⟨Y, ċ⟩ ċ is the

parallel part of c and Y � = Y − Y ⊺ the orthogonal one. If c is a geodesic i.e. if c̈ = 0, then ∂t (
1
⟨ċ,ċ⟩) = 0

yielding (Y ⊺)′ = 1
⟨ċ,ċ⟩ ⟨Y

′, ċ⟩ ċ = (Y ′)⊺ . Y ′ = (Y ′)⊺

´¹¹¹¹¸¹¹¹¶
= (Y ⊺)′

+(Y ′)� now so (Y ′)� = (Y − Y ⊺) = (Y �)′ . Hence, we
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express
�
Y ′ as a shorthand for (Y ′)� = (Y �)′ .

Theorem 3.7.6 (Synge Formula). Let σ ∶ [a, b] → M be a geodesic with velocity v and signum ϵ. If
(t, s) ↦ σ(t, s) is a variation of σ (so σ(t) ≡ σ(t,0)) with velocity-vector field V and acceleration-
vector field A, then

L′′(0) =
ϵ

v
∫

b

a
[⟨
�
V ′(t),

�
V ′(t)⟩ − ⟨RV σ̇V, σ̇⟩ (t)]dt +

ϵ

v
⟨σ̇(t),A(t)⟩ ∣

b

a
.

Proof. Let h(t, s) ∶= ∣∂tσ(t, s)∣. Then L(s) = ∫
b
a h(t, s)dt and L′′(s) = ∫

b
a
∂2h
∂s2

dt. The proof of Lemma 3.7.3
implies that ∂h

∂s
= ϵ
h
⟨∂tσ,

∇
∂s

∂
∂t
σ⟩. Now

∂2h

∂s2
=

ϵ

h2
{h∂s ⟨∂tσ,

∇

∂s

∂σ

∂t
⟩ − ⟨∂tσ,

∇

∂s

∂σ

∂t
⟩
∂h

∂s
}

=
ϵ

h
{⟨
∇

∂s

∂σ

∂t
,
∇

∂s

∂σ

∂t
⟩ + ⟨

∂σ

∂t
,
∇

∂s

∇

∂s

∂σ

∂t
⟩ −

ϵ

h2
⟨∂tσ,

∇

∂s

∂σ

∂t
⟩
2

}

=
ϵ

h
{⟨
∇

∂t

∂σ

∂s
,
∇

∂t

∂σ

∂s
⟩ + ⟨

∂σ

∂t
,R(

∂σ

∂t
,
∂σ

∂s
)
∂σ

∂s
⟩ + ⟨

∂σ

∂t
,
∇

∂t

∂

∂s

∂σ

∂s
⟩ −

ϵ

h2
⟨∂tσ,

∇

∂t

∂σ

∂s
⟩
2

} ,

where
∇

∂s

∇

∂s

∂σ

∂t
=
∇

∂s

∇

∂t

∂σ

∂s
=
∇

∂t

∂

∂s

∂σ

∂s
+R(

∂σ

∂t

∂σ

∂s
)
∂σ

∂s
.

Now set s = 0. Then h(t,0) = v, ∂σ
∂t
(t,0) = σ̇(t), ∂σ

∂s
(t,0) = V (t),

∇

∂t

∂σ

∂s
= V ′(t),

∇

∂s

∂σ

∂s
(t,0) = A(t),

∇

∂t

∂

∂s

∂σ

∂s
(t,0) = A′(t)

and so
∂2h

∂s2
∣
s=0
=
ϵ

v
{⟨V ′, V ′⟩ − ⟨RV σ̇V, σ̇⟩ + ⟨σ̇,A

′⟩ −
ϵ

v2
⟨σ̇, V ′⟩

2
} .

We have ⟨σ̇,A′⟩ σ̈=0= d
dt
⟨σ̇,A⟩. σ̇

v
is a unit vector field and so (V ′)⊺ = ϵ ⟨V ′, σ̇

v
⟩ σ̇
v
, implying that

V ′ =
ϵ

v2
⟨V ′, σ̇⟩ +

�
V ′ Ô⇒ ⟨V ′, V ′⟩

⟨σ̇,σ̇⟩=ϵv2
=

ϵ

v
⟨V ′, σ̇⟩ + ⟨

�
V ′,

�
V ′⟩

Ô⇒
∂2h

∂s2
∣
s=0
=
ϵ

v
{⟨
�
V ′,

�
V ′⟩ − ⟨RV σ̇V, σ̇⟩ +

d

dt
⟨σ̇,A⟩}

∫ b
a
Ô⇒ claim.

Let P be a SRSMF of M , q ∉ P and set

Ω(P, q) ∶= {α ∶ [0, b] →M ∣ α pointwise C∞, α(0) ∈ P, α(b) = q} .

A ’curve’ in Ω(P, q) with initial value α is a piecewise C∞-variation of α such that each longitudinal curve lies
in Ω(P, q). Hence the first transversal curve lies in P and the last is equal to q. Such variations are called
(P, q)-variations. The corresponding variation-vector fields can be viewed as the ’tangent space’ of Ω(P, q)
at α:

TαΩ ≡ Tα(Ω(P, q)) ∶= {V ∶ V pointwise C∞ vector field along α, V (0) ∈ Tα(0)P, V (b) = 0} .
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Set
TαΩ

� ∶= {V ∈ TαΩ ∣ V �α̇} .

By Lemma 3.2.12, any P-JF lies in Tα(Ω(P, q)) and, by Remark 3.2.14, if such a J has a zero focal point (i.e.
J(r) = 0 at some r > 0), then J ∈ Tα(Ω(P, q))� .

Lemma 3.7.7. Let σ ∈ Ω(P, q) be a geodesic and suppose that L′(0) = 0 for any (P, q)-variation
of σ. Then σ̇ is perpendicular to P i.e. σ̇(0) ∈ Nσ(0)P = Tσ(0)P

� . In particular, this holds if
L(σ) =max{L(α) ∶ α ∈ Ω(P, q)}.

Proof. Let y ∈ Tσ(0)P and pick V ∈ TαΩ with V (0) = y and let (t, s) ↦ σ(t, s) be a (P, q)-variation of σ with
variation vector field V (use Fermi-coordinates). Then since σ has no break points,

0 = L′(0)
3.7.5
=

ϵ

v
⟨σ̇, V ⟩ ∣

b

0

V (b)=0
= −

ϵ

v
⟨σ̇(0), y⟩ Ô⇒ ˙σ(0) ∈ Nσ(0)P.

Finally, if L(σ) =max{L(α) ∶ α ∈ Ω(P, q)} then L(σ) is a local maximum of s↦ L(s) for any (P, q)-variation
of σ and so L′(0) = 0 for any such variation.

Now let σ ∈ Ω(P, q) be a geodesic with σ�P and (t, s) ↦ σ(t, s) a variation. By Theorem 3.7.6 we have

L′′(0) =
ϵ

v
∫

b

0
[⟨
�
V ′(t),

�
V ′(t)⟩ − ⟨RV σ̇V, σ̇⟩]dt +

ϵ

v
⟨σ̇(t),A(t)⟩ ∣

b

0
.

Now σ(b, s) ≡ q implies that A(t) = ∇
∂s
∣
0

∂σ(b,s)
∂s

= 0. Let γ be the first transversal curve, γ(s) = σ(0, s). Then

A(0) = γ̈(0) (¨ in M ) and

⟨σ̇(0),A(0)⟩ = ⟨σ(0), γ̈(0)⟩
σ̇�P
= ⟨σ̇(0),nor(γ̈(0))⟩ 1.5.2= ⟨σ̇(0), I(γ̇(0), γ̇(0))⟩ = ⟨σ̇(0), I(V (0), V (0))⟩ .

Therefore,

L′′(0) =
ϵ

v
∫

b

0
[⟨
�
V ′(t),

�
V ′(t)⟩ − ⟨RV σ̇V, σ̇⟩]dt −

ϵ

v
⟨σ̇(0), I(V (0), V (0))⟩ . (3.7.1)

Definition 3.7.8. Let σ ∈ Ω(P, q) be a non-null geodesic with σ�P . The index form Iσ of σ is the unique
bilinear form

Iσ ∶ TσΩ × TσΩ→ R

such that Iσ(V,V ) = L′′(0) for any P -variation of σ with variation vector field V ∈ TσΩ.

Remark 3.7.9. Existence and uniqueness of Iσ follow from (3.7.1) by polarization. Explicitly,

Iσ(V,W ) =
ϵ

v
∫

b

0
[⟨
�
V ′(t),

�
W ′(t)⟩ − ⟨RV σ̇W, σ̇⟩]dt −

ϵ

v
⟨σ̇(0), I(V (0),W (0))⟩ .

Iσ serves as a kind of ’Hessian’ in this context.

Remark 3.7.10. Tangential parts can be disregarded,

Iσ(V,W ) = Iσ(V
�,W �).

Indeed, ((V �)′)� = (V ′)�� = (V ′)� =
�
V ′ , V (0) = V �(0) since V (0) is tangential to P and σ�P . Finally,

⟨RV σ̇W, σ̇⟩
RV ⊺σ̇=0= ⟨RV �σ̇W, σ̇⟩

pair symm.
= ⟨RWσ̇V

�, σ̇⟩ = ⟨RW �σ̇V
�, σ̇⟩ = ⟨RV �σ̇W

�, σ̇⟩ .
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Proposition 3.7.11. Let σ ∈ Ω(P, q) be a non-null geodesic. If σ and V ∈ TσΩ have breaks at
t1 < ⋅ ⋅ ⋅ < tk then for all TσΩ

Iσ(V,W ) = −
ϵ

v
∫

b

0
⟨
�
V ′′ −R(V �, σ̇)σ̇,W �⟩dt −

ϵ

v

k

∑
i=1
⟨∆

�
V ′,W �⟩(ti)

= −
ϵ

v
⟨V ′(0),W (0)⟩ −

ϵ

v
⟨σ̇(0), I(V (0),W (0))⟩ .

Proof. Away from the break points we have

⟨
�
V ′,

�
W ′⟩ =

d

dt
⟨
�
V ′,W �⟩ − ⟨

�
V ′′,W �⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(⋆)

.

Moreover,
⟨RV σ̇W, σ̇⟩ = −⟨RV σ̇σ̇,W ⟩

cf. 3.7.10
= − ⟨RV �σ̇σ̇,W

�⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(⋆⋆)

.

(⋆) and (⋆⋆) give the integrand. We integrate the remaining term over [ti, ti+1]:

∫
ti+1

ti

d

dt
⟨
�
V ′,W �⟩dt = ⟨

�
V ′,W �⟩∣ti+1ti

.

W (b) = 0 and for 1 ≤ i ≤ k, we get

⟨
�
V ′(t−i ),

�
W (ti)⟩ − ⟨

�
V ′(t+i ),

�
W (ti)⟩ = −⟨∆

�
V ′,W �⟩(ti),

Summing over i yields the claim.

Theorem 3.7.12. Let σ ∈ Ω(P, q) be a TL geodesic, σ�P and suppose that there exists a focal point
σ(r) of P along σ with 0 < r < b. Then there exists a TL curve γ in Ω(P, q) with L(γ) > L(σ).

Proof.

a) There exists z ∈ TσΩ such that Iσ(z, z) > 0. According to Definition 3.2.13, there exists P-JF 0 ≠ J�σ
on [0, b] with J(r) = 0. Let Y be the vector field along σ with

Y (t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

J(t), t ∈ [0, r]

0, t ∈ [r, b].

Then Y = Y � (implying that Y ′ =
�
Y ′) and Y ′(r−) = J ′(r) ≠ 0 (since J /≡ 0). Since Y ′(r+) = 0,

(∆Y ′)(r) ≠ 0. Choose a W ∈ TσΩ with W (r) = (∆Y ′)(r) and W�σ (implying that W =W �). We now
show that, setting Z ∶= Y + κW we have Iσ(Z,Z) > 0 for κ > 0 small. We have

Iσ(Y + κW,Y + κW ) = Iσ(Y,Y ) + 2κIσ(Y,W ) + κ
2Iσ(W,W ).

By definition, Y is a JF (on [0, r] and on [r, b]). Also, Y (r) = 0 i.e. Y vanishes at its only breakpoint
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(without loss of generality v = 1). Proposition now 3.7.11 reduces to:

Iσ(Y,Y ) = ⟨Y ′(0), Y (0)⟩ + ⟨σ̇(0), I(Y (0), Y (0))⟩
= ⟨J ′(0), J(0)

´¸¶
tangential to P

⟩ + ⟨σ̇(0), I(J(0), J(0))⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1.6.9= − ⟨̃I(J(0), σ̇(0)), J(0)⟩

= ⟨tan(J ′(0)) − Ĩ(J(0), σ̇(0)), J(0)⟩ = 0,

since J is a P-JF. Moreover, by definition of W we have (as in the equation above):

Iσ(Y,W ) = ⟨∆Y ′(r),∆Y ′(r)⟩ + ⟨tan(J ′(0)) − Ĩ(J(0), σ̇(0))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 0

,W (0)⟩

= ⟨∆Y ′(r),∆Y ′(r)⟩ > 0,

since ∆Y ′(r)�σ̇(r) (σ̇(r) is timelike and, therefore, ∆Y ′(r) spacelike). Finally,

Iσ(Y + κW,Y + κW ) = 2κ ⟨∆Y
′(r),∆Y ′(r)⟩ + κ2Iσ(W,W ) > 0

for κ > 0 small.

b) There exists a TL curve γ ∈ Ω(P, q) with L(γ) > L(σ). Let σ(t, s) be a variation of σ with variation-
vector field Z , σ(0, s) ∈ P and σ(b, s) = q for all s (use Fermi-coordinates). By Proposition 3.7.5,
L′(0) = 0 and, by Definition 3.7.8, L′′(0) = Iσ(Z,Z) > 0. Hence, by Taylor:

L(σs) ≡ L(s) = L(0) + 0 +
s2

2
Iσ(Z,Z) +O(s

3) > L(σ)

for 0 < ∣s∣ small.

3.8 Cauchy Developments and Cauchy Horizons

The Cauchy development of an achronal set A refers to the portion of spacetime that is causally in-
fluenced by A—in other words, it comprises the events completely determined by A. An intriguing aspect
lies in exploring the boundaries of this set, known as the Cauchy horizon, which marks the region where
predictability stemming from A ceases. This section delves into examining the characteristics of these sets.

Definition 3.8.1. Let A ⊆M be achronal.

1. The future Cauchy development of A is defined as

D+(A) ∶= {p ∈M ∣ every past-inextendible causal curve through p intersects A} .
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2. The past Cauchy development is defined analogously;

D−(A) ∶= {p ∈M ∣ every future-inextendible causal curve through p intersects A} .

3. The Cauchy development of A is defined as

D(A) ∶=D+(A) ∪D−(A).

Remark 3.8.2.

1. A ⊆ D±(A) ⊆ A ∪ I±(A) ⊆ J±(A). To see this, note that for p ∈ D+(A) and γ PDTL curve from p,
γ ∩A = ∅. Therefore, p ∈ I+(A) unless p ∈ A to begin with.

2. D±(A) ∩ I∓(A) = ∅. Suppose that p ∈ D±(A)∩ ∈ I−(A). Then, since p ∈ I−(A), there exists a PDTL
curve c from a ∈ A to p. Extend c beyond p to the past via γ . Since p ∈ D+(A), c ∪ γ has to intersect
A, which is in contradiction to the assumption that A is achronal.

3. A =D+(A) ∩D−(A) since

A ⊆D+(A) ∩D−(A) ⊆D+(A) ∩ (A ∪ I−(A))
2.
= D+(A) ∩A = A.

4. D(A) ∩ I±(A) =D±(A)/A since

D(A) =D+(A) ∪D−(A) Ô⇒ D(A) ∩ I±(A)
2.
= D±(A) ∩ I±(A) =D±(A)/A.

Example 3.8.3.

1. Let M = Rn1 and A ∶= {0} ×Rn−1 . Then D±(A) = J±(A) = A ∪ I±(A).

2. Let M be any Lorentzian manifold with a Cauchy hypersurface S . By Proposition 3.5.23 (3.) every
inextendible causal curve meets S . By the proof of Proposition 3.5.23 (1.), M = I−(S)∪̇S∪̇I+(S) and
so D±(S) = I±(S) ∪ S and D(S) = M i.e. the Cauchy development of a Cauchy surface is all of
spacetime. Conversely, if S is achronal and D(S) =M then S is a Cauchy surface in M .

3. Let M = Rn1 , A = {0} ×B and B ⊆ Rn−1 . Then D(A) is the double cone over B .

4. For (M,g) = (R × S1,−dt2 + dθ2) and A = {0} × S1

we have that D±(A) = J±(A). For p ∈ I+(A) and
M̃ ∶= M/p we still have that D+(A) = J−(A) but
D+(A) is given by the union of A and the shaded
region between A and future directed null geodesics
emanating from p i.e. D+(A) = J+(A)/J+(p).
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Lemma 3.8.4. Let A ⊆M be achronal. Then:

1. Every PD causal curve starting in D+(A) and leaving it intersects A.

2. Every past (future) inextendible causal curve through p ∈D(A)○ intersects I−(A) (I+(A)).

Proof.

1. Let c ∶ [0, b] → M be a causal PD curve, c(0) ∈ D+(A) and c(b) ∉ D+(A). Then there exists some
past inextendible causal curve γ , which starts in c(b) but does not hit A. Then the concatenation c∪ γ
yields a past inextendible causal curve through c(0) ∈ D+(0) which, by Definition 3.8.1, intersects A.
Therefore, c intersects A.

2. By Remark 3.8.2 (1.) we have that D(A) ⊆ A∪ I+(A) ∪ I−(A). Let c be a PD causal inextendible curve
starting in p ∈ D(A)○ . For p ∈ I−(A) the claim is trivial. Let, therefore, p ∈ A ∪ I+(A) and choose
q ∈ I+(p) ∩D(A). The proof of Lemma 3.5.21 (1.) with A = ∅ shows that there is a past inextendible
timelike curve c̃ starting in q as constructed there. Then every point c̃(s) has I−(c̃(s)) ∩ c ≠ ∅.
q ∈D+(A) and so c̃ intersects A. Therefore, I−(A) ∩ c ≠ ∅.

Theorem 3.8.5. Let A ⊆M be achronal. Then D(A)○ is globally hyperbolic.

Proof.

a) The causality condition holds at any p ∈D(A)○ .
Suppose there exists a causal loop c through x ∈
D(A)○ . Due to Lemma 3.8.4 (2.) we find points
q± ∈ I

±(A) on c. Hence, there are q′± ∈ A such that
q± ∈ I

±(q′±), that is,

q′+ ≪ q+ ≤ q− ≪ q′−.

By Proposition 3.1.8, q′+ ≪ q′− , which is a contradiction
to A being achronal. Therefore, there cannot exist
such causal loops.

b) Strong causality holds at any p ∈ D(A)○ . Suppose strong causality fails at some p ∈ D(A)○ i.e.
suppose that there is a sequence of causal FD curves cn ∶ [0,1] → M , n ∈ N with limn→∞ c(0) = p =
limn→∞ cn(1) and a neighborhood U of p such that for all n, cn is not entirely contained in U . By
Proposition 3.4.4 there exists a limit sequence p =∶ p0 < p1 < . . . of (cn)n∈N . If it is finite, then pN = p
(because cn(1) → p), that is p < p and hence we obtain a contradiction to a). Therefore, suppose the
limit sequence is infinite and the corresponding quasi-limit γ future inextendible. According to Lemma
3.8.4 (2.), it meets I+(A) and does not leave it. That is, there exists some pi0 ∈ I

+(A). Possibly passing
on to some subsequence and after a reparametrization, there exists s ∈ (0,1) such that cn(s) → pi . In
particular, we have cn(s) ∈ I+(A) for n large enough. Let c̃n ∶ [s,1] →M such that c̃n(t) ∶= cn(s+1−t)
(i.e. c̃n = −cn∣[s,1] in the homotopy sense). Then c̃n is causal and PD. Now apply Proposition 3.4.4 to
c̃n and obtain a limit sequence p ∶= q0 > q1 > . . . (it starts at p because c̃(s) = cn(1) → p). That limit
sequence is infinite since, otherwise, p = q0 > ⋅ ⋅ ⋅ > qN ′ = pi0 = lim c̃n(1) > p, which contradicts a).
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By Remark 3.4.5, there exists a past inextendible quasi-limit γ̂
that starts at p ∈ D(A)○ . From Lemma 3.8.4 (2.) it follows that γ̂
intersects I−(A) and so there exists t̃ ∈ (s,1] such that c̃n(t̃) ∈
I−(A). Now c̃n(t̃) = cn(s+1−t̃). Let (s,1] ∋ t ∶= s+1−t̃. Then there
exists t ∈ (s,1] such that cn(t) ∈ I−(A). But, I+(A) ∋ cn(s) ≤
cn(t) ∈ I

−(A) and so there exist a1, a2 ∈ A such that a1 ≪
cn(s) ≤ cn(t) ≪ a2 , implying a1 ≪ a2 , which is a contraction to
achronality of A.

c) For all p, q ∈ D(A)○ J(p, q) is compact. If p /≤ q then J(p, q) is empty, which is compact and so we
are done. If p = q then J(p, q) = {p} since if there were some r ≠ p, r ∈ J(p, q) then p < r < p
be a contradiction to a). Therefore, we consider the case when p < q and show that every sequence
(xn)n∈N ⊆ J(p, q) has a subsequence which converges in J(p, q). Let cn ∶ [0,1] → M be causal FD
curves from p to q through xn . Furthermore, Let K be a cover of M by open convex subsets U
such that the closures Ũ are compact and contained in some open and convex set V . Then due to
Proposition 3.4.4 we find a limit sequence p =∶ p0 < p1 < . . . of (cn)n∈N relative to K. We show that we
can always find a finite one.

c1) There exists a finite limit sequence i.e. p =∶ p0 < ⋅ ⋅ ⋅ < pN = q. By the pigeonhole principle, there
exists a subsequence (again denoted by) (cn)n∈N such that xn ∈ cn([sn,i, sn,i+1]) for all n ∈ N
and pi = lim cn(si). In particular, xn ∈ U ⊆ V and so xn → x, up to choosing a subsequence.
cn(sn,i) ≤ xn ≤ cn(sn,i+1), where cn(sn,i) → pi and cn(sn,i+1) → pi+1 . By Lemma 3.3.12 (4.),
p ≤ pi ≤ x ≤ pi+1 ≤ q and so p ≤ x ≤ q, implying that x ∈ J(p, q).

c2) Every limit sequence is infinite. As in b), there exists some s with cn(s) → pi ∈ I
+(A). q is the

endpoint of each cn and p0 < p1 < . . . does not terminate. Therefore, pi ≠ q. Let c̃n ∶= (cn∣[s,1]).
Then c̃n is PD, c̃n(s) = cn(1) → q and c̃n(1) = cn(s) → pi0 ≠ q. Therefore, by Proposition 3.4.4,
there exists a limit sequence q = q0 > q1 > . . . . If this sequence were finite, then qN would be equal
to pi0 and we would get a finite limit sequence p = p0 < p1 < ⋅ ⋅ ⋅ < pi0 = qN < ⋅ ⋅ ⋅ < q0 = q, which
would be a contradiction to the assumption that every limit sequence is infinite. In other words,
(qi)i∈N does not terminate and so the corresponding quasi-limit is past inextendible. Therefore,
by Lemma 3.8.4, it reaches I−(A). This leads us to a contradiction as in b).

d) For all p, q ∈ D(A)○ , J(p, q) ⊆ D(A)○ . As in c), without loss of generality, assume p < q. By Remark
3.8.2, the only possible cases are p, q ∈ I+(A) or p, q ∈ I−(A) or p ∈ J−(A), q ∈ J+(A).

d1) Let p, q ∈ I+(A). Choose q+ ∈ I+(q)∩D(A) and define U ∶= I+(A)∩I−(q+), an open neighborhood

of J(p, q). Indeed, J(p, q) ⊆ J+(I+(A)) ∩ J−(I−(A)) 3.1.8
= I+(A) ∩ I−(A) = U . We show that

U ⊆D(A).
To this end, for x ∈ U let c be a timelike FD curve from
x to q+ , which fails to intersect A due to achronal-
ity. Hence, for any past inextendible causal curve γ
starting in x, the concatenation c ∪ γ yields a past in-
extendible causal curve, which starts in q+ and, there-
fore, intersects A. It follows that γ intersects A and so
x ∈D+(A).

d2) Consider p ∈ J−(A) and q ∈ J+(A). Choose q+ ∈ I+(q) ∩D(A) and p− ∈ I
−(p) ∩D(A) so that

U ∶= I−(p−) ∩ I
−(q+) is again a neighborhood of J(p, q). We show that U ⊆ D(A). Let x ∈ U .

Since for x ∈ A the claim directly follows from A ⊆ D(A), we assume x ∉ A. Let c− and c+ be
FDTL curves from p− to x and from x to p+ , respectively. Due to achronality of A at least one of
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those curves does not intersect A.

Lemma 3.8.6. If M has a Cauchy surface, then M is globally hyperbolic.

Proof. Let S be a Cauchy surface in M . Then, by Proposition 3.5.23 (1.), S is achronal and, by Example 3.8.3,
D(S) =M . Therefore, D(S) =D(S)○ . Finally, D(S)○ is globally hyperbolic by Theorem 3.8.5.

Lemma 3.8.7. Every spacelike achronal C∞-hypersurface S is acausal.

Proof. Suppose there exists some FD causal curve c ∶ [0,1] → M such that c(0), c(1) ∈ S . By Theorem
3.2.23, there exists FDTL curve from S to S unless c is a null geodesic without focal point before c(1)
such that ċ(0)�S . But S is spacelike and so Nc(0)S is timelike, which contradicts the fact that ċ(0) is null
(dimNc(0)S = 1).

Proposition 3.8.8. Let S ⊆M be a closed acausal topological hypersurface. Then D(S) is open and
globally hyperbolic (by Theorem 3.8.5).

Proof. Recall that due to acausality of S , the union I ∶= I−(S) ∪ S ∪ I+(S) is disjoint, since if I−(S) ∩ S or
I+(S) ∩ I−(S) were not empty we would find timelike curves hitting S at least twice.

a) We show that I(S) ⊆M is open in M . Since I±(S) is open, it suffices to show that any p ∈ S lies in the
interior of I(S). By Proposition 3.5.11, we know that S ∩ edge(S) = ∅ and so p ∉ edge(S). Therefore,
there exists a neighborhood U of p such that for all γ timelike in U from I−U(p) to I+U(p) γ must
intersect S . Without loss of generality, (U,x0, . . . , xn−1) is a chart for RNCs x0, . . . , xn−1 around p with
timelike x0 and ∣xi∣ < ϵi for some fixed ϵi > 0. Choosing the ϵi’s suitably small ensures {x0 = ±ϵ0} ⊆ U .
Then the x0-coordinate lines meet S and therefore run entirely in I(S), so ⋂n−1j=0 {∣x

i∣ < ϵi} yields an
open neighborhood of p in I(S).

b) We now show that S ⊆ D(S)○ . Suppose there exists some p ∈ S/D(S)○ . Then by a) there exists
U , an open neighborhood of p, such that U ⋐ V ⊆ I(S) for V open and convex. Now p ∉ D(S)○

and so there exists a sequence (xn)n∈N in M/D(S) with xn → p. Without loss of generality, xn ∈ U .
xn ∉ D(S) and so xn ∉ D+(S). Therefore, there exists a past inextendible causal curve cn starting in
xn and not intersecting S .
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By Lemma 3.3.12 (5.), every cn intersects the boundary ∂U and we
call the first intersection point yn . Then we have yn ≤ xn and, due
to compactness of ∂U , we find a subsequence converging to some
y ∈ ∂U . yn ≤ xn so Lemma 3.3.12 (4.) implies that y ≤ p and even y < p
since y ∈ ∂U while p ∈ U○ . In particular, y ∈ U ⊆ I(S).

b1) If y ∈ I+(S), then there exists some q ∈ S such that q ≪ y ≪ p and so q ≪ p (by Proposition
3.1.8). But, p, q ∈ S so we get contradiction to acausality of S .

b2) If y ∈ S , then y < p, which is again a contradiction to acausality of S .

b3) If y ∈ I−(S), then (since I−(S) is open) there exists some n such that cn(tn) = yn ∈ I−(S). But,

cn([0, tn]) ⊆ U ⊆ I(S) = I
−(S)

○
U S

○
U I+(S).

Recall that cn does not meet S , so cn([0, tn]) has to be contained in I−(S) (cn is connected),
which contradicts the assumption cn(0) = xn ∈ I+(S).

c) We show that D(S) is open if S ⊆ M is closed. For S closed, it suffices to show that D+(S)/S =
I+(S) ∩D(S) (see Remark 3.8.2 (4.)) is open because then also D−(S)/S is open and

D(S) = (D+(S)/S) ∪ S ∪ (D−(S)/S)
b)
= (D+(S)/S) ∪D(S)○ ∪ (D−(S)/S) ⊆D(S),

implying that D(S) is open. Assume there exists some p ∈ D+(S)/S that is not an interior point.
Then there exists a sequence (xn)n∈N /⊆ D+(S)/S converging to p. For every n there exists a past
inextendible causal curve cn ∶ [0, bn) → M starting in xn not meeting S (except maybe in xn ∈ S).
Due to b) and since S is closed {M/S,D(S)○} yields an open cover of M . By Proposition 3.3.9, there
exists a refinement K by open and convex sets such that for all V ∈ K there exists

Ṽ convex such that V ⋐ Ṽ and Ṽ ⊆M/S or Ṽ ⊆D(S)○. (3.8.1)

Choose W ∈ K such that p ∈ W and W ⋐ W̃ ⊆M/S . Lemma 3.3.12 (5.) now implies that all cn must
leave W , otherwise they would be extendible. By Proposition 3.4.4 there exists γ , a quasi-limit of cn with
respect to K, and every limit sequence is infinite (otherwise some subsequence would be extendible).
This means that γ is past inextendible, PD causal and starting in p. p ∈ D+(S) so γ intersects S in
precisely one point γ(s). For the limit sequence p = p0 > p1 > . . . let pi > γ(s) ≥ pi+1 . By our choice
of W we have that i ≥ 1. Hence, the element of K which contains the corresponding segment of γ
meets S (in γ(s)) and is therefore contained in D(S)○ by (3.8.1). Acausality of S implies pi ∉ S , that
is, pi ∈D+(S)/S = I+(S) ∩D(S). It is even contained in the open set I+(S) ∩D(S)○ ⊆D+(S) so for
n large enough, cn has to meet D+(S). ☇

Lemma 3.8.9. For each achronal subset A ⊆M and p ∈D(A)○/I−(A), the intersection J−(p)∩D+(A)
is compact.

Proof. Let (xn)n∈N be a sequence in J−(p) ∩D+(A). Furthermore, let cn be a PD causal curve from p to
xn . If a subsequence of (xn)n∈N converges to p we are done. Otherwise, by Proposition 3.4.4 there exists a
limit sequence p ∶= p0 > p1 > . . . . Assume that the limit sequence is finite i.e. p > p1 > ⋅ ⋅ ⋅ > pN . Assume also
that we can find a subsequence of (xn)n∈N converging to pN , so it remains to show pN ∈ D

+(A). To that
end, let p+ ∈ I+(p) ∩D+(A), that is p+ ≫ p ≥ pN and thus p+ ≫ pN so there is a TLPD curve γ from p+ to
pN . If γ does not meet A, we directly have pN ∈D+(A). If γ meets A, then pN ∈ A∩I−(A). But, pN ∈ I−(A)
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would imply that also xn ∈ I−(A) for n large enough, which contradicts xn ∈D+(A). If the limit sequence is
infinite, the quasi-limit γ is a past-inextendible causal curve, which starts at p and meets I−(A) by Lemma
3.8.4 (2.). Therefore, pi ∈ I−(A) for i large enough and, consequently, for n large enough, xn ∈ I−(A). As
before, this contradicts xn ∈D+(A).

Definition 3.8.10. For all p ∈M and A ⊆M ,

τ(A,p) ∶= supq∈Aτ(p, q).

Theorem 3.8.11. Let S ⊆ M be a closed, achronal, spacelike (C∞-)hypersurface. For any p ∈ D(S)
there exists a geodesic c from S to p of length τ(S, p). c is normal to S , timelike and does not have
a focal point before p unless p ∈ S .

Proof. Due to Lemma 3.8.7 S is acausal and, by Proposition 3.8.8, D(S) is open and globally hyperbolic and
so τ ∣D(S)×D(S) is finite and continuous (see Proposition 3.6.8). If p ∈ S then τ(S, p) = 0 since S is acausal
(the only viable option is c ≡ p). Without loss of generality, we only consider p ∈ D+(S). From Lemma 3.8.9
we know that J−(p) ∩D+(S) is compact and, hence

J−(p) ∩ S = J−(p) ∩D(S) ∩ S

is compact as well since S is closed. Proposition 3.6.8 ensures continuity of τ on J−(p)∩S , so the maximum
of τ(⋅, p) on J−(p) ∩ S is attained at some q. By Theorem 2 there is a causal geodesic c of length τ(q, p)
connecting q and p. If c was not orthogonal to S or if c had a focal point before p, this curve could be
deformed into a longer timelike curve from S to p (see Theorem 3.7.12), which contradicts the maximality
of the length of c.

Definition 3.8.12. Let A ⊆M be achronal. Then we call

H+(A) =D+(A)/I−(D+(A)) = {p ∈D+(A) ∶ I+(p) ∩D+(A) = ∅}

future Cauchy horizon of A. Analogously, one defines H−(A), the past Cauchy horizon of A. The Cauchy
horizon of A is given by

H(A) ∶=H+(A) ∪H−(A).

Example 3.8.13. Let M ∶= Rn1 .

1. For A1 ∶= {0} ×Rn−1 , we obtain D±(A1) = J
±(A1) and, consequently, H(A) = ∅.

2. For A2 ∶=H
n−1 the (n−1)-dimensional hyperbolic space (see Example 3.5.2), we have D(A2) = I

+(0)

and so H+(A2) = ∅ and H−(A2) =D−(A2)/ I
+(D−(A2))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= I+(0)

= C+(0).

3. For A3 ∶= C
+(0), we have D(A3) =D

+(A3) = J
+(0) and H±(A3) =H

±(A2).
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4. For dim(M) = 2 we consider A4 ∶= {0} × (−1,1) and
obtain H+(A4) as in the picture. Note that H+(A4) ⊈
J+(A4) since (0,±1) ∈H+(A4)/J

+(A4).

Lemma 3.8.14 (Basic Properties of H). For all achronal A ⊆M , we have

1. H±(A) is closed.

2. H±(A) is achronal.

3. If A is closed, then

D+(A) = {p ∈M ∶ every past-inextendible TL curve through p meets A} ∶=X.

4. If A is closed, then
∂D±(A) = A ∪H±(A).

Proof.

1. H±(A) =D±(A)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

closed

/ I∓(D±(A))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

open

.

2. Since I+(H+(A)) is open and I+(H+(A)) ∩ D+(A) empty by definition, we obtain I+(H+(A)) ∩

D+(A) = ∅ and therefore I+(H+(A)) ∩H+(A) = ∅ (since H+(A) ⊆D+(A)). This implies achronality
of H+(A).

3. We first show that D+(A) ⊆ X . If there was a p ∈ D+(A)/X , we would find a past-inextendible TL
curve c ∶ [0, b) → M which starts in p but does not intersect A. In particular, p ∉ A and, since A is
closed (by assumption), there is an open and convex neighborhood U of p such that U ∩A = ∅.
Choose ϵ > 0 such that q ∶= c(ϵ) ∈ U and
thus p ∈ I+U(q). Since I+U(q) is an open
neighborhood of p and p ∈D+(A), there is
some r ∈ I+U(q) ∩D

+(A) with γ the corre-
sponding TL curve from r to q. Due to con-
vexity, γ runs entirely in U , so it does not
meet A. On the other hand, the concatena-
tion γ ∪ c∣[ϵ,b) yields a past-inextendible TL
curve which starts in r ∈ D+(A), so it has
to intersect A. ☇
We proceed with X ⊆D+(A). Let p ∉D+(A) and choose q ∈ I−

M/D+(A)
(p) so in particular q ∉D+(A).

Therefore, we find a past-inextendible causal curve in M , which starts in p but does not intersect A.
Lemma 3.5.21 now implies the existence of a past-inextendible TL curve γ̃ from p not meeting A.
Then p ∉X .

4. a) We start with A ⊆ ∂D+(A). By Remark 3.8.2 (1.) we already know that A ⊆ D+(A) ⊆ D+(A).
If there was some p ∈ A ∩D+(A)○ we could choose q ∈ D+(A)○ ∩ I−(p), which would imply the
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existence of a past-inextendible timelike curve c starting in q. Since q ∈ D+(A), c must intersect
A in some r ∈ A i.e. r ≪ p. On the other hand, p, r ∈ A, which yields a contradiction to A being
achronal.

b) Without loss of generality, we now prove H+(A) ⊆ ∂D+(A). By definition, we have H+(A) ⊆

D+(A). If there was any p ∈ H+(A) ∩D+(A)○ , the intersection I+(p) ∩D+(A) would not be
empty, which would contradict p ∈H+(A).

c) It remains to show that ∂D+(A) ⊆ A ∪H+(A). Suppose there was a p ∈ ∂D+(A)/(A ∪H+(A)).
Then, in particular, p ∈ D+(A)/A so 3. implies p ∈ I+(A). On the other hand, p ∈ D+(A)/H+(A)
and so there exists a q ∈ I+(p) ∩D+(A) and I+(A) ∩ I−(q) is an open neighborhood of p. We
now complete the proof by showing that this neighborhood is contained in D+(A). Then p would
need to be an inner point, which contradicts p ∈ ∂D+(A). To this end let I+(A) ∩ I−(q) and c
a past-inextendible causal curve starting in r. Furthermore, let γ be a TLPD curve from q to r,
which necessarily stays in I+(A) due to r ∈ I+(A) and, therefore, fails to meet A since achronality
of A demands that A∩ I+(A) = ∅. On the other hand, q ∈D+(A) implies that γ ∪ c intersects A,
so c has to intersect A and hence r ∈D+(A).

Proposition 3.8.15. Let S ⊆M be closed, acausal C0-hypersurface. Then

1. H+(S) = I+(S) ∩ ∂D+(S) =D+(S)/D+(S) and H+(S) ∩ S = ∅.

2. H+(S) is an achronal closed C0-hypersurface.

3. In every point of H+(S) starts a past-inextendible null geodesic without conjugate points, which
is entirely contained in H+(S).

Proof.

1. By definition,
H+(S) ⊆D+(S) ⊆ S ∪ I+(S)

(for the last inclusion see 3.8.14, 3.). If there was a p ∈ H+(S) ∩D+(S), I+(p) would hit D(S) since,
according to Proposition 3.8.8 D(S) is open, due to achronality of S , we have I+(p) ∩D−(S) = ∅.
Therefore, I+(p) has to meet D+(S), which contradicts p ∈H+(S) and thus H+(S)∩D+(S) = ∅, that
is H+(S) ⊆ ∂D+(S). Moreover, from S ⊆ D+(S) follows that also H+(S) ∩ S = ∅, so the inclusion we
started with implies H+(S) ⊆ I+(S). Conversely, Lemma 3.8.14 (4.) provides

I+(S) ∩ ∂D+(S) = I+(S) ∩ (S ∪H+(S)) =H+(S) ∩ I+(S) =H+(S).

It remains to showD+(S)/D+(S) ⊆H+(S). Hence, for all p ∈D+(S)/D+(S), we show I+(p)∩D+(S) =
∅. Let q ∈ I+(p) and γ a PD curve from q to p. p ∉ S∪I−(S) since S ⊆D+(S) and D+(S)∩D−(S) = ∅
by Remark 3.8.2 (2.), implying D+(S)∩I−(S) = ∅ (since I−(S) is open). Therefore, γ does not meet S
and there is a past-inextendible curve c starting in p which does not meet S either (since p ∉D+(S)).
γ ∪ c is a past-inextendible causal curve which starts in q but does not meet S , that is q ∉D+(S).

2. Let B ∶=D+(S) ∪ I−(S).

• B is a past set (cf. Definition 3.5.13). Indeed, let q ∈ I−(D+(S)) and let γ be PDTL from p ∈D+(S)
to q. If q ∈ D+(S), we are done. Otherwise, there exists some α PD causal from q not meeting
S . p ∈ D+(S) so γ ∪ α meets S but α does not so γ meets S in some r. If r = q then
q ∈ S ⊆D+(S) ⊆ B . Otherwise, q ∈ I−(r) ⊆ I−(S) ⊆ B .
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• We can now apply Corollary 1 (I+(S) /⊆ B and S ≠ ∅) and get that ∂B is an achronal C0-
hypersurface.

• Also, H+(S) 1.
= ∂D+(S) ∩ I+(S) = ∂B ∩ I+(S). I−(S) ∩ I+(S) = ∅ and so ∂I−(S) ∩ I+(S) = ∅.

Therefore, ∂D+(S) ∩ I+(S) = (∂D+(S) ∪ ∂I−(S)) ∩ I+(S) ⊇ ∂B ∩ I+(S) (where we have used
∂(A1∪A2) ⊆ ∂A1∪∂A2). Conversely, ∂D+(S)∩I+(S) ⊆ I+(S), where ∂D+(S)∩I+(S) =H+(S)
(by 1.) so it remains to show that H+(S) ⊆ ∂B . H+(S) ⊆ D+(S) ⊆ D+(S) ∪ I−(S) = B . On the
other hand, H+(S) ⊆ Bc ⊆ (B○)c . To see this let p ∈H+(S). Then p ∉D+(S) by 1. and p ∉ I−(S)
since otherwise (again by 1.) we would have that p ∈ I−(S) ∩ I+(S) = ∅. Therefore, p ∉ B and we
are done since we showed that H+(S) ⊆ B/B○ = ∂B .

• H+(S) = ∂B ∩ I+(S) is a relatively open subset of B (which is a C0-hypersurface), making it a
C0-hypersurface. Moreover, H+(S) is achronal and closed by Lemma 3.8.14.

3. Let p ∈ H+(S) ⊆ D+(S)/D+(S). As p ∉ D+(S) there exists a past-inextendible causal curve c from p

not meeting S . By Lemma 3.8.14 (3.), since p ∈D+(S), such c cannot be TL so c cannot be deformed
into a TL curve from p avoiding S . Therefore, by Lemma 3.5.21 (2.), c is a null geodesic without
conjugate points. Finally, c remains in H+(S); if c were to intersect D+(S) it would also intersect S ,
which is a contradiction. If c were to leave D+(S) i.e. if there existed some c(s) ∉ D+(S) then, by
Lemma 3.8.14, there would exist a past-inextendible TL γ from c(s) such that γ ∩S = ∅. Apply Lemma
3.5.21 (2.) to c∣[0,s] ∪γ and obtain a PDTL curve from p not intersecting S . This contradicts p ∈D+(S).

Corollary 3.8.16. Let S ≠ ∅ be a closed acausal C0-hypersurface. Then

1. S is a Cauchy hypersurface if and only if H(S) = ∅.

2. S is a Cauchy hypersurface if every inextendible null geodesic intersects S .

Proof.

1. By Proposition 3.8.8, we know that D(S) is open and globally hyperbolic. We show that

S =D+(S) ∩D−(S). (3.8.2)

(by symmetry, S = D−(S) ∩D+(S)). S ⊆ D+(S) ∩D−(S) is clear. Conversely, suppose p ∈ (D+(S) ∩
D−(S))/S . Then every non-inextendible TL curve through p intersects S in the past and the future of p,
which is a contradiction to S being acausal. Hence, ∂D(S) =D(S)/D(S) = (D+(S)∪D−(S))/D(S) =

(D+(S)/D(S)) ∪ (D−(S)/D(S))
(3.8.2)
= (D+(S)/D+(S)) ∪ (D−(S)/D−(S))

3.8.15
= H+(S) ∪H−(S) =

H(S). Therefore, H(S) = ∅ if and only if ∂D(S) = ∅. Since M is a spacetime, M is connected and
so ∂D(S) = ∅. ∂D(S) = ∅ if and only if D(S) = M . The last statement is obviously equivalent to S
being a Cauchy hypersurface.

2. Regarding 1., without loss of generality suppose that there exists some p ∈ H+(S). Then, according
to Proposition 3.8.15 (3.) there is a past-inextendible null geodesic starting in p entirely contained in
H+(S). By Proposition 3.8.15 (1.), H+(S) ∩ S = ∅ and so c ∩ S = ∅. If the maximal extension of c to a
future-inextendible geodesic met S in some q ∈ S , then q ≥ p. On the other hand, p ∈ H+(S) ⊆ I+(S)
implies q ∈ I+(S) ∩S , which contradicts achronality of S . Therefore, if H(S) ≠ ∅, then there exists an
inextendible null geodesic not intersecting S .
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Example 3.8.17. Let M = Sn1 (r) be de Sitter space and S ∶=M∩X , where X ⊆ Rn−11 a spacelike hypersurface.
Moreover, due to Section 2.2 every lightlike geodesic is of the form M ∩E for some degenerate hyperplane
E . The intersection is therefore a spacelike straight line hitting S . It now follows from Corollary 3.8.16 that
S is a Cauchy hypersurface and, from Lemma 3.8.6, that it is globally hyperbolic.

3.9 Hawking’s Singularity Theorem

Theorem 3.9.1 (Hawking, 1967.). Let M be n-dimensional spacetime and assume that

1. Ric(X,X) ≥ 0 for all X ∈ TM TL.

2. There exists S ⊆M spacelike Cauchy surface and there exists β > 0 such that ⟨H,ν⟩ ≥ β where

H =
1

n − 1

n−1
∑
i=1

ϵjI(ej , ej)

is the mean curvature of S and ν is a future directed unit normal vector field on S .

Then every FDTL curve starting in S has length less or equal to 1
β
. In particular, M is future directed,

timelike and geodesically incomplete.

Remark 3.9.2.

• The Hawking theorem models a ’cosmological’ situation. Applied to the past direction it gives a strong
evidence for a big bang. In the theorem, M corresponds to the spacetime (i.e. the universe) and S is
a time-slice of our universe (i.e. of the current spatial universe).

• Condition of Theorem 3.9.1. The Einstein field equations are of the form

8πT = Ric −
1

2
g ⋅ S,

where T is energy-momentum tensor and S is the scalar curvature (!). For n = 4 this implies 8π ⋅tr(T ) =
S − 1

2
4S = −S , hence

8πT = Ric + g ⋅ 4π ⋅ tr(T ).

Now for all X TL,

Ric(X,X) ≥ 0 ⇐⇒ T (X,X) ≥
1

2
tr(T )(X,X).
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This inequality is known as the strong energy condition (SEC). Here, T (X,X) is interpreted as the
energy density measured by an observer whose world line has the tangent vector X . The condition
⟨H,ν⟩ ≥ β stands for a spacelike universe which contracts at a rate at least β and so Hawking’s
theorem states that the time such universe exists is at most 1

β
, which then stands for the time a big

crunch singularity would occur at the latest.

Proposition 3.9.3 (1st and 2nd Variation of Arc Length). Let cs be the variation of TL geodesic c ∶

[a, b] → M with variational vector field V ∶= ∂cs
∂s
∣
s=0

and acceleration vector field A ∶= ∇
∂s

∂cs
∂s
∣
s=0

.

Then we have

1. d
ds
L(cs)∣

s=0
= ⟨V (a), ċ(a)∣ċ(a)∣⟩ − ⟨V (b),

ċ(b)
∣ċ(b)∣⟩.

2. d2

ds2
L(cs)∣

s=0
= ⟨A(a), ċ(a)∣ċ(a)∣⟩ − ⟨A(b),

ċ(b)
∣ċ(b)∣⟩ − ∫

b
a

1
∣ċ∣ (⟨R(ċ, V )V, ċ⟩ + ⟨

∇V
dt
, ∇V
dt
⟩ + ⟨∇V

dt
, ċ∣ċ∣⟩

2
)dt.

Proof. Let c ∶ [a, b] →M be a timelike geodesic and cs a smooth variation of c with variational vector field
V and acceleration field A.

1. For Vs =
∂cs
∂s

, we obtain

d

ds
L(cs) =

d

ds
∫

b

a

√
−⟨ċs, ċs⟩dt = ∫

b

a

−2 ⟨∇ċs
∂s
, ċs⟩

2
√
−⟨ċs, ċs⟩

dt

= −∫
b

a
⟨
∇

∂s

cs
∂t
,
ċs
∣ċs∣
⟩dt = −∫

b

a
⟨
∇

∂t

∂cs
∂s

,
ċs
∣ċs∣
⟩dt = −∫

b

a
⟨
∇Vs
∂t

,
ċs
∣ċs∣
⟩dt,

which for s = 0 provides the claim:

d

ds
L(cs)∣

s=0
= −∫

b

a
⟨
∇V

dt
,
ċ

∣ċ∣
⟩dt

= −∫
b

a
(
d

dt
⟨V,

ċ

∣ċ∣
⟩ − ⟨V,

∇

∂t

ċ

∣ċ∣
´¹¹¸¹¹¶
= 0

⟩)dt = −⟨V,
ċ

∣ċ∣
⟩ ∣

b

a

.

2. This claim follows from direct calculation of the second variation:

d2

ds2
L(cs)∣

s=0
= −

d

ds
∫

b

a
⟨
∇Vs
∂t

,
ċs
∣ċs∣
⟩dt∣

s=0

= −∫
b

a
(⟨
∇

∂s

∇Vs
∂t
∣
s=0
,
ċ

∣ċ∣
⟩ + ⟨

∇V

dt
,
∇

∂s
∣
s=0

ċs
∣ċs∣
⟩ )dt

= −∫
b

a
(⟨R(V, ċ)V +

∇

∂t

∇Vs
∂s
∣
0

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
= A

,
ċ

∣ċ∣
⟩ + ⟨

∇V

dt
,
1

∣ċ∣2
(∣ċ∣
∇ċs
∂s
∣
0

−
∂ ˙∣c∣s
∂s
∣
0

ċ)⟩)dt

= −∫
b

a
(⟨R(V, ċ)V,

ċ

∣ċ∣
⟩ +

d

dt
⟨A,

ċ

∣ċ∣
⟩ − ⟨A,

∇

dt

ċ

∣ċ∣
´¹¹¸¹¶
= 0

⟩ + ⟨
∇V

dt
,
1

∣ċ∣
+
⟨∇V
dt
, ċ⟩ ċ

∣ċ∣3
⟩)dt

= −⟨A,
ċ

∣ċ∣
⟩ ∣

b

a

− ∫
b

a
(⟨R(V, ċ)V,

ċ

∣ċ∣
⟩ +

1

∣ċ∣
⟨
∇V

dt
,
∇V

dt
⟩dt +

1

∣ċ∣3
⟨
∇V

dt
, ċ⟩

2

dt.
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Proof. See 3.9.1. Let γ be a FDTL curve from S ending in p ∈M . Then,

p ∈ I+(S) = I+(S) ∩D(S)
´¹¹¹¸¹¹¹¶
3.8.3= M

3.8.2
= D+(S)/S.

From Theorem 3.8.11 we know that there exists a TL geodesic c ∶ [0, b] →M with c(0) ∈ S , ċ(0)�S , c(b) = p,
L(c) = τ(S, p). Without loss of generality we may assume ∣ċ∣ = 1 so that L(c) = b. Therefore, it remains to
show b ≤ 1

β
. Let e ∈ Tc(0)S be a unit vector and let E be its parallel transport along c given by E(0) = e.

Furthermore, let cs be a variation of c with variation vector field

V (t) = (1 −
t

b
)E(t),

cs(0) ∈ S and cs(b) = p (Fermi coordinates allow such a choice).

Since c is the maximum of the length of TL curves from S to p, by Proposition 3.9.3, we have

0 ≥
d2

ds2
L(cs)∣

s=0
= ⟨A(0), ċ(0)⟩ − 0

´¸¶
A(b) = 0

−∫
b

0
[(1 −

t

b
)
2

⟨R(ċ, E)E, ċ⟩

+ ⟨−
1

b
E,−

1

b
E⟩ ⟨−

1

b
E, ċ⟩

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0,

e�ċ→E(t)�ċ(t), ∀t
[3],1.3.30

]dt

= ⟨(
∇

∂s

∂c

∂s
(0,0)) , ċ(0)⟩ − ∫

b

0
[(1 −

t

b
)
2

⟨R(ċ, E)E, ċ⟩ +
1

b2
]dt = (⋆).

s↦ c(0, s) is a curve in S , Z(S) ∶= ∂
∂s
c(0, s) ∈ X(c(0, ⋅)) and so, by Proposition 1.5.1

(
∇

∂s

∂c

∂s
) (0,0) = Ż(0) = Z ′(0)

´¹¹¹¸¹¹¹¶
tan. to S , �ċ(0)

+I(
∂

∂s
∣
0

c(0, s)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= V (0)

, Z(0)
´¹¸¶
= V (0)

).

Therefore,

⟨(
∇

∂s

∂c

∂s
) (0,0), ċ(0)⟩ = ⟨I(V (0), V (0)), ċ(0)⟩ ,

where ċ(0) = ν is a unit normal to S .

(⋆) = ⟨I( V (0)
´¹¸¹¶
= E(0) = e

, V (0)), ċ(0)⟩ + ∫
b

0
(1 −

t

b
)
2

⟨R(ċ, E)ċ, E⟩dt −
1

b
.
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Now for an ONB {e1, . . . , en−1} of Tc(0)S we obtain corresponding E1, . . . ,En−1 as above. By summation,

0 ≥
n−1
∑
j=1
⟨I(ej , ej), ν⟩ + ∫

b

0
(1 −

t

b
)
2

⋅
n−1
∑
j=1
⟨R(ċ, Ej)ċ, Ej⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1.2.8= Ric(ċ, ċ) ≥ 0, by 1.

dt −
n − 1

b
.

Therefore,

0 ≥ (n − 1) ⟨H,ν⟩ −
n − 1

b
2.
≥ ����(n − 1)β −

���n − 1

b
Ô⇒ b ≤

1

β
.

Example 3.9.4.

1. • Let M be an (n + 1)-dimensional Robertson-Walker spacetime.

By introduction to Section 2.4.2 (7.), Ric(ν, ν) = −n f
′′

f
for ν ∶= ∂

∂t
. For the proof of Theorem 3.9.1

we used Ric(X,X) ≥ 0 for X = ċ(t), where c was a geodesic such that ċ�S . Here, we actually
have ċ = X = ν = ∂

∂t
, so the assumption Ric(ν, ν) ≥ is equivalent to f ′′ ≤ 0 (since f is always

positive by Definition 2.4.1) i.e. to f being concave.

• From Section 2.4.1 (1.) it follows that S(X) = − ḟ
f
X i.e. S = − ḟ

f
id and so

⟨I(V,W ), ν⟩ 1.4.7= ⟨S(V ),W ⟩ =
ḟ

f
⟨V,W ⟩ ⋅ ⟨ν, ν⟩

´¹¹¸¹¶
= −1

Ô⇒ I(V,W ) = ⟨S(V ),W ⟩ =
ḟ

f
⟨V,W ⟩ν.

Now,

H =
1

n − 1

n−1
∑
j=1

I(ej , ej) =
1

n − 1

n−1
∑
j=1
⟨ej , ej⟩
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
= 1

ḟ

f
ν = (

ḟ

f
) ⋅ ν,

implying

⟨H,ν⟩ =
ḟ

f
⟨ν, ν⟩
´¹¹¸¹¶
= −1

= −
ḟ

f
≥ β ⇐⇒ −β ≥

ḟ

f
(t0) (S = {t0} ×N).

2. Let M be n-dimensional Minkowski space.

• Ric ≡ 0.

• Consider S ∶= −Hn−1(r) where

Hn−1(r) ∶= {x ∈M ∶ ⟨x,x⟩ = −r2, x0 > 0}.
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By Proposition 2.3.2 (4.)

I(V,W ) = −
1

r
⟨V,W ⟩ν.

For any p ∈ S , ν = − 1
r
⋅ p so H(p) = 1

n−1 ∑ I(ei, ei)
⟨ei,ei⟩=1
= 1

r2
⋅ p. Therefore,

⟨H(p), ν⟩ = −
1

r3
⟨p, p⟩
´¹¸¹¶
= −r2

=
1

r
=∶ β.

On the other hand, we know that the maximal timelike geodesics that start in S have infinite
length. The reason for this is that S is not a Cauchy hypersurface in M , but it is in D(S) = I−(0),
where the maximal timelike geodesics that start in S indeed have the maximal length r = 1

β
.

3.10 Penrose’s Singularity Theorem

While Hawking’s theorem models a cosmological scenario, providing evidence for the occurrence of a
big bang or crunch, Penrose’s theorem is tailored for a gravitational collapse situation. We begin by exam-
ining the ’initial condition,’ specifically the concept of a trapped surface, a fundamental idea introduced in
Penrose’s 1965 paper, which initiated the study of singularity theorems. Unlike Hawking’s case, we will now
focus on spacelike, codimension 2 submanifolds. Our aim is to demonstrate that when both incoming and
outgoing perpendicular null geodesics converge, gravity becomes very strong, to the extent that even light
cannot escape.

Lemma 3.10.1. We call a spacelike submanifold P ⊆M a future trapped surface if one of the following
equivalent conditions holds:

1. H is PDTL on P .

2. k(X) ∶= ⟨H,X⟩ > 0 for all X ∈ TP FD null. We call k(X) the convergence of X .

3. k(X) = ⟨H,X⟩ > 0 for all X ∈ TP FD causal.

Proof. We work pointwise. Let p ∈ P , choose coordinates so that g(p) = ⟪⋅, ⋅⟫ and apply L-transformation
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such that H = −ce0 (for c > 0).

(1.→ 3.)

(3.→ 2.) Clear.

(2.→ 1.)

Definition 3.10.2. A closed and achronal set A ⊆M is called future-trapped if its future horismos

E+(A) ∶= J+(A)/I+(A)

is compact. Analogously, A is called past-trapped E−(A) ∶= J−(A)/I−(A).

Example 3.10.3.
For

(M,g) ∶= (R × S1,−dt2 + dθ2),

the subset A ∶= {p} is both future- and
past-trapped.

Remark 3.10.4.

1. If A is future-trapped, then A is compact. Indeed, A ⊆ J+(A) and A∩I+(A) = ∅ (since A is achronal).
Therefore, A ⊆ J+(A)/I+(A) is compact (since it is closed and J+(A) compact).
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2. E+(A) is achronal. To see this, let p ∈ I+(E+(A)) = I+(J+(A)/I+(A)) ⊆ I+(J+(A)) 3.1.8
= I+(A). Then

p ∉ E+(A) and I+(E+(A)) ∩E+(A) = ∅ i.e. E+(A) is achronal.

Lemma 3.10.5. Let M be an n-dimensional Lorentzian manifold, p ∈M , l ∈ TpM null, e1, . . . , en−2 ∈
TpM spacelike and orthonormal with ej�l for all j . Then

Ric(l, l) =
n−2
∑
j=1
⟨R(ej , l)ej , l⟩ .

Proof. Extend e1, . . . , en−2 to an ONB e1, . . . , en so that en−1 is spacelike, en TL and en−1 + en ∝ l. Then,

Ric(l, l) 1.2.8
=

n−1
∑
j=1

ϵj
´¸¶
= +1

⟨R(ej , l)ej , l⟩ + ϵn
´¸¶
= −1

⟨R(en, l)en, l⟩ .

We need to show that
⟨R(en1 , l)en−1, l⟩ − ⟨R(en, l)en, l⟩ = 0.

Since en−1 + en is a multiple of l,

⟨R(en−1 + en, l)en−1, l⟩ = 0 and ⟨R(en−1 + en, l)en, l⟩ = 0.

Subtracting the second equation from the first one we get

⟨R(en−1 + en, l)(en−1 − en), l⟩ = 0,

which proves the claim since ⟨R(en−1 + en, l)(en−1 − en), l⟩ = ⟨R(en−1, l)en−1, l⟩ + ⟨R(en, l)en−1, l⟩ −
⟨R(en−1, l)en, l⟩ − ⟨R(en, l)en, l⟩ = 0, where ⟨R(en, l)en−1, l⟩ − ⟨R(en−1, l)en, l⟩ = 0 by pair symmetry (cf.
introduction to Section 1.1).

Proposition 3.10.6. Let M be a Lorentzian manifold, P ⊆M a spacelike submanifold of codimension
2 and c ∶ [0, b] →M a null geodesic starting in p ∈ P with ċ(0)�P . If

• Ric(ċ(t), ċ(t)) ≥ 0 for all t ∈ [0, b] and

• ⟨Hp, ċ(0)⟩ ≥
1
b
,

then c has a focal point in (0, b].

Proof. Suppose that c has no focal point.

1. Let e1, . . . , en−2 be an ONB of TpP and consider Jacobi fields Ji (1 ≤ i ≤ n−2) along c determined by
the initial values Ji(0) = ei and ∇

dt
Ji(0) = Ĩ(ei, ċ(0)). (according to Lemma 3.2.12, Ji is even a P-JF).

In addition, let J0(t) ∶= t ⋅ ċ(t) be the Jacobi field given by J0(0) = 0 and J ′0(0) = ċ(0) (cf. Example
3.2.10).

2. We show that J0(t), . . . , Jn−2(t) are a basis of ċ(t)� for all t ∈ (0, b].

• ċ(t) being null implies that J0(t)�ċ(t) for all t.
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• Ji(t)�ċ(t) for all t and for all 1 ≤ i ≤ n − 2:

⟨Ji, ċ⟩ ∣t=0 = ⟨ei, ċ(0)⟩ = 0,

d

dt
∣
0

⟨Ji, ċ⟩ = ⟨J ′i , ċ⟩ ∣t=0 = ⟨

tangential to P

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Ĩ(ei, ċ(0)) , ċ(0)
´¸¶
�P

⟩ = 0,

d2

dt2
⟨Ji, ċ⟩ = ⟨J ′′i , ċ⟩

Ji JF
= ⟨R(Ji, ċ)ċ, ċ⟩ = 0, ∀t.

Therefore,
⟨Ji, ċ⟩ = ⟨Ji, ċ⟩ ∣0 + t ⟨Ji, ċ⟩

′
= 0 + 0 = 0.

• J0, J1, . . . , Jn−2 are linearly independent for all t ∈ (0, b]. In order to see this, assume there
exists t0 ∈ (0, b] where they are linearly dependent. Then there exist some α0, . . . , αn−2 ∈ R not
all equal to zero, such that

n−2
∑
i=1

αiJi(t0) = 0.

This provides a non-trivial Jacobi field J ∶= ∑n−2i=0 αiJi satisfying:

J(0) =
n−2
∑
i=1

αiei ∈ TpP,

J(t) = 0,

tan(J ′(0)) = tan(
n−2
∑
i=1

αiĨ(ei, ċ(0)) + α0ċ(0)) = tan(Ĩ(J(0), ċ(0))).

Therefore, by Lemma 3.2.12, J is a P-JF and J(t0) = 0. t0 is thus a focal point, contradicting the
initial assumption.

3. We now claim ⟨J ′i(t), Jj(t)⟩ = ⟨Ji(t), J
′
j(t)⟩ for all i, j and for all t.

d

dt
(⟨J ′i , Jj⟩ − ⟨Ji, J

′
j⟩) = ⟨J

′′
i , Jj⟩ − ⟨Ji, J

′′
j ⟩

3.2.7
= ⟨R(Ji, ċ)ċ, Jj⟩ − ⟨Ji,R(Jj , ċ)ċ⟩

pair sy.
= 0.

For t = 0 and i, j ≥ 1

⟨J ′i(0), Jj(0)⟩ − ⟨Ji(0), J
′
j(0)⟩

1.
= ⟨Ĩ(ei, ċ(0)), ej⟩ − ⟨Ĩ(ej , ċ(0)), ei⟩

1.6.9,3.
= − ⟨I(ei, ej), ċ(0)⟩ + ⟨I(ej , ei), ċ(0)⟩

I is sym.
= 0,

and moreover,

⟨J ′0(0), Jj(0)⟩ − ⟨

= 0

³¹¹¹·¹¹¹µ
J0(0), J

′
j(0)⟩

1.
= ⟨ċ(0), ej⟩ − 0 = 0.

4. Let V ∈ X(c), V (t)�ċ(t) for all t, V (0) ∈ TpP , V (b) = 0. Then,

∫
b

0
(⟨V ′, V ′⟩ − ⟨R(ċ, V )ċ, V ⟩)dt − ⟨ċ(0), I(V (0), V (0))⟩ ≥ 0

with equality if and only if V is parallel to c. By 2., there exist unique smooth functions fi ∶ (0, b] → R
with

V (t) =
n−2
∑
i=0

fi(t)Ji(t), ∀t ∈ (0, b].
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Set X ∶= ∑n−2i=0 f
′
iJi and Y ∶= ∑n−2i=0 fiJ

′
i . Then V ′ =X + Y and

d

dt
⟨V,Y ⟩ = ⟨V ′, Y ⟩ + ⟨V,Y ′⟩

= ⟨X,Y ⟩ + ⟨Y,Y ⟩ + ⟨V,Y ′⟩

= ⟨X,Y ⟩ + ⟨Y,Y ⟩ +
n−2
∑
i,j=0
⟨fjJj , f

′
iJ
′
i⟩ + ⟨V,

n−2
∑
i=0

fiR(Ji, ċ)ċ⟩

3.
= ⟨X,Y ⟩ + ⟨Y,Y ⟩ +

n−2
∑
i,j=0

fjf
′
i ⟨J

′
j , Ji⟩ + ⟨V,R(V, ċ)ċ⟩

= ⟨X,Y ⟩ + ⟨Y,Y ⟩ +
n−2
∑
i,j=0

fjf
′
i ⟨J

′
j , Ji⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= ⟨X,Y ⟩

−⟨R(V, ċ)V, ċ⟩

= 2 ⟨X,Y ⟩ + ⟨Y,Y ⟩ − ⟨R(V, ċ)V, ċ⟩

= ⟨X + Y,X + Y ⟩ − ⟨X,X⟩ − ⟨R(V, ċ)V, ċ⟩

= ⟨V ′, V ′⟩ − ⟨X,X⟩ − ⟨R(V, ċ)V, ċ⟩

for ϵ > 0 implies

∫
b

ϵ
⟨X,X⟩dt = ∫

b

ϵ
(⟨V ′, V ′⟩ − ⟨R(V, ċ)V, ċ⟩ −

d

dt
⟨V,Y ⟩)dt

V (b)=0
= ∫

b

ϵ
(⟨V ′, V ′⟩ − ⟨R(V, ċ)V, ċ⟩)dt + ⟨V (ϵ), Y (ϵ)⟩

Note that in addition to basis of ċ(t)� for t ∈ (0, b]

J0(t), J1(t), . . . , Jn−2(t),

we can find a further basis, namely

1

t
J0(t) = ċ(t), J1(t), . . . , Jn−2(t).

This is a basis of ċ(t)� also for t = 0 (at t = 0 this is equal to ċ(0), e1, . . . , en−1, . . . , which is ONB by
assumption). Hence, tf0(t), f1(t), . . . , fn−2(t) extends continuously to t = 0. Now

V (t) =
n−2
∑
i=0

fi(t)Ji(t) = t ⋅ f0(t)ċ(t) +
n−2
∑
i=1

fi(t)Ji(t)
t→0
Ð→ V (0),

since V ∈ X(c). V (0) ∈ TpP so it has no ċ(0)-component, implying t ⋅ f0(t) Ð→ 0 (as t → 0), which
yields

V (0) =
n−2
∑
i=1

fi(0)Ji(0) =
n−2
∑
i=1

fi(0)ei.

⟨V (ϵ), Y (ϵ)⟩ = ⟨V (ϵ), f0(ϵ)ċ(ϵ) +
n−2
∑
i=1

fi(ϵ)J
′
i(ϵ)⟩

V (t)�ċ(t)
= ⟨V (ϵ),

n−2
∑
i=1

fi(ϵ)J
′
i(ϵ)⟩

ϵ→0
Ð→ ⟨V (0),

n−2
∑
i=1

fi(0)J
′
i(0)⟩

⟨V (0),
n−2
∑
i=1

fi(0)J
′
i(0)⟩

1.
= ⟨V (0),

n−2
∑
i=1

fi(0)Ĩ(ei, ċ(0))⟩ = ⟨V (0), Ĩ(V (0), ċ(0))⟩

= − ⟨I(V (0), V (0)), ċ(0)⟩ ,
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hence,

∫
b

0
(⟨V ′, V ′⟩ − ⟨R(V, ċ)V, ċ⟩)dt − ⟨ċ(0), I(V (0), V (0))⟩ = lim

ϵ→0
∫

b

ϵ
⟨X,X⟩dt.

X is a linear combination of the J ′is, which implies that X�ċ and so X cannot be TL. Therefore,
⟨X,X⟩ ≥ 0 for all t > 0, which proves the inequality in 4. Equality holds if and only if ⟨X,X⟩ (t) = 0 for
all t. In other words, if X is null for all t—that is, if X is proportional to ċ—then equality holds if and
only if ḟ1 = ⋅ ⋅ ⋅ = ḟn−2 = 0. Moreover, V (b) = 0 implies f1(b) = ⋅ ⋅ ⋅ = fn−2(b) = 0, where equality holds
if and only if f1 = ⋅ ⋅ ⋅ = fn−2 = 0. This equivalence occurs if and only if V (t) = t ⋅ f0(t)ċ(t), in other
words, if and only if V is parallel to ċ.

5. Let e ∈ TpP be a unit vector and E its parallel transport along c. Set V (t) ∶= (1 − t
b
)E(t). Then V

satisfies the assumptions of 4. but is not tangential on c, hence

0 < ∫
b

0
(⟨V ′, V ′⟩ − ⟨R(V, ċ)V, ċ⟩)dt − ⟨ċ(0), I(V (0), V (0))⟩

= ∫
b

0
(⟨−

1

b
E,−

1

b
E⟩ − (1 −

t

b
)
2

⟨R(E, ċ)E, ċ⟩)dt − ⟨ċ(0), I(e, e)⟩

=
1

b
− ∫

b

0
(1 −

t

b
)
2

⟨R(E, ċ)E, ċ⟩dt − ⟨ċ(0), I(e, e)⟩ .

Now set e = ei (1 ≤ i ≤ n − 2) and sum over i:

0
3.10.5
<

n − 2

b
− ∫

b

0
(1 −

t

b
)
2

Ric(ċ, ċ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
≥ 0

dt − (n − 2) ⟨ċ(0),H(p)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥ 1
b

≤ 0,

which is a contradiction.

Proposition 3.10.7 (Trapped Sets from Trapped Surfaces). Let P ⊆M be a compact achronal space-
like sub-manifold of codimension 2 which is a future-trapped surface (H is past pointing TL). Let M
be future null complete with Ric(X,X) ≥ 0 for all X ∈ TM null. Then P is a future trapped set.

Proof.

a) Pick some Riemannian metric h on M and set

P̃ ∶= {X ∈ NP ∶ X is null FD and h(X,X) = 1} .

Then π ∶ NP → P turns P̃ into a two-fold covering of P and so P̃ is compact.
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More directly, both h(X,X) = 1 and X null are closed conditions. Let Z is a TL vector field inducing
the time orientation of M . Then X is FD if and only if ⟨X,Z⟩ < 0, which is the case if and only if
⟨X,Z⟩ ≤ 0. Thus, FD is a closed condition, implying P̃ is compact, as P is compact.

b) Let X ∈ P̃ . Then, by Lemma 3.10.1, ⟨H(π(X)),X⟩ > 0 and so there exists b > 0 such that
⟨H(π(X)),X⟩ ≥ 1

b
for all X ∈ P̃ . M is future null complete, so t ↦ cX(t) ∶= exp(tX) is defined

for all t ≥ 0. In particular, cX is defined on [0, b] and, by Proposition 3.10.6, cX has a focal point in
(0, b].

c) E+(P ) is relatively compact. To see this, let q ∈ E+(P ) = J+(P )/I+(P ). Since q ∈ J+(P ) there
exists a causal curve c from P to q and since q ∉ I+(P ), c is a null geodesic without a focal point
before q and ċ(0)�P . Therefore, c = cX for some X ∈ P̃ and so q = cX(t) for some t ∈ (0, b], hence
E+(P ) ⊆ exp({tX ∶ 0 ≤ t ≤ b,X ∈ P̃}) =∶K is compact.

d) E+(P ) is closed. Indeed, let (qn)n∈N be a sequence in E+(P ), qn → q. Therefore, q ∈K ⊆ J+(K). Sup-
pose q ∈ I+(p), then qn ∈ I+(P ) for n large but qn ∈ E+(P ) = J+(P )/I+(P ), which is a contradiction.
Therefore, q ∈ J+(P )/I+(P ) = E+(P ) and so E+(P ) is compact.

Lemma 3.10.8. Let K ⊆M be compact and M globally hyperbolic. Then J±(K) is closed.

Proof. Let (pn) ∈ J+(K), pn → p in M . We need to show that p ∈ J+(K). There exist qn ∈ K such that
qn ≤ pn and so, since K is compact, without loss of generality qn → q ∈ K . ≤ is closed by Proposition 3.6.9,
so q ≤ p, implying p ∈ J+(q) ⊆ J+(K).

Theorem 3.10.9 (Penrose 1965.). Let M be a spacetime with:

1. Ric(X,X) ≥ 0 for all X ∈ TM null.

2. There exists a non-compact Cauchy surface S ⊆M .

3. There exists future trapped spacelike submanifold P of codimension 2 (by definition, P is
compact, spacelike and achronal submanifold with H past pointing TL).

Then M is not future null complete.

Proof. Assume indirectly that M is future null complete.

1. E+(P ) is an achronal compact C0-hypersurface. Indeed, S is a Cauchy surface and, therefore ac-
cording to Lemma 3.8.6, M is globally hyperbolic. As P is compact, Lemma implies J+(P ) is closed.
Therefore,

E+(P ) = J+(P )/I+(P ) = J+(P )/J+(P )○ = ∂J+(P ).

J+(P ) is a future set, J+(P ) ≠ ∅ and J+(P ) ≠M . If J+(P ) =m then let q ∈ I−(P ). Now, p1 ≫ q ≥ p2
and so p1 ≫ p2 , which is a contradiction with P being achronal. Corollary now yields that ∂J+(P ) is
a closed achronal C0-hypersurface and Proposition 3.10.7 that E+(P ) = ∂J+(P ) is compact.

2. E+(P ) ≠ ∅. To this end, suppose E+(P ) = ∅. Then, ∅ = ∂J+(P ) and so I+(P ) = J+(P )○ = J+(P ) =
J+(P ) is open, closed nonempty (since P ≠ ∅). Thus, I+(P ) =M ⊇ P , which is a contradiction to P
being achronal.

3. Let ρ ∶ ∂J+(P ) → S be the map defined by the flow of a TL vector field, as in Theorem 3.5.24. Then
ρ is well-defined and ∂J+(P ) is achronal so ρ is injective, implying that ρ is a continuous injective
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map between C0-hypersurfaces. Since both ∂J+(P ) and S are topological manifolds of dimension
n − 1, Theorem 3.5.10 implies that ρ is open and so ρ(∂J+(P )) is open in S . As ∂J+(P ) is compact,
ρ(∂J+(P )) is compact as well and, therefore, closed in S . M is connected and, by Theorem 3.5.24,
S is connected as well so, ρ(∂J+(P )) = S . Therefore, S is compact, which is a contradiction to our
assumption from the beginning.

3.11 Characterization of Global Hyperbolicity

Theorem 3.11.1 (Nomizu/Ozeki). On any connected C∞-manifold M there exists a complete Rieman-
nian metric.

Proof. Let h be any Riemannian metric on M . We construct a proper C∞ -function ρ ∶M → R (so, ρ−1(K)
compact for all K ⊆ R compact). Let (χi)i∈N be a partition of unity such that supp(χ) ⋐M for all i and set

ρ ∶=
∞
∑
i=1
i ⋅ χi.

Then ρ ∈ C∞(M) and, if ρ(x) ∈ [−i, i], then χj(x) ≠ 0 at most for j = 1, . . . , i, implying that

ρ−1([−i, i]) ⊆
i

⋃
j=1

supp(χj) ⋐M

i.e. that ρ is proper. Now set
g ∶= h + dρ⊕ dρ.

g is then a Riemannian metric and, by Hopf-Rinow Theorem (cf. Theorem 2.4.2 in [3]), in order to show that
g is complete, it suffices to show that any dρ-bounded and closed subset of M is compact. To this end, let
γ ∶ [a, b] →M be C∞ . Then,

Lg(γ) = ∫
b

a
(h(γ̇, γ̇) + (

d

dt
(ρ ○ γ))

2

)

1
2

dt ≥ ∫
b

a
∣
d

dt
(ρ ○ γ)∣dt ≥ ∣∫

b

a

d

dt
(ρ ○ γ)dt∣ = ∣ρ(γ(b)) − ρ(γ(a))∣

and so
∀p, q ∈M, ∣ρ(p) − ρ(q)∣ ≤ dg(p, q). (3.11.1)

Let C ⊆M be closed and bounded. Then C ⊆ ρ−1( ρ(C)
´¹¸¹¶

⊆K ⋐ R, by (3.11.1)

) is compact in M (ρ proper!) and so C

is compact.

Proposition 3.11.2. Let (M,g) be a spacetime with a smooth spacelike Cauchy hypersurface S . Then
M is diffeomorphic to R × S .

• If S′ is another C∞ spacelike Cauchy hypersurface, then S and S′ are diffeomorphic.

• If S is merely a Cauchy hypersurface, then M is homeomorphic to R × S .



CHAPTER 3. CAUSALITY 133

Proof.

• S is C∞ . Let T1 ∈ X(M) be TL, h a complete Riemannian metric on M (see Theorem 3.11.1). Set

T ∶= T1/ ∥T1∥h .

Then T is complete. Indeed, let γ be an integral curve of T with maximal domain (t−, t+) and suppose,
for example, t+ < ∞. Then γ∣[0,t+) has length

∫
t+

0
∣ γ̇(t)
´¸¶
T (γ(t))

∣hdt = t+ < ∞

and so, since h is complete, γ remains in a compact set (see Theorem 2.4.2 in [3]). But, for t → t+ , γ
has to leave any compact set, which is a contradiction. Therefore, t+ = ∞. FlT ∶ R×M →M and FlT is
C∞ and, similarly, t− = −∞. Thus, FlT ∶ R×M →M and FlT is C∞ . Let now f ∶= Fl∣R×S , f ∶ R×S →M .
Then f ∈ C∞ and f is bijective by Theorem 3.5.24. We show that f is a diffeomorphism. In order to do
that, it suffices to show T(t0,x0)f is surjective for all (t0, x0) ∈ R × S (which, at the same time, proves
bijectivity). Let ϕ ∶M →M , where ϕ(p) ∶= FlT−t0(p). Then ϕ is a diffeomorphism and so is enough to
show that T(t0,x0)(ϕ ○ f) is surjective. Now,

(ϕ ○ f)(t, x) = FlT−t0(FlTt (x)) = FlTt−t0(x). (3.11.2)

Let v ∈ Tx0S and let c ∶ I → S C∞ , c(0) = x0 , c′(0) = v. Then, γ ∶= t ↦ (t0, c(t)) is C∞ , γ(0) = (t0, x0),
γ′(0) = (0, v). Therefore,

(ϕ ○ f ○ γ)(t) = (ϕ ○ f)(t0, c(t))
(3.11.2)
= FlT0 (c(t)) = c(t)

and

v = c′(0) =
d

dt
∣
0

(ϕ ○ f ○ γ)(t) = T(t0,x0)(ϕ ○ f)(γ
′(0)) ∈ im(T(t0,x0)(ϕ ○ f)),

implying Tx0S ⊆ im(T(t0,x0)(ϕ ○ f)). For

c(t) ∶= (t0 + t, x0)

c′(0) ∈ T(t0,x0)(R × S) and

(ϕ ○ f)(c(t)) = (ϕ ○ f)(t0 + t, x0)
(3.11.2)
= Flxt (x0), (3.11.3)

implying

T(t0,x0)(ϕ ○ f)(c
′(0)) =

d

dt
∣
0

(ϕ ○ f)(c(t))
(3.11.3)
= T (Flx0(x0)

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
= x0

) = T (x0).

Therefore,
im(T(t0,x0)(ϕ ○ f)) ⊇ span({T (x0)} ∪ Tx0S) = Tx0M

so T(t0,x0)(ϕ ○ f) is indeed surjective and f ∶ R × S → M a diffeomorphism. If S′ is another C∞

spacelike Cauchy hypersurface, then, as in Theorem 3.5.24, consider the mappings π ∶ R × S → R,
where π(t, x) = x, and ρ ∶ S′ → S , where ρ(x) = (π ○f−1)(x). It follows that ρ is C∞ , and, by symmetry,
ρ−1 is also C∞ . Thus, ρ ∶ S′ → S is a diffeomorphism.

• S is only a Cauchy surface. Again, let f ∶ R × S → M , where f(t, x) ∶= FlTt (x). Then, according to
Theorem 3.5.24, f is a homeomorphism.
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Lemma 3.11.3. Let M be globally hyperbolic and K1,K2 ⊆ M compact. Then J+(K1) ∩ J
−(K2) is

compact.

Proof. Let qn ∈K+(K1) ∩ J
−(K2). Then there exist pn,i ∈Ki such that pn,1 ≤ qn ≤ pn,2 . Ki are compact so,

without loss of generality, we can assume pn,i → pi ∈Ki (i = 1,2). Let ri ∈M (i = 1,2) be such that r1 ≪ p1
and p2 ≪ r2 . Then r1 ≪ qn ≪ r2 for n large, implying qn ∈ J+(r1) ∩ J−(r2), which is compact. Thus, there
exists a convergent sequence, without loss of generality qn → q. ’≤’ is closed and so p1 ≤ q ≤ p2 , implying
q ∈ J+(K1) ∩ J

−(K2).

Remark 3.11.4 (Integration on M ). Recall from analysis surface integral of a function f , where S ∶ Ω → Rn
for Ω ⊆ Rn:

∫
S
f(y)dS(y) ∶= ∫

Ω
f(S(y))

√
G(DS(y))dy

(see Forster, Analysis, Vol. 3).
Here G(DS) = G(∂y1S, . . . , ∂ymS) = det(⟨∂yiS, ∂yjS⟩)

m
i,j=1 is Gramian determinant. Since (y1, . . . , ym) ↦

S(y1, . . . , ym) is a parametrization of S , G(DS) = det ⟨∂yi , ∂yj ⟩ = detgi,j .
If (M,g) is a SRMF and (x1, . . . , xn, U) a chart with g∣U = g(∂xi , ∂xj)dxi ⊗ dxj , we set

d ⋅ volUg ∶=
√
∣det gi,j ∣.

Then, if ((y1, . . . , yn), V ) is another chart,

d ⋅ volVg =
√
∣detg(∂yi , ∂yj)∣ = ∣det(

∂xk

∂yi
∂xk,

∂xl

∂yj
∂xl) ∣

1
2

= ∣det
∂xk

∂yi
∣
√
∣det(∂xk , ∂xl ∣) = ∣detD(ψU ○ ψ

−1
V )∣ ⋅ d ⋅ volUg

Therefore, if we set for f ∈ C∞c (U)

∫
M
f ⋅ d ⋅ volg ∶= ∫

ψU (U)
(f ⋅ d ⋅ volUg ) ○ ψ

−1
U d(x

1, . . . , xn)

this gives a well-defined integral. We can extend it, via partitions of unity, to f ∈ C∞c (M) as in [2]. If
{(ψU , U)} is oriented, d ⋅ volg can be viewed as an n-form:

d ⋅ volg ∣U =
√

detg(∂xi , ∂xj)dx1 ∧ ⋅ ⋅ ⋅ ∧ dxn.

Otherwise, d ⋅ volg is still well-defined, a so-called 1-density.

Theorem 3.11.5. Let (M,g) be globally hyperbolic and oriented. Then there exists τ ∶ M → R
continuous and surjective such that τ is strictly increasing along all causal curves. If γ ∶ (t−, t+) →M
is causal and inextendible, then τ(γ(t)) → ±∞ as t → t±∓. Analogous statements hold for γ only
future/past inextendible. In particular, τ−1(a) (for a ∈ R) is an acausal Cauchy hypersurface.

Proof. Fix some Riemannian metric h on M . Let (χi) be a partition of unity on M with supp(χ) compactly
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contained in a chart domain. For a fixed i, let (U,x) be such a chart and set

mi ∶= ∫ χi ⋅ dµh
,

where µh =
√
det(hi,j)dx

1 ∧ ⋅ ⋅ ⋅ ∧ dxn . Now set

ω ∶=
∞
∑
i=1

1

mi2i
χiµh ∈ Ω

n(M)

and let Λ ∶ Cc(M) → R, where Λ(f) ∶= ∫M f ⋅ ω. Then Λ is a positive linear functional (i.e. if f ≥ 0, then
Λ(f) ≥ 0) and so, by Riesz Theorem (see in Elstrod, for example), there exists a positive Borel measure µ
with Λ(f) = ∫M fdµ for all f ∈ Cc(M). Let hi ∶= ∑

i
j=1 χj . Then, hi ↗ 1 and so, by monotone convergence

from measure theory,

∫
M

1dµ

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
µ(M) = 1

= lim
i→∞∫M

hidµ = lim
i→∞∫M

hi ⋅ ω = lim
i→∞

i

∑
j=1

1

2j
= 1.

Thus, µ is probability measure on M .

1. If U is open and nonempty, then µ(U) > 0. To see this, let ϕ ∈ C∞c (U) such that ϕ ≡ 1 on some
compact K ⊆ U and 0 ≤ ϕ ≤ 1. Then, 0 < ∫M ϕ ⋅ ω = ∫M ϕdµ ≤ ∫U dµ = µ(U).

2. Let p ∈M , then for C+p ∶= J
+(p)/I+(p) we have that µ(C+p ) = 0. Indeed, if q ∈ C+p then by Avez-Seifert

Theorem , there exists a causal geodesic γ from p to q. If γ were not null, then q ∈ I+(p), which is
a contradiction. Therefore, there exists v ∈ C+ ⊆ TpM such that q = expp(v) and so C+p ⊆ expp(C

+).
But, C+ is a null set in TpM and expp is C∞ so Lipschitz now implies that µ(C+p ) ≤ µ(expp(C

+)) = 0.
Analogously, µ(C−p ) = 0. Set f−(p) ∶= µ(J−(p)), or f+(p) ∶= µ(J+(p)).

3. f± is continuous. First let pj → p so that pj ≪ p. Then J−(pj) ⊆ J−(p) implies that f−(pj) ≤ f−(p). By
2., f−(p) = ∫M χI−(p)dµ and so

lim
j→∞

χI−(pj) = χI−(p).

If q ∈ I−(p), then q ∈ I−(pj) for j large (I+(q) is a neighborhood of p, implying that for all j ≥ j0
pj ∈ I

+(q)). By dominated convergence, f−(pj) → f−(p). Next let pj → p and pj ≫ p. Then, be any
sequence with pj → p and let ϵ > 0. Then

lim
j→∞

χJ−(pj) = χJ−(p).

Indeed, in order to see this it suffices to to show that if q ∉ J−(p), then q ∉ J−(pj) for j large. Assume
there exists a subsequence pjk with q ∈ J−(pjk), q ≤ pjk . Then, as ’≤’ is closed, q ≤ p, which is a
contradiction. Therefore, by dominated convergence, f−(pj) → f−(p). Finally, let pj be any sequence
with pj → p and let ϵ > 0. Then there exist exist q1, q2 such that q1 ≪ p≪ q2 with

f−(p) ≤ f−(q2) ≤ f−(p) + ϵ

and
f−(p) − ϵ ≤ f−(q1) ≤ f−(p).

For large j , q1 ≪ pj ≪ q2 , so

f−(p) − ϵ ≤ f−(q1) ≤ f−(pj) ≤ f−(q2) ≤ f−(p) + ϵ.

Thus, f− is continuous. Analogously, f+ is continuous. Also, f±(p) > 0 for all p by 1., since J±(p)
contains open sets different from the empty set.
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4. f− is strictly increasing, while f+ strictly decreasing along causal curves. Indeed, let p < q then, since
M is causal, q /< p and so q ∉ J−(p). Therefore, there exists a neighborhood U of q with U ∩J−(p) = ∅.
The set J−(q)∩U contains a non-empty open set I−(q)∩U , implying that f−(p) < f−(q). Analogously,
f+(q) < f+(p).

5. Let γ ∶ [0, a) → M be causal and future inextendible. Then, f+(γ(t)) ↗ 0 as t ↗ a. In order to see
this, let K ⊆M be compact. We show that Kt ∶= J

+(γ(t)) ∩ J−(K) = ∅ for t large. By Lemma 3.11.3,
Kt is compact. Let now C ∶=K0 ∪{γ(0)}. Then K0 compact and γ starts in C . By Lemma 3.6.3, there
exists a t0 such that γ(t) ∉ C for all t > t0 . Therefore, γ(t) ∉ J−(K) for all t > t0 , as γ(t) ∈ J+(γ(0))
for all t ≥ 0. Kt = ∅ for t > t0 . Indeed, if q ∈ Kt , then there exists k ∈ K such that k ≥ q ≥ γ(t) and so
γ(t ∈ J−(K)), which is a contradiction. For any i ≥ 1, set

Ci ∶=
i

⋃
j=1

suppχi.

By construction, µ(M/Ci) ≤ 2−i . Since J+(γ(t)) ∩Ci ⊆ J+(γ(t) ∩ J−(Ci)) = ∅ for t large,

f+(γ(t)) = ∫
J(γ(t))

dµ = µ(J+(γ(t))) ≤ µ(M/Ci) ≤ 2
−i.

Therefore, f+ ○ γ(t) → 0 for t → b− . Analogously, if γ ∶ (a,0] → M is causal and past inextendible,
f−(γ(t)) → 0 for t→ a+ . Finally, let τ ∶M → R, τ(p) ∶= ln f−(p)

f+(p) . f is continuous and strictly increasing
along any FD causal curve. If γ ∶ (a, b) →M causal and inextendible, then

(τ ○ γ)(t) →

⎧⎪⎪
⎨
⎪⎪⎩

−∞, t→ a+

+∞, t→ b−.

Indeed, fix t0 ∈ (a, b). Then:

f−(γ(t))

f+(γ(t))

t≥t0
≥

f−γ(t)

f+γ(t)
Ð→∞ (as t→ b−),

f−(γ(t))

f+(γ(t))

t≥t0
≤

f−γ(t)

f+γ(t)
Ð→ 0 (as t→ a+).

6. Since any inextendible causal curve meets τ−1(a) exactly once τ−1(a) is an acausal Cauchy hyper-
surface.

Lemma 3.11.6. Let V ⊆ U ⊆ Rn be open. Let f ∈ C∞(U), f(x) > 0 for all x ∈ V , f(x) = 0 for all
x ∈ ∂V ∩U . Set

h(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

e−
1

f(x) , x ∈ V

0, x ∉ V
.

Then h ∈ C∞(U).

Proof. If x ∈ V or x ∈ U/V , then h is C∞ in a neighborhood of x. If x ∈ ∂V ∩U and xj → x, then f(xj) → 0
and h(xj) → 0 = h(x). Therefore, h ∈ C0(U). For x ∈ V , any derivative of h can be expressed as a sum of
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terms, each taking the form of a smooth factor multiplied by

r(x) =
1

f(x)k
exp(−

1

f(x)
) ,

which goes to 0 as x tends to ∂V . We can thus extend r continuously to U/V by setting it 0 there. We now
need to show that this extension is differentiable at any x ∈ ∂V and has derivative 0 i.e. that

∀x ∈ ∂V, ∀v ∈ Rn lim
t→0,t≠0

r(x + tv) − r(x)

t
= 0. (3.11.4)

r(x) = 0, so (3.11.4) is equal to 0, unless x + tv ∈ V . ∑ 1
k!tk
= e

1
t and so

1

k!tk
≤ e

1
t , ∀k Ô⇒ e−

1
t ≤ k!tk Ô⇒

1

tk+2
e−

1
t ≤ (k + 2)!.

Therefore,

∣
r(x + tv)

t
∣ ≤ (k + 2)!

f2(x + tv)

∣t∣
Ð→ 0

since f is C∞ and f(x) = 0. r is differentiable at every x ∈ ∂V and, therefore, on all of U . Thus, h ∈ C∞(U).

Remark 3.11.7. As in the Remark 3.6.4, let expp ∶ Ũ → U be a diffeomorphism, U a normal neighborhood,

q̃ ∶ TpM → R, q̃(v) = ⟨v, v⟩gp and q = q̃ ○ exp−1p ∶ U → R. We have that V ∶= I+U(p)
3.1.13
= exp(I+(0) ∩ Ũ) is

open in U and that q(x) < 0 for all x ∈ V . Now set

f(y) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

e
1

q(y) , y ∈ V

0, y ∈ U/V.
(3.11.5)

By Lemma 3.11.6, f ∈ C∞(U). Moreover,

grad(f) = −
1

q2
f ⋅ grad(q)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
= 2P

when f ≠ 0 (see Remark 3.6.4). Therefore, grad(f) is PDTL on V and 0 on U/V .

Lemma 3.11.8. Let (M,g) be globally hyperbolic and let S be an acausal Cauchy hypersurface.
Moreover, let p ∈ S and let U be a convex neighborhood of p ∈ M . Then there exists a function
hp ∶M → [0,∞), which is C∞ and has the following properties:

1. hp(p) = 1.

2. supp(hp) is compact and contained in U .

3. If r ∈ J−(s) and hp(r) ≠ 0, then grad(hp)∣r is PDTL.

Proof. Let γ ∶ (−ϵ, ϵ) → M be FDTL with γ(0) = p and set Kt ∶ J
+(γ(t)) ∩ J−(S). By Lemma 3.8.9, since

D−(S) = J−(S), Kt is compact. Moreover, Kt ⊆Ks for t ≥ s.

1. There exists a t0 such that for all t ∈ (t0,0), Kt ⊆ U . Indeed, otherwise there exist sj ↗ 0 and
pj ∈ Ksj /U . pj ∈ Ks1 so for all j , so without loss of generality pj → r in Ks1/U . Now γ(sj) ≤ pj and
γ(sj) → p. Since ’≤’ is closed on a globally hyperbolic manifold, p ≤ r. But, p ∈ S and r ∈ J−(S), which
is a contradiction (to S being acausal).
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2. Let t ∈ (t0,0) and let x ∶= γ(t). Let f ∈ C∞(U) be the function from (3.11.5) with x instead of p. Then
grad(f) is PDTL whenever f ≠ 0. Choose K compact with Kt ⊆ K

○ ⊆ K ⊆ U and pick ϕ ∈ C∞c (U),
ϕ ∶ U → [0,1] such that ϕ ≡ 1 in a neighborhood of K . Let H ∶= ϕ ⋅ f . Then H ∈ C∞c (U) ⊆ C

∞(M).
If r ∈ J−(s) and H(r) ≠ 0, then f(r) ≠ 0 and so, by 1., r ∈ I+γ(t) ⊆ Kt ⊆ K . Hence, r ∈ K and so
ϕ ⋅ f = f in a neighborhood of r. Also, x ≪ p, so H(p) = ϕ(p)

´¸¶
= 1

⋅f(p) > 0, by 1. from above. Now the

function

hp ∶=
H

H(p)

has the desired properties. It is evident that 1. and 2. hold. Regarding 3., if r ∈ J−(S) then H = f near
r, implying (gradH)(r) = (gradf)(r).

Proposition 3.11.9. Let (M,g) be globally hyperbolic and S an acausal Cauchy hypersurface. If W is
a neighborhood of S then there exists a function h ∶M → [0,∞), C∞ with the following properties:

1. supp(h) ⊆W .

2. h(p) > 1
2

for all p ∈ S .

3. grad(h) is PDTL on h−1((0,∞)) ∩ J−(S).

Proof. Let d be the Riemannian distance induced by some complete Riemannian metric on M (cf. Theorem
3.11.1). By Hopf-Rinow Theorem (Theorem 2.4.2 in [3]), for any ρ < ∞, Bρ(p) is compact. Now set B0(p) ∶= ∅.
Fix any p0 ∈M and for l = 1,2, . . . let Kl ∶= Bl(p0)/Bl−1(p0) and Rl ∶=Kl ∩S . Kl and Rl are both compact
(S is closed). For any r ∈ S , let Ur be a convex neighborhood of r with diam(Ur) < 1 and Ur ⊆ W . Let
hr ∈ C

∞(Ur) be as in Lemma and set

Vr ∶= h
−1
r ((

1

2
,∞)) .

Vr is then a neighborhood of r and Vr ⊆ Ur . For any l there exist finitely many rl,1 . . . , rl,k ∈ Rl such that
the corresponding Vl,i ∶= Vrl,i cover Rl (compact). Also, set Ul,i ∶= Url,i . If ∣l −m∣ ≥ 3 then Ul,i ∩ Um,j = ∅
for all i, j as both have diameter less than 1 and by definition of Rl and Rm , d(rl,i, rm,j) ≥ 2. Consequently,

h ∶=
∞
∑
l=1

kl

∑
i=1
hrl,i ∈ C

∞(M)

since (supphrl,i)l,i is locally finite (h ≡ 0 outside Ul,i ⊆ W ). If x ∈ S , there exist l and i such that x ∈ Vl,i .
Then h(x) > 1

2
. Moreover, since (Ul,i)l,i is locally finite,

supp(h) ⊆ ⋃
l,i

supp(hrl,i) ⊆W.

Finally, let x ∈ h−1((0,∞)) ∩ J−(S). Then, grad(hrl,i) is PDTL if hrl,i(x) ≠ 0. If hrl,i(x) = 0, then x is
a minimum of hrl,i and grad(hrl,i(x)) = 0. Since there exist some l, i with hrl,i(x) > 0, grad(h(x)) is
PDTL.

Definition 3.11.10. A time function on a Lorentzian manifold M is a function τ ∶ M → R that is strictly
increasing along any FD causal curve. A temporal function is a function τ ∶ M → R such that grad(τ) is
everywhere PDTL.
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Remark 3.11.11.

• Any temporal function is a time function.

• Let γ be FD causal. Then,
d

dt
(τ ○ γ)(t) = ⟨grad(τ)∣γ(t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
PDTL

, γ′(t)⟩ > 0

and so τ ○ γ is strictly increasing.

• We will show that on any globally hyperbolic spacetime (M,g) there exists a temporal function all of
whose level sets are Cauchy hypersurfaces.

Moving forward, we will operate under the general assumption that (M,g) is globally hyperbolic and
oriented, and τ denotes the function from Theorem 3.11.5. Furtehrmore, define St = τ−1(t).

Definition 3.11.12. Fix t− < ta < t < tb < t+ and set S± ∶= St± . Then σ ∶M → R is called a temporal step function
around t compatible with t± and ta , tb if:

1. grad(σ) is PDTL on

V ∶= {p ∈M ∶ grad(σ)(p) ≠ 0} .

2. σ(p) ∈ [−1,1] for all p ∈M .

3. σ(p) = −1 for p ∈ J−(S−), σ(p) = 1 for p ∈
J+(S+).

4. St′ ⊆ V for all t′ ∈ (ta, tb).

Lemma 3.11.13. Let t− < t < t+ . Then there exists an open set U such that J−(St) ⊆ U ⊆ I−(St+) and
a function h+ ∶M → R with h+ ≥ 0 and supp(h+) ⊆ I+(St−) such that:

1. if p ∈ U and h+(p) > 0, then grad(h+)(p) is PDTL.

2. h+(p) > 1
2

for all p ∈ J+(St) ∩U .

Proof. Let h+ be the function from Proposition 3.11.9 with S ∶= St and W = I−(St+) ∩ I
+(St−). If x ∈ St ,

then h+(x) > 1
2

and grad(h+)(x) is PDTL. Therefore, there exists an open neighborhood Vx of x where both
conditions hold. Now set U ∶= I−(St) ∪ ⋃x∈St

Vx .

Lemma 3.11.14. Fix t, t+ ∈ R with t < t1 and let U ⊆ I−(St+) be an open neighborhood of J−(St).
Then there exists a function h− ∈ C∞(M,R), −1 ≤ h− ≤ 0 such that:

1. supp(h−) ⊆ U .

2. if grad(h−)(p) ≠ 0 at p ∈ U , then it is PDTL.

3. h−(p) = −1 for all p ∈ J−(St).

Proof. Reverse time orientation and construct h as in Proposition 3.11.9 with S = St and W = U . Then
h ∶M → [0,∞) is C∞ and supp(h) ⊆ U . If h(p) > 0 and p ∈ J+(St) then grad(h)(p) is FDTL and h(p) > 1

2
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for all p ∈ St . Next set h1 ∶= −h and let ϕ ∶ R→ R be C∞ such that:

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(t) = −1, t ≤ − 1
2

ϕ′(t) > 0, − 1
2
< t < 0

ϕ(t) = 0, t ≥ 0

ϕ(t) ∈ [−1,1], ∀t

Let

f(t) =

⎧⎪⎪
⎨
⎪⎪⎩

e−
1
t , t ≥ 0

0, t < 0.

Set ψ(t) = f (t + 1
2
) f(−t). Then ψ ∈ C∞ , ψ ≥ 0, ψ(t) > 0 for t ∈ (− 1

2
,0) and ψ(t) = 0 for t ∉ (− 1

2
,0). Also set:

ϕ(t) ∶= ∫
t

− 1
2

ψ(s)ds [∫
0

− 1
2

ψ(s)ds]

−1

− 1

and

h−1(p) =
⎧⎪⎪
⎨
⎪⎪⎩

ϕ ○ h1(p), p ∈ J+(St),

−1, p ∈ J−(St).

h− now has the required properties. Indeed, h− is C∞ since J+(St)∩J−(St) = St and h1∣St < −
1
2
. Moreover,

grad(h−)(p) = ϕ′(h1(p)) ⋅ grad(h1(p)), with grad(h1(p)) PDTL where it is not equal to zero.

Proposition 3.11.15. Let t− < t < t+ . Then there exists a function σ ∈ C∞(M,R) with properties 1.,2.
and 3. from Definition 3.11.12, such that St ⊆ {p ∈M ∶ grad(σ)(p) ≠ 0}.

Proof. Let h+ and U be as in Lemma 3.11.13 and h− for this U as in Lemma 3.11.14. Then h+ > 1
2

on U∩J+(St)
and h− = −1 on J−(St) and so h+ − h− > 1

2
on U . We can set:

σ =

⎧⎪⎪
⎨
⎪⎪⎩

2 ⋅ h+

h+−h− − 1, on U

1, on M/supp(h−)

to get σ ∈ C∞(M,R). σ(p) ∈ [−1,1] for all p ∈ M . For p ∈ J−(St−), we have that h+(p) = 0, since
supph+ ⊆ I+(St−). Therefore, σ(p) = −1. For p ∈ J+(St+), p ∉ U implying h−(p) = 0. Thus, σ(p) = 1, proving
2. and 3. from Definition 3.11.12. Finally, note that for any F ∶ R2 → R smooth,

grad(F )(h+, h−) = ∂1F ⋅ grad(h+) + ∂2F ⋅ grad(h−).

Applying this to F (x, y) ∶= x
x−y , we obtain that

grad(σ) = 2 ⋅
h+ ⋅ grad(h−) − h− ⋅ grad(h+)

(h+ − h−)2

is PDTL whenever it is different from 0, implying that 1. from Definition 3.11.12 also holds.

Corollary 3.11.16. Let t ∈ R, t± = t ± 1. Also, let t− < ta < tb < t+ and let K be a compact subset of
τ−([ta, tb]). Then there exists a function σ ∶M → R with properties 1.-3. from Definition 3.11.12 and
K ⊆ {p ∈M ∶ grad(σ)(p) ≠ 0}.
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Proof. For each s ∈ [ta, tb] let σs be the function from Proposition 3.11 with t− < t < t+ replaced by t− < s < t+
and let

Vs ∶= {p ∶ grad(σs)(p) ≠ 0} .

Then {Vs ∶ s ∈ [ta, tb]} is an open covering of K (if p ∈K then there exists s ∈ [ta, tb] ∶ p ∈ Ss and Proposition
implies grad(σs)(p) ≠ 0). Thus, there exist s1, . . . , sk such that (Vsi)

k
i=1 covers K . Define σ ∶= 1

k ∑
k
i=1 σsi ;

this choice successfully accomplishes the task.

Lemma 3.11.17. Let (vi) be a sequence of TL vectors; all FD or all PD. If v = ∑∞i=1 vi exists then it is
also TL.

Proof. Set w ∶= ∑∞i=2 vi . Then, by continuity, w is causal and FD (or PD) and so

v = v1
´¸¶

TL

+w

is timelike.

Theorem 3.11.18. Let t ∈ R, t± = t ± 1. Then for any ta, tb such that t− < ta < tb < t+ there exist a
compatible temporal step function.

Proof. Let Gj (for j = 1,2, . . . ) be open sets such that Gj is compact, Gj ⊆ Gj+1 for all j and M = ⋃j≥1Gj .
Set Kj ∶= Gj ∩J

+(Sta)∩J
−(Stb). Kj is compact and Kj ⊆ τ

−1([ta, tb]), hence Corollary 3.11.16 implies that
there exists σj for Kj . Let (vi)i≥1 be a locally finite covering of M such that each vi is contained in a chart
domain and let Ui be open, U i ⋐ Vi , Ui open covering of M . Let x1i , . . . , x

n
i be coordinates on Vi and let

Aj > 1 be constants such that for all 1 ≤ i ≤ j and for all 0 ≤m < j ,

∣
∂mσj

∂xl1i . . . ∂x
lm
i

∣ < Aj

on Ui for all l1, . . . , lm ∈ {1, . . . , n}. Now define

σ ∶=
∞
∑
j=1

1

2jAj
σj . (3.11.6)

That series converges absolutely, implying that σ is continuous, in fact, it is even C∞ . Indeed, let p ∈M . Then
there exists i such that p ∈ Ui . To show that σ ∈ Cl (l ≥ 1, arbitrary) choose a j > i, l. Then σj

2jAj
and all its

derivatives of order less or equal to l (with respect to xi) are bounded by 2−j . σ ∈ Cl for all l, implies that
σ ∈ C∞ . By construction, σ is constant and negative. Say σ ≡ σ− < 0 on J−(St−) and σ ≡ σ+ on J+(S+). Let
ψ ∈ C∞(R), ψ(t) = −1 for t ≤ σ− , ψ(t) = +1 for all t ≥ σ+ , ψ′(t) > 0 for t ∈ (σ−, σ+) and ψ(t) ∈ [−1,1] for all
t. Then ψ ○ σ has all the claimed properties:

1. grad(ψ ○ σ) = (ψ′ ○ σ) ⋅ grad(σ) and grad(σ) = ∑∞j=1
1

2jAj
grad(σj) is PDTL where it is different from

zero, by Lemma 3.11.17.

2., 3. Clear.

4. Let t′ ∈ (ta, tb) and p ∈ St′ . Then there exists j such that p ∈ Kj , implying grad(σj)(p) ≠ 0 and so
grad(σ)∣p ≠ 0.
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Theorem 3.11.19. Let (M,g) be (connected and oriented) globally hyperbolic spacetime. Then there
exists T ∈ C∞(M,R) such that grad(T )(p) is PDTL for all p ∈M and for any FD causal inextendible
γ ∶ (t−, t+) → M , T (γ(t)) → ±∞ (as t → t±∓). In particular, each level set T −1(t) is a smooth
spacelike Cauchy surface.

Proof. Let tk ∶= k
2
, tk,± = tk ± 1, tk,a = tk − 1

2
and tk,b = tk + 1

2
. Let σk be the function from Theorem 3.11.18

with t↔ tk , t± ↔ tk,± and tm,b ↔ tk,a, tk,b . Then for all p ∈M there exists a k such that τ(p) ∈ (tk,a, tk,b).
Now set

T ∶= σ0 +
∞
∑
k=1
(σ−k + σk). (3.11.7)

For k ≥ 3 we have that (σ−k + σk)(p) = 0 if −k
2
+ 1 ≤ τ(p) ≤ k

2
− 1 (since then σk(p) = −1 and σ−k(p) = +1

by Definition 3.11.12, 3.). Now any p ∈ M has a neighborhood where the sum in 3.11.7 is finite and so
T ∈ C∞(M,R). (⋆)
σk has PDTL gradient for τ(p) ∈ (tk,a, tk,b) by Definition 3.11.12 (4.), so grad(T ) is PDTL for all p ∈M . (⋆⋆)
Let γ ∶ (t−, t+) → M be FD causal and inextendible. By (⋆⋆), we know that T ○ γ is strictly monotonically
increasing. Since every St is a Cauchy hypersurface according to Theorem 3.11.5, for any m ≥ 1 there exists
some sm ∈ (t−, t+) such that τ(γ(sm)) = m. Let l ∶= 2(m + 1), then by (⋆⋆) with p = γ(sm) we get that
(σ−k + σk)(γ(sm)) = 0 for k ≥ l. Indeed,

−
2(m + 1)

2
≤ τ(γ(sm)) =m ≤

2(m + 1)

2
− 1.

Hence, T (γ(sm)) = (σ0 +∑
l
k=1(σk + σ−k)) (γ(sm)). Since m ≥ 1, σ0(γ(sm)) = 1 (cf. Definition 3.11.12, 3.).

Also, (σk +σ−k)(γ(sm)) ≥ 0 for all k ≥ 1 because σ−k(γ(sm)) = 1 and σk(γ(sm)) ≥ −1 (cf. Definition 3.11.12,
2.) for k ≥ 1. Moreover, for 1 ≤ k ≤ 2(m − 1), 1

2
≤ k

2
≤ m − 1 i.e. m ≥ k

2
+ 1, implying σk(γ(sm)) = 1

and σ−k(γ(sm)) = 1 (m ≥ −
k
2
+ 1). Therefore, (σk + σ−k)(γ(sm)) = 2 (cf. Definition 3.11.12, 3.). Altogether,

T (γ(sm)) ≥ 1 + 2 ⋅ 2(m − 1) = 4(m − 1) + 1. Now, T (γ(s)) → +∞(s → t+) ≥ T (γ(sm)) ≥ 4(m − 1) + 1 for
s ∈ [sm, t+) and so T (γ(s)) → +∞ as (s→ t+) and, analogously, T (γ(s)) → −∞ as (s→ t−).

Theorem 3.11.20 (Bernal/Sanchez, 2004./2005.). Let (M,g) be a connected, oriented spacetime.
TFAE:

1. M is globally hyperbolic.

2. M has a Cauchy surface.

3. M has a smooth spacelike Cauchy hypersurface (CH).

4. M is isometric to (R × S,−βdτ2 + gτ), where β ∶ R × S → (0,∞) is C∞ and gτ is a smooth
family of Riemannian metrics on S . Then {τ0} × S is a C∞ spacelike CH for all τ0 ∈ R.

Proof.

(4.→ 3.→ 2.→ 1.) Clear. The last implication follows from Lemma 3.8.6.

(1. → 4.) Let τ be what we called T in Theorem 3.11.19. Set S ∶= S0 = τ
−1(0) and X ∶= grad(τ) ≡ ∇τ .

Let Φ ∶M → R×S0 , where q ↦ (τ(q),Π(q)) for Π(q) the unique intersection of Fl.X(q) with S0 . From
the proof of Proposition 3.11.2 we know that

Ψ ∶= (t, q) ↦ FlXt (q) ∶ R × S0 →M
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is a diffeomorphism, implying that Π = pr2 ○Ψ
−1 is C∞ and so Φ is C∞ . Moreover, Ψ−1 is given by

Ψ−1 ∶ R × S0 →M, where (t, p) ↦ FlXs(t,p),

where s(t, p) is the unique number such that t = τ(FlXs(t,p)(p)) i.e. t = τ(Φ−1(t, p)). (⋆)
Indeed,

Φ(Φ−1(t, p)) = Φ(FlXs(t,p)(p)) = (τ(FlXs(t,p)(p)),Π(FlXs(t,p)(p))) = (t, p)

and
Φ−1(Φ(q)) = Φ−1(τ(q),Π(q)) = FlXs(τ(q),Π(q))(Π(q)) = q. (3.11.8)

Note that Fl.x ∶ (Π(q)) is the flow line through Π(q), hence through q. This curve meets Sτ(q) precisely
once, namely where τ(FlXs (Π(q))) = τ(q) To verify (3.11.8), it suffices to see that

τ(FlXs(τ(q),Π(q)))(Π(q)) = τ(q),

which is clear by (⋆). To see that Φ−1 is C∞ , it suffices to show that s is C∞ in (t, p). We have

∂s(τ(FlXs (p))) = dτ(X(FlXs (p)))
X=∇τ
= ⟨X,X⟩ ∣FlXs (p) ≠ 0 (3.11.9)

and so the claim follows from the implicit function theorem. Using Φ as a ’chart’ (Φ goes to R × S0

and not to R ×Rn−1), we have that

∂

∂τ
∣
q

= ∂r ∣0Φ
−1(Φ(q) + (r,0)) = ∂r∣0Φ

−1(τ(q) + r,Π(q)). (3.11.10)

Here, Φ−1(τ(q) + r,Π(q)) = FlXs(τ(q)+r,Π(q))(Π(q)) and so

∂r ∣0Φ
−1(τ(q) + r,Π(q))

chain r.
= X(Fls(τ(q),Π(q))(Π(q))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Φ−1(Φ(q)) = q

) ⋅
∂

∂r
∣
0

s(τ(q) + r,Π(q)) (3.11.11)

Thus, ∂
∂τ
∣
q
∝X(q). Moreover,

⟨
∂

∂τ
,X⟩ = ⟨

∂

∂τ
,∇τ⟩ = dτ (

∂

∂τ
)

= dτ(∂r ∣0Φ
−1(τ(q) + r, π(q)))

= ∂r ∣0 τ(Φ
−1(τ(q) + r, π(q)))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(⋆)= τ(q) + r

= 1.

Thus,
∂

∂τ
= −⟨

∂

∂τ
,
X

∣X ∣
⟩
X

∣X ∣
= − ⟨

∂

∂τ
,X⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1

X

∣X ∣2
= −
∇τ

∣∇τ ∣2
.

Now pick local coordinates in the spacelike (and, hence, Riemannian) hypersurface sτ(q) containing
q. Then ∂

∂τ
∝ ∇τ�∂i (grad is always � to level sets) and

⟨
∂

∂τ
,
∂

∂τ
⟩ =

1

∣∇τ ∣2
⟨∇τ,∇τ⟩ = −

1

∣∇τ ∣2
=∶ −β.
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In those coordinates g = −βτ2 + g∣sτ(q) . Moreover,

Φ∗
⎛

⎝

∂

∂τ
∣
q

⎞

⎠

(3.11.10)
= TΦ(∂r ∣0Φ

−1(τ(q) + r,Π(q)))

= ∂r ∣0�Φ(�
�Φ−1(τ(q) + r, π(q)))

= (1,0) ∧=
∂

∂τ
on R × S0.

Also, Φ∗(∂i) are coordinate vector fields on S0 because Φ∣s(τ(q)) ∶ sτ(q) → s0 is a diffeomorphism.
Consequently, Φ∗g = −β ○ Φ−1dt2 + gτ since Φ∗(dτ) = d(Φ∗τ) = d(τ ○ Φ

−1) = dt (note that gτ is a
Riemannian metric on S0 , depending smoothly on τ ). Finally, Φ−1({τ0} × s0) = τ−1(τ0) is a Cauchy
hypersurface in M by Theorem 3.11.19 and so {t0}×s0 is a Cauchy hypersurface in (R×S,−βdτ2+gτ)
since Φ is an isometry.
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