FUNDAMENTAL SOLUTIONS

7.1. Intro In this final chapter of the lecture course we intrdouce and discuss in some
detail the notion of fundamental solutions of linear PDO. Given such an operator P(x, D)
these are distributions E, such that

(7.1) P(x,D)E, = &,.

After properly introducing this notion is in section 7.1 we will see that fundamental
solutions play an important role both in solving PDE and in deriving the regularity
properties of the solutions. In 7.2 we prove the Malgrange-Ehrenpreis theorem which as-
serts that any linear PDO with constant coefficients possesses a fundamental solution. In
section 7.3 we characterize hypoelliptic PDO with constant coefficients via the properties
of their fundamental solutions. Finally in section 7.4 we explicitly calculate fundamental
solutions for some well-known PDO.
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156 Chapter 7. FUNDAMENTAL SOLUTIONS

§ 7.1. BASIC NOTIONS

7.2. Motivation (What are fundamental solutions and what are they good for?) The
basic idea of fundamental solutions can be phrased in physical terms as follows. Let us
consider electromagnetic fields as solutions of the Maxwell system of PDE. To begin with
we derive the solution E, for the point charge (cf. 0.4) at y € R?, i.e.,

(7.2) PE, = §,.

Next we consider a arbitrary charge density f as a “superposition” of point charges, i.e.,
f~ ff(y)éy dy. Then we should expect the solution u to be a “superposition” of the
Ey’s, ie.,

(7.3) U~ Jf(y)Ey dy.

A slightly more mathematical interpretation would be (¢ € D)

(7.4) (o) = | [ e i) dy ax.

We will give an exact version of (7.4) in Proposition 7.6 below.

7.3. DEF (Fundamental solution) Let P(x,D) be a linear PDO with coefficients in
C>*(Q) and let y € Q. A distribution E, € D’(Q) is called a fundamental solution of
P(X,D) at y if

(7.5) P(x,D)E, = 5,,.

7.4. REM & DEF (The case of constant coefficients) If P(x,D) = P(D) is a linear
PDO with constant (complex) coefficients and E, is a fundamental solution for P(D) at
0 then

(7.6) E, = 1yEo

is a fundamental solution of P(D) at y. Indeed we have

(7.5) 3.15(ii)
(7.7) P(D)Ey = P(D)tyko = 1y P(D)Eo = Tyd 3 dy.
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Hence by definition/convention we call E € D’(Q) a fundamental solution of P(D) if

(7.8) P(D)E = 5.

7.5. REM (The fundamental role of fundamental solutions) Let P = P(D) be a PDO
with constant coefficients and consider the PDE

(7.9) Pu=f

with f € &', u € D’. Moreover let E be a fundamental solution of P then we have the
following two important equations

(7.10) ExPu=u and P(Exf)="f.

Indeed to derive the first of these equations just write

4.5(ii) (7.8) 4.5(iv)
+

(7.11) ExPu = PExu = §xu u.

Similarly to derive the second equation in (7.10) we write

4.5(i1) (7.8) 4.5(iv)
£2 £3

(7.12) P(E  f) (PE) % f % §xf f.

Note that (7.10) just means that E acts as a left as well as a right inverse of P. These
equations play a pivotal role as we shall discuss now.

(i) The second equation, in particular, implies solvability of the PDE (7.9) for any
f € &’. We rephrase this important observation explicitly:

Let P(D) be a PDO with constant coefficients and let E be a fundamental solution
of P. Then the PDE P(D)u = f has a solution u € D’ for all f € &’. It is given by
u==~Exf.

(ii) The first equation in (7.10) on the other hand allows to extract regularity infor-
mation of the solution u = E  f from the regularity of f = Pu.

A more general statement on solvability is given by the following statement.

7.6. Prop (Solvability using fundamental solutions) Let P = P(x,D) be a linear PDO

with C*-coefficients. Suppose that for all y € Q) there is a fundamental solution E, €
D’(Q) and

(7.13) Vo eD(Q): y— (Ey,p) isC® from QO to C
(7.14) @ — (y— (Ey,®)) is seq. continuous from D(Q) to &(Q).
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Then for all f € &'(Q) the PDE
(7.15) P(x,Dju=f
has a solution u € D’(Q). It is given by

(7.16) (u, @) = (f(y), (Ey, @))-

Proof: [actually shorter than the statement| By (7.14) and the continuity of f: £(Q) —
C we have that u € D’(Q). Now for all ¢ € D(Q) we have
1 (7.16)

(7.17) (Pu, @) = (u,Pto) £ (f(y), (Ey,P o)) = (f, @),
~—

=(PEy,0) = (8y,9)=¢(y)
(7.5)

]

7.7. Remark (Difference of two fundamental solutions) Let P = P(x,D) be a linear
PDO with C*-coefficients and let E, and F, be two fundamental solutions of P at y.
Then they differ only by a solution of the homogeneous equation, i.e., £, = F, +h whith
h € D’ and Ph = 0. Indeed we have

(7.18) P(E, — F,) = PE, — PF, =&, — &, = 0.
7.8. Motivation (Main questions on fundamental solutions) Now that we have seen

the fundamental importance of fundamental solutions (at least as the quest for existence
of solutions of PDE is concerned), the most urging questions are the following:

(i) For which PDO do fundamental solutions exist?
(ii) How can we find a fundamental solution for a given PDO?

We will partly answer (i) in Section 7.2 and explicitly compute fundamental solutions for
some prominent PDO in Section 7.4. We will, however, look at two instructing examples
first.

7.9. Example On R? we consider the operator

(7.19) P = P(Dy,Dy) = 0y + ady, = i(Dy + aDy)
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with a € C. We are looking for E € D’(R?) such that
(7.20) 0xE+ adyE =0(x,y) = 8(x) ® 8(y).

We will use the partial Fourier transform

(7.21) (F20) (1) = Fyon (0(x,.)) = Je—i%(x,wdy
R

which obviously is a well defined concept on .7 (R?) with the same resp. analogous
properties as the Fourier transform itself. So we also have F, on .#/(R?) and for E ¢
Z'(R?) we will write E := 5, (E).

Now acting with F, on (7.20) gives

5.26(1) 5.27
(7.22) uE+iamE = s @dy) = s(x),

which is an ODE for E in the variable x with parameter . We solve it via variation of
constants, that is using the ansatz

(7.23) E(x,m) = clx,n)e "o,

where ¢ € .%/(R?). Observe that e '*"* is a solution of the homogeneous version of
equation (7.22). We obtain

(7.22)
(7.24) OE = d,ce 9™ —ianE E2 §(x) — iank
and hence
(26)
(7.25) dec = M5 (x) = §(x).
So by (2.2) we obtain
(7.26) ¢ = H(x) +d(n), d € D'(R)
and we will use the ansatz
(7.27) E(xn) = (HO) + d(m)) et

where d should be chosen such that for all x # 0 we have that E(x,.) € .%'(R).
We now discuss the cases a € R and a € C \ R separately.
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(i) We set d = 0 so that E(x,n) = H(x)e 19"*, Then E is bounded and hence
in .’(R?). So we find
(7.28) E(x,y) =5, (e ") (y)H(x)

[Indeed we have for @ € D(R?)

(E, ) = <?Zlﬁ,@>:<ﬁ,?zlw>=JH(X)e‘i“”"(?fcp)(x,n)dxdn
RZ

— JH(X)Je*i“m‘Cf;](p)(x,n)dn dx:T@(X,ax)dx. ]
R R 0

=@ (x,ax) by’ 5.15

One often writes
(7.29) E(x,y) = 8y — ax)H(x)

since it actually is the Lebesgue measure on {x > 0,y = ax} C R?. & insert
figure &

(ii) We write a = o+ if3 with  # 0. Then we distinguish the cases

x<0: E(x,n) =d(n)e tonxefxn
x>0: E(xmn) = (1 + d(n))e_i"‘nx ePxn,

Now set d(n) = —H(Bn) to achieve |E(x,n)| < Ce !P*1l and hence E € L'(R,) for
all fixed x # 0. Now we calculate in case

Evyl = |eH(Bme T an
R
sign(p)oo
_ _sign(ﬁ) J ein(y—ax) dn

27
0
sign 1 ) 1 1
T B 927T(B) i(y — ax) sign(B)O—1) = 2mi oy —ax’
B=Im(a)£0
1 1

We now make the following claim:
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To prove the claim we start by observing that

y—ax=0& y—oax=0NARBx=0x=0"\y=ax=0< (x,y) = (0,0).
Hence we have for all (x,y) # (0,0)
(7.30) ly —ax| =rly/r —ax/r| = wl(x, y)l,

where T = \/x2 +y2 = |(x,y)| and p is defined the minimum of jy/r — ax/r| on S'.
So we write for ¢ € .7 (R?)

o (x,y) T (le(xy)l
| J’ — dxdy| < — dx d
Yy —ax Y o) Il(xy)l Y

JU +1(x,y)) !
(%, y)I

< CH”wdT <C¢  forl>n,
(1T +71)t
0

R2

@

(7.31) < dx dy

S1

which establishes the claim.

Similarly we calculate for

1 i —iax
Evy) = - | €1~ Hipm)e T an

R

) 0

(732) _ 5192117_[([5) J ein(y—ax) dn
sign(p)oo
_ sign(p) 1 (1-0) = 11

2 i(y — ax) 2 y —ax’

Summing up we have derived that a fundamental solution of 0, + ad, is given by

H(x)é(y —ax) a€R
7.33 E(x,y) =
( ) (%, y) {z]my]ax aeC\R
As an important special case we have for a = i, that is 3P = }(dx +19,) = - the

Cauchy-Riemann operator (cf. 6.44(ii)). It has a fundamental solution given by

1 1 1 1 1
(7.34) F=2E=— —=———=— (z€C).
my—1x 7nXxX+wy nz
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Exercise: Show that F really is a fundamental solution of the Cauchy-Riemann operator by
directly calculating PF. Or more generally show by direct calculation that E is a fundamental
solution of P = 0y + ady.

& insert later &

7.10. Example (An ordinary DO without a fundamental solution) On Q = R we
consider

dy 5,3 d
(7.35) P(x, a) =(1—x7) ix — 4x.

We claim that P has no fundamental solution at 0. Suppose to the contrary that there
is E € D'(R) with (1 —x2)3E’ —4xE = . Then we have in R\ {#1, 0}

4 1
(736) E/ = ﬁ E = E(X) = Ce“*xz)z .

Hence in any of the intervals J; = (—oo,—1), J» = (—1,0), J3 = (0,1), and J4 = (1, 00)
we have Ey = Cre'/0—)* (k =1,2,3,4) . & insert figure &
Next as in 2.30(i) it follows that

/HVE@’(—O0,0)i V|]k:Ek (k:1,2) with C; #O#CZ

Aw € D'(—00,0) : wlj, =Ex (k=3,4) with C3 #0#C4

So Elg\jo; = 0 and hence supp(E) = {0} (since otherwise E = 0 = PE = 0). Therefore by
1.70 there is m such that

m
(7.37) E=) A8 withAj € C, A #0.
j=0

Now we may calculate

m

5 = (1 —x2)3(Z>\j 5(i>)'—4xi>\j §50)
j=0

j=0

(7.38) -

hE

A (T=x2)2 80+ — % 4y 89
0 j=0

—.

A SUT 4 3 Ay (=3x% 4 3x* —x€)s 0t —4 3y Ayx 50,
j=0 j=0

I
.I\/Ig

u
Il
[

()

The terms in (*) are of the form x*6(!) and as in formula (***) in 2.30(i) one finds that
they are distributions of order 1 — k. So these terms are at most proportional to §(m~1).
So A, has to vanish and inductively also A; = 0 for all j € {0,1,...,m}. So E =0, a
contradiction.



7.2. THE MALGRANGE-EHRENPREIS THEOREM 163

§ 7.2. THE MALGRANGE-EHRENPREIS
THEOREM

7.11. Intro In this paragraph we are going to answer the question raised in 7.8(i)
for a large class of PDO. More precisely we state and prove the theorem of Malgrange
and Ehrenpreis which asserts that any linear PDO with constant coefficients has a fun-
damental solution in D’.

First proofs of this statement were independently given by Bernard Malgrange and Leon
Ehrenpreis in 1953/54. We give a short historical overview of different proofs and results
in this realm in the following table.

1911, Nils Zeilon: first definition of the notion of fundamental solution in L'
1950/51 Laurent Schwartz: general definition of fundamental solutions

1953/54 Berndard Malgrange & Leon Ehrenpreis: existence of a fundamental so-
lution for any PDO with constant coefficients in D’ using the Hahn-Banach theorem

1957/58 Stanistaw Lojasiewicz, Lars Hormander: existence even in .9’

late 1950-ies Lars Hormander, Jean-Frangois Treves: constructive proofs, contin-
uos dependence on the coefficients of the operator

mid 1990-ies Heinz Konig, Norbert Ortner and Peter Wagner: short explicit for-
mulae

2009 Peter Wagner: very simple formula

The Malgrange-Ehrenpreis theorem may be regarded as one of the big successes of dis-
tribution theory and is a central result. However, soon after its proof it turned out that
a generalization to the case of PDO with non-constant coefficients—which was actually
regarded as a not-too-hard problem (Louis Nierenberg suggested it as a Ph.D topic to
Jean-Francois Treves)—is not possible. Hans Lewy in 1957 gave the first counterexample
which became very famous and now bears his name; explicitly for the operator

(7.39) Lu(x,y,z) = —uy —iuy + 2i(x + iy)u,
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there exist f € C*°(R3) such that Lu = f has no distributional solution in any open
set QO C R3. For proofs see [Agm10] (non-solvability in %), [Joh78] (non-solvability in
Holder-continuous functions) and, for the ultimative treatment [Hor63].

Before heading to the theorem we briefly discuss fundamental solutions in .&’.

7.12. Remark (On .#’-fundamental solutions) We consider a linear PDO P(D) with
constant coefficients and with P(&) # O for all & € R™. Then 1/P(&) € On(R™) C
#'(R™). Then a fundamental solution is given by E = 3~ 1(1/P) € .#’. Indeed we have

(7.40) P(D)E = P(D)F"" (;) g <P(£)—> =5

Moreover, in this case E is the only fundamental solution in .’ since we have

1/PeOnm
(7.41) PDE=5 = PEE=1 = E=

1
P

7.13. Theorem (Malgrange-Ehrenpreis) Let P(D) be a linear PDO with constant
coefficients which is non-trivial (i.e., P # 0). Then P(D) has a fundamental solution in
D', ie.,

(7.42) JEcD(RY): P(D)E =6.



