164 Chapter 7. FUNDAMENTAL SOLUTIONS

there exist f € C*°(R3) such that Lu = f has no distributional solution in any open
set QO C R3. For proofs see [Agm10] (non-solvability in [?), [Joh78] (non-solvability in
Holder-continuous functions) and, for the ultimative treatment [Hor63|.

Before heading to the theorem we briefly discuss fundamental solutions in .7".

7.12. Remark (On .#’-fundamental solutions) We consider a linear PDO P(D) with
constant coefficients and with P(§) # O for all § € R™. Then 1/P(&) € Ony(R™) C
Z'(R™). Then a fundamental solution is given by E = 3~ '(1/P) € .#’. Indeed we have

(7.40) P(D)E =P(D)F" (%) =g! (P(E)—) =5

Moreover, in this case E is the only fundamental solution in .#’ since we have
1/P€0M 1

(7.41) PDE=6 = PEE=1 X E= 5

7.13. Theorem (Malgrange-Ehrenpreis) Let P(D) # 0 be a linear PDO with constant
coefficients. Then P(D) has a fundamental solution in D’, i.e.,

(7.42) JE € D'(RY): P(D)E = 6.

We will actually give a simple and explicit form of E following the approach of [Wag09].
We first need a preparatory statement from linear algebra, which we (funnily) prove by
complex analysis methods.

7.14. Lem Let Ay,...,An € C be pairwise different. Then the unique solution of the
linear system of equations

(7.43) iawz{? Eli:ﬂgm—n
j=0

is given by a; =TI", (A —A) 7.

Proof. The coefficient matric of the system is just Vandermonde’s matrix and since its
determinant TTo<j<r<o(Aj — Ax) does not vanish for pairwise different A’s the solution
vector (ag,...,am) € C™* is uniquely determined.

Next we set p(z) = TT]",(z — A;) and calculate the following complex contour integral
over a circle of radius N > [A; for all j using the residue theorem (observe that by our
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assumption all A; are simple poles)
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On the other hand we have

27
k Nk ikt .
J ©dz = J - iNedt
N p(z) ) T Nett (1T — et
T {(—m)t 0 (1<k 1
L agkem el (N—00) Ssk<m-—
= W Jﬂm 1 w4 7 { 2% Gt — 2mi (k= m)
0 1=0 N 0
and we are done. O

Proof of Theorem 7.13. We write down explicitly a fundamental solution E of the
PDO P which we assume to be of order m: Let n € R™ be such that o, (n ) = 0, choose
pairwise different real numbers Ao, ..., A and set aj = TI% (A — A) ™ ! (cf. Lemma

7.14). Finally define
i amx g1 [ POE+AM)

j=0

(7.44)

First note that for any fixed A € R the set
(7.45) N ={§{ € R": P(i§{ + An =0}

has Lebesgue measure zero. In fact, applying a linear transformation we may assume
that 0,(1,0,...,0) # 0 and then

(7.46) Jd& - J ( J diy)dE! = 0

N R-1 N/

by Fubini’s theorem and the fact that the sets Ng» ={&; € R: P(i(&1,&’) +nA) = 0} are
finite for &' = (&,,...,&,) € R™'. So

(7.47) S(8) = Bz 4 Am]

€ L*®(R") C &'(R")
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and (7.44) is meaningful.

Now we calculate P(0)E using the exchange formulae. We have

P(d)(eMN™TF'S) = MNP +AMTFL'S

(7.48) = Mg (P(ia n Am)s) = Mg (PO + Ajn))
and
(7.49) F(PAE+AM) =TF: ' (P(—i&+Am) 1) =P(=d + Am) 6.

So we finally obtain

P(i{ +Am) _ -
P(a) (e}\jnxg:51 (H)) - e)\mXP(_a‘i‘Ajn)é = P(—a+2}\jn)(e7\jnx6)

m—1

(7.50) = P(-+22Am)5 = Aop(2n)5+ ) Al
k=0

for certain distributions T, € &'(R"). In the last equality we have used the homogeneity
of the principal symbol (cf. (6.28)). Now by our choice of the a; we are done thanks to
Lem 7.14. U
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§ 7.3. HYPOELLIPTICITY OF PDO WITH
CONSTANT COEFFICIENTS

7.15. Motivation In section 6.4 we have introduced the fundamental notion of hy-
poellipticity and highlighted its importance. In this short section we show that hypoel-
lipticity of constant coefficient PDO is characterized by properties of its fundamental
solution. The main idea is similar to the one in the third step in the proof of Thm. 6.45.

7.16. THM (Characterizing hypoellipticity) Let P(D) # 0 be a PDO with constant
coefficients. Then P is hypoelliptic iff it has a fundamental solution E with singsupp(E) C

{0}.

7.17. Rem If one (and hence both) conditions in the theorem hold true then every
fundamental solution E of P has the property that its singular support is contained in
the origin. Indeed by Remark 7.7 two fundamental solutions only differ by a solution h
of P(D)h = 0, which by hypoellipticity is smooth.

Proof of Theorem 7.16. Suppose that P is hypoelliptic. Set Q := R™ \ {0} and let E
be some fundamental solution of P (which exists by theorem 7.13). We have P(D)E =
and hence P(D)E = 0 in Q. But now hypoellipticity guarantees E to be smooth in Q
hence singsupp(E) C {0}.

To prove the converse direction we use a slimmed down version of the proof of Thm.
6.45. Indeed we have (6.29) with p = 0 and the regularity property established there in
step 2 now holds by assumption. Therefore we can directly jump to step 3 there and
repeat the argument to establish hypoellipticity. O

7.18. Ex (Hypoellipticity of 9 + ad,) We consider the operator P(D) = 9y + ad, on
R? already encountered in Ex. 7.9.

(i) If a € R then we have constructed the fundamental solution E = H(x)d(y — ax)
which clearly has singsupp(E) = {(x, ax) : x > 0}. Since P(D)E = 6 we have P(D)E
smooth on Q :=R? \ {0} but clearly E ¢ C*(Q), so P(D) is not hypoelliptic.

1 1
2miy—ax

(ii) If a € C\ R we have found the fundamental solution E =
smooth outside (0,0) and so by 7.16 P(D) is hypoelliptic.

which clearly is
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Summing up we have seen that

(7.51) P(D) =0, + (x+1iP)0dy is hypoelliptic iff B # 0.



