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0.1. General Intro

In many mathematical applications partial differential equations (PDE) play a main role.
The fundamental laws of physics are formulated as PDE and frequently modelling in all
of science results in formulating the dependencies found as a PDE. However, in many of
these cases it is not really mandatory to write these dependencies in the form of a PDE;
it is just a mathematically very elegant and convenient way to do so.

Continuous functions in many cases provide a sensible model of physical quantities, but
the do not possess a derivative (at least within classical calculus). Also physical laws
are often more general than their formulation as PDE. To cure these obvious drawback
there are in general two possible options:

(i) Reformulate the respective physical law using integral equations, which also make
perfect mathematical sense for continuous (or more general classes of) functions.

(ii) Keep the formulation as PDE but generalise the notion of derivative in such a way
that also continuous (or more general classes of) functions possess derivatives.

The second possibility leads directly to the theory of distributions also called gener-
alised functions.

However, in addition to the motivation from applications just given, there is also a clear
interest from pure mathematics to define a notion of differentiation of classically non-
differentiable functions. As a clear historic evidence for this ‘wish’ to differentiate more
general classes of functions we quote Charles Hermite (1822-1901). In a letter to Thomas
Stieltjes (1856-94) he wrote:

I recoil with dismay and horror at this lamentable plague of functions which do
not have derivatives.
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0.2. Some historical remarks’

We begin with a few historical remarks on the “prehistory” of distribution theory, the
details of which may be found in the book of Liitzen [L]2.

Some physicists and also mathematicians were using “generalized functions ideas” thereby
for a long time anticipating the later rigorous theory. The names to mention here are
most of all J.B. Fourier, G. Kirchhoff and O. Heaviside. P. Dirac in 1926 [D1] and later
in his famous book [D2] introduced the concept of the 5-function which allowed him
to draw an analogy between “discrete” and “continuous variables,” thereby reaching a
unified theory of quantum mechanics combining matrix mechanics and wave mechan-
ics. Since these ideas were so beautiful and convincing the “Dirac-8” very soon became
a widespread tool for physicists. However, the notation & does not stand for “Dirac”
but was originally chosen by Dirac to put emphasis on the analogy between 6(p — q)dp
and the unity matrix which, in physics, commonly is written as the “Kronecker-8” 0,4
(cf. [L], p. 124). On the other hand, descriptions of the d-distribution as a limit of a
series of (smooth) functions go back as far as 1822 and Fourier [F]. Also Kirchhoff [K]
already in 1882 fully captured the concept of 6 calculating the fundamental solution of
the wave operator in R'+3.

A rigorous theory which first (implicitly) used distributions was given in 1932 by S.
Bochner [S] while the first definition of distributions in the modern sense (as functionals)
appeared in S. Sobolev’s 1936 paper [S]. Hence (according to Liitzen [L], p. 159ff.) he
may be be called the tnventor of distributions, while finally L. Schwartz created the
theory of distributions in his classical monograph [S], first published in 1950.

Schwartz’ theory rapidly was well received both by mathematicians and physicists who
now could use “improper functions” in a well-defined sense. In mathematics, distribution
theory was the essential tool to build an elaborate solution concept for linear PDE. Most
notable among the numerous contributions in that field is the famous theorem proved
individually by L. Ehrenpreis [E] and B. Malgrange [M]| guaranteeing the existence of
a fundamental solution (in D’) for every non zero constant coefficient linear partial
differential operator. [...]
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below and not in the bibliography at the end of the notes.
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0.3. Motivating examples from PDE

(i) A transport equation

In this first example we deal with the equation of continuity in a 1-dimensional medium.
Our main focus is to exemplify the discussion in 0.1.

Generally speaking a continuity equation in physics is an equation that describes the
transport of some quantity. Here we will concentrate on the transport of mass in a
1-dimensional medium—you can think of a 1-dimensional river.

We denote the position (length) in the 1-dimensional medium by x and time by t, see
Figure 0.1. Moreover will use the following quantities and notations:

e the mass density p(t,x) (with physical units mass per length)
e the mass flow q(t,x) (with physical units mass per time)
e the velocity (of a point particle) v(t,x) (with physical units length per time)

We have the following fairly obvious correlation between the mass flow on the one hand
and the mass density and velocity on the other hand

(0.1) q = pv.

> x [length]
Figure 0.1: A 1-dimensional medium.

We will suppose that p > 0 which is physically reasonable and implies that q and v share
their orientation and we fix v to be positive for growing x.

We next consider a space interval [x,x;] and a time interval [t,t;] and formulate the
physical law of mass conservation, see Figure 0.2.
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Figure 0.2: Mass conservation in a 1-dimensional medium.
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total mass in [x,x1] at time t; total mass in [x, x1] at time t
t t
(0.2) = J q(s,x) ds — J q(s,x1) ds.

N <

ingoing mass in [t, t;] at x = outgoing mass in [t, t;] at x

Dividing by t; — t leads to

X1 t

t,y) —plt, 1
Jp( | 1:;”)_5( Y 4y = — J(q(s)x)—q(s,xﬂ) ds.

(0.3)

t

Note that up to now assuming p to be locally integrable was sufficient to justify all the
calculations. But now we assume p to be a C'-function to be able to take the limit
t; — t. Applying the fundamental theorem of calculus gives

X1

(0.4) jatp(t,y) dy = qlt,x) — qlt,x1).

X

Analogously assuming that q € C' we may also take the limit x; — x after dividing by
X7 — x to obtain

(0'5) atp(tax) = _axq(t>x)>

which we will aslo write in the form q; + qx = 0. If we now suppose that the velocity
is a constant, v = ¢ and insert (0.1) we finally obtain the continuity equation in one
dimension to be

(0.6) Pt +cpx = 0.

We note that for p € €' the PDE (0.6) follows from the integral equation (0.2). However,
the integral equation (0.2) also makes sense for more general p, e.g. p continuous or



(locally) integrable. Hence in accordance with the spirit of 0.1 we find that the physical
law of mass-conservation (0.2) is strictly more general than the PDE (0.6), which
was derived under the additional regularity assumptions p,q € C'. Also note the
general ‘slogan’ that PDE are local while integral equations take into account mean
values.

The general solution of the PDE (0.6) is given by
(0.7) p(t,x) = a(x —ct) with a € C'(R)

which intuitively amounts to a peak travelling to the right, see Figure 0.3. (To derive
(0.7) one can either use the method of characteristics from PDE-theory or transform
variables to & = x + ct, 1 = x — ct and solve the resulting ordinary differential equation
(ODE).)

S
7

Figure 0.3: A (smooth) peak travelling to the right.

Let now ¢ € C®(R?) (i.e., ¢ has continuous partial derivatives of all orders, hence is a
so-called smooth function) be vanishing outside a bounded set. We denote the vector
space of all such functions® by D(R?). Then we have for all ¢ € D(R?)

(0.8) J (pe(t,x) + cpx(t,x)) @(t,x)dtdx = O.
R? =0 by (0.6)

Conversely one may show that for any p € C'(R?) satisfying equation (0.8) for all ¢ €
D(R?), also the PDE (0.6) holds. (Suppose not then there exists (to,Xo) such that (0.6)
is violated there. By continuity (0.6) is violated in a neighbourhood of (to,x). Now
choose a smooth function p > 0 and p # 0 only in this neighbourhood*. Then (0.8) does
not hold for this particular ¢.)

On the other hand we find by integration by parts that (0.8) holds iff (i.e., if and only
if)

(0.9) J p (@ +cpy)dtdx = 0 forall @ € D(R?).

R2

3The study of this space will be one of the main objectives of Chapter 1.
4The existence of such ‘bump functions’ will be established in Chapter 1.



6 Chapter 0. PRELUDE

Observe that—similar to the case of (0.2)—the latter equation makes sense for more
general p than the PDE (0.6). We will call any solution of (0.9) a weak solution of (0.6).
Keep in mind that this means the integral equation holds for all functions ¢ € D(R?).
With this terminology we have for all p € €' (R?) that

(0.10) p solves (0.6) < p is a weak solution of (0.6).

However, there are more weak solutions to (0.6) than there are ‘real’ solutions to (0.6),
called calssical solutions in this context. E.g. any weak solution p that is merely con-
tinuous or (locally) integrable is not a classical solution: One cannot even calculate the
derivatives p, and p; which enter the PDE (0.6)!

A weak solution graphically amounts to having e.g. a box shaped bump travelling to the
right, see Figure 0.4. One may even show that (0.7) with the function a being continuous
or (locally) integrable, gives rise to a weak solution of (0.6).

S
7

Figure 0.4: A continuous, non-smooth peak travelling to the right.

(ii) The wave equation
We next consider the wave equation in 1+ 1 dimensions,

(0.11) Upr = Uy for u:R? = R,

which models e.g. the vibration of a string and belongs to the trinity® of basic linear
PDE. It is well-known and shown in every lecture course on PDE that every ©?-solution
of (0.11) is of the form

(0.12) u(t,x) = f(x+1t) + glx—1t),

with f,g € C*(R). (Either use the method of characteristics or transform variables as
above.)
Weak solutions of (0.11) are defined analogous to the above as solutions of

(0.13) J U (@ — @xx) dtdx = 0 for all @ € D(R?).
RrR2

Now in complete analogy to (i) it holds that

5The other two members are the Laplace and the heat equations.



(a) Every @2- (i.e., classical) solution of (0.11) is also a weak solution but there are
more weak solutions than classical ones.

(b) Every function of the form (0.12) with f and g continuous or (locally) integrable is
a weak solution.

0.4. Point charges in electrostatics—the delta-function
Next we consider a motivating example from physics. In electrostatics the potential V
of a point charge Q at a point xo € R3 is given by

Q °.
0.14 \Y = X °
see Figure 0.5. (The electric force is then
given by F = —VV.) Figure 0.5: A point charge Q at x,.

Here a point charge is an idealisation where some finite charge Q sits at a single point x,
is space. On the other hand the potential of a charge density p is given by the Newton
potential

(0.15) V(x) = J|f(_yL| Y,

R3

where the charge density heuristically is given by

.

. charge contained in B.(y) Y
p(y) = lim ¥, X Y
0 volume of B, (y)
where B, (x) denotes the (open) ball of ra- Figure 0.6: A smeared out charge
dius r centered at x, c.f. Figure 0.6. density around a point x,.

An interesting question is now: What is the charge density of a point charge in xy. Most
intuitively we would like to write

0 Y # Xo
(0.16) ply) =

15%4/3711‘3200 Yy =xo-
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But this implies that p = 0 Lebesgue almost everywhere and so f p(y)dy = 0. However
to obtain the ‘correct’ potential (0.15) we would need

(0.17) V(x) = J Ply) 4 Q

Ix —yl YT i —xl

R3

. . . oo ? o
That is we would need a ‘function’ b, (with
p(y) = Q0y,(y)) satisfying (cf. Figure 0.7)

(i) dx,(y) =0 for all y # xo, and

I
(i) [ 8y, (y)fly) dy = f(xo), . .
in particular féx() (y)dy = 1. Figure 0.7: The delta-function.

These properties are often also informally formulated as follows: 8, vanishes everywhere
but at the single point x, where it has a value so large that the integral over 8, is unity.
Clearly such an object cannot be a ‘classical function’.

Moreover in electrostatics the Newtonian potential (0.15) is obtained as a solution of the
Poisson equation

(0.18) AV(x) = —4mp(x).

Assuming now for simplicity that xo = 0 and Q = 1 and hence p(y) = do(y) =: d(y),
equation (0.18) takes the form

P(y) L
(0.19) A J;Ix—yl dy | = —4mp(x),
i
and hence
1
(0.20) A<m> = —4mp(x).

Summing up we are looking for a theory where the delta-function is a sensible object
and moreover equation (0.19) is a valid equation. Indeed distribution theory provides
all those features as we will preview next.

0.5. Preview
It will turn out that a further development of the notion of weak solution (see 0.3) also
makes the issues of 0.4 tractable. The basic features of such a theory might already be




guessed from 0.3. Instead of considering a function f as classical mappings that take
points to points, i.e.,

(0.21) f: R" = C, x~— f(x)

we consider the mapping

(0.22) f: DIR™) - C, @+ J f(x)p(x)dx.

Rﬂ.

Equation (0.22) defines by the properties of the integral a linear map from the space of
so-called test functions into the complex numbers, hence a linear form on D(R™).
Driven by 0.4 we also allow more general maps of that kind, e.g.

(0.23) o: D(R™) = C, @ (d,90)=¢(0).

Clearly this assignment defines a linear form on D(R™).

Using the notation (f, ¢) for the integral in (0.22) (one says “f acts distributionally on
@”.) we have for all f € €'(R™) (by integration by parts and recalling that ¢ vanishes
outside a bounded set)

(0.24) (0:f, @) = J 0if(x)p(x)dx = — J f(x)0i@(x)dx = —(u,0;¢).
Rn Rn

Modelled on that equation we define more generally for any linear form u on D(R™)

(0.25) (O, @) = —(1,0:i0).

Using this trick many classically non-differentiable functions become differentiable (in
this sense). As an example we consider the Heaviside function also sometimes called
step function

A

1 ¢ H

(0.26)  H(x):= { 0 if x<0 &

1 if x>0,

see Figure 0.8. (Note that H is only

defined almost everywhere, i.e., outside )
x=0.) function.

Figure 0.8: The Heaviside step



10 Chapter 0. PRELUDE

Its distributional action is given by
(0.27) (o) = | Hxotax = | 000 ax.
—00 0
And we have for its derivative
(0.28) (H ) = —(H,@’) = — J o'(x)dx = @(0) = 3,9),
0

and hence H' = 9, i.e., the derivative of the step function is the delta-function.

Finishing this preview we mention that distributions (generalised functions) will be de-
fined in Chapter 1 as continuous linear functionals on the space of test functions D,
where a suitable notion of continuity will have to be supplied. We will then see through-
out this course that persistently using the ideas outlined here, one can develop a theory
which can answer satisfactorily all the problems and questions raised in 0.3 and 0.4 and
a whole lot more issues in applications e.g. in physics and in PDE. In particular, it will
provide a very powerful set of tools to study linear PDE.



