Familienname:	Bsp.	1	2	3	4	$\sum /40$	
Vorname:							
Matrikelnummer:							
Studienkennzahl(en):		Note:					

Analysis in einer Variable für LAK Roland Steinbauer, Wintersemester 2012/13

1. Prüfungstermin (11.1.2013)

Gruppe B

- 1. Definitionen, Sätze & Beweise.
 - (a) Definiere die folgenden Begriffe:
 Differenzenquotient, Lipschitz-stetige Funktion, konvexe Funktion, Riemannintegrierbare Funktion (inkl. Ober- und Unterintegral) (1+1+1+2 Punkte)
 - (b) Formuliere den Mittelwertsatz der Differentialrechnung. (1 Punkt)
 - (c) Formuliere den Hauptsatz der Differential- und Integralrechnung und beweise ihn. Wo und wie wird im ersten Teil die Stetigkeit der Funktion verwendet? (8 Punkte)
- 2. Vermischtes.
 - (a) Beweise: Hat eine differenzierbare Funktion $f: I \to \mathbb{R}$ ein lokales Extremum in einem inneren Punkt ξ von I, dann verschwindet $f'(\xi)$. (2 Punkte)
 - (b) Sei $f: I \to \mathbb{R}$ differenzierbar in $\xi \in I$ und sei $f(\xi) \neq 0$. Zeige:

$$\left(\frac{1}{f}\right)'(\xi) = -\frac{f'(\xi)}{f^2(\xi)} \qquad (2 \text{ Punkte})$$

- (c) Sei $f:I\to\mathbb{R}$ differenzierbar in $\xi\in I.$ Zeige, dass f in ξ auch stetig ist. (2 Punkte)
- (d) Zeige: $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$ (2 Punkte)
- 3. Grundideen.
 - (a) Diskutiere die anschauliche Bedeutung des Mittelwertsatzes der Differentialrechnung. (2 Punkte)
 - (b) Diskutiere notwendige und hinreichende Bedingungen für das Auftreten lokaler Extremstellen für (ausreichend oft) differenzierbare Funktionen. Ist die notwendige Bedingung hinreichend bzw. die hinreichende notwendig? (4 Punkte)

Bitte umblättern!

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel. (Je 2 Punkte)

- (a) Sei $f: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion. Dann ist f Riemann-integrierbar auf jedem Intervall [a, b].
- (b) Jede zweimal differenzierbare Funktion ist stetig differenzierbar.

(c)
$$\int_{1}^{\infty} \frac{dx}{x}$$
 konvergiert.

5. Beispiele und Gegenbeispiele.

- (a) Berechne $\int \log(x) dx$. (1 Punkt)
- (b) Sei $f: \mathbb{R} \to (0, \infty)$ differenzierbar. Wo ist $g(x) := \sqrt{f(x)}$ differenzierbar? Berechne die Ableitung von g. (2 Punkte)
- (c) Zeige: |x| ist in x = 0 nicht differenzierbar. (1 Punkt)
- (d) Diskutiere im Detail ein Beispiel einer differenzierbaren Funktion, die nicht stetig differenzierbar ist. (2 Punkte)