
Some prerequisites from integration theory

In this note we recall some basic facts from integration theory which will be used throughout the
course. We consider the material a must in any advanced analysis course. For more details and
further reading see the list of references at the end.

(c) M.K. 2003, R.S. 2010

Integration in Rn

Denote by Q := Πn
j=1[aj , bj ] a compact cube in Rn and let f : Q→ R be a bounded function. For

a partition Z of Q into subcubes Qi we define the upper and lower sums

U(Z) =
∑
i

sup
Qi

f |Qi|, L(Z) =
∑
i

inf
Qi

f |Qi|,

where |Qi| denotes the volume of the cube Qi. We say that f is (Riemann-)integrable over Q
if

inf
Z
U(Z) = sup

Z
L(Z) =:

∫
Q

f(x) dx.

Any continuous f is integrable and Fubini’s theorem tells us that

∫
Q

f(x) dx =

bn∫
an

. . .

b1∫
a1

f(x1, . . . , xn) dx1 . . . dxn.

For Ω ⊂ Rn denote by χΩ the characteristic function of Ω, i.e., χΩ(x) = 1 if x ∈ Ω and
χΩ(x) = 0 for x 6∈ Ω. A bounded set Ω ⊆ Q is called (Jordan-)measurable if χΩ is integrable
over Q. In this case the (Jordan-)volume of Ω is given by

|Ω| :=
∫
Q

χΩ(x) dx =
∫
Ω

dx.

Finally, for f : Ω ⊆ Q→ R with fχΩ integrable over Q we write∫
Ω

f(x) dx :=
∫
Q

f(x)χΩ(x) dx.

Next we discuss changing of variables. Let G ⊆ Rn be open and T : G→ Rn be an injective
C1-function with detDT everywhere positive (or negative). Moreover, let Ω ⊆ G be compact and
measurable and let f : T (Ω) → R be continuous. Then T (G) is measurable and f is integrable
over T (Ω) and we have that ∫

T (Ω)

f(y) dy =
∫
Ω

f(T (x)) |detDT (x)| dx. (1)

Polar and spherical coordinates

A simple and important special case of the above situation are polar coordinates in R2. We set
x1 = r cosϕ and x2 = r sinϕ or more formally

T2 : (r, ϕ) 7→ (r cosϕ, r sinϕ) for 0 ≤ r and 0 ≤ ϕ < 2π
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and observe that T2 is a diffeomorphism from Ω = {(r, ϕ) : 0 < r, 0 < ϕ < 2π} to R2 \ R+
0 . Also

we clearly have that

detDT2 = det
(

cosϕ −r sinϕ
sinϕ r cosϕ

)
= r.

Another important special case is spherical coordinates in R3, where we set

x1 = r cosϕ sin θ1, x2 = r sinϕ sin θ1, and x3 = r cos θ1.

More formally we may write (0 ≤ r, 0 ≤ ϕ < 2π, 0 ≤ θ1 ≤ π)

T3 : (r, ϕ, θ1) 7→ (r cosϕ sin θ1, r sinϕ sin θ1, r cos θ1),

which can be seen to be a diffeomorphism on Ω = {(r, ϕ, θ1) : 0 < r, 0 < ϕ < 2π, 0 < θ1 < π}
with image R3 \ {x : x1 > 0, x2 = 0}. For convenience we rewrite as T3 = Tz ◦Ψ with

Ψ(r, ϕ, θ1) := (r sin θ1, ϕ, r cos θ1) =: (ρ, ϕ, x3), and
Tz(ρ, ϕ, x3) := (T2(ρ, ϕ), x3).

In this way we obtain by the chain rule DT3(r, ϕ, θ1) = DTz(ρ, ϕ, x3) ◦DΨ(r, ϕ, θ1), hence

|detDT3(r, ϕ, θ1)| = |detDTz(ρ, ϕ, x3)| · |detDΨ(r, ϕ, θ1)| = ρr = r2 sin θ1.

This now generalizes easily to the case of arbitrary n. Indeed we set (0 ≤ r, 0 ≤ ϕ < 2π,
0 ≤ θi ≤ π, i = 1, . . . , n− 2)

x1 = r cosϕ sin θ1 sin θ2 sin θ3 . . . . . . . . . . . . sin θn−2

x2 = r sinϕ sin θ1 sin θ2 sin θ3 . . . . . . . . . . . . sin θn−2

x3 = r cos θ1 sin θ2 sin θ3 . . . . . . . . . . . . sin θn−2

x4 = r cos θ2 sin θ3 . . . . . . . . . . . . sin θn−2 (2)
...

xn−1 = r cos θn−3 sin θn−2

xn = r cos θn−2,

or for short
x = Tn(r, ϕ, θ1, . . . , θn−2). (3)

Similar to the above we now have that Tn is a diffeomorphism on (0,∞)× (0, 2π)× (0, π)n−2 with
image Rn \ {x : x1 ≥ 0, x2 = 0} and that

|detDTn| = rn−1 sin θ1(sin θ2)2 . . . (sin θn−2)n−2. (4)

Indeed the latter statement can be proved by induction. To this end we write similar to the above
Tn = Tz ◦Ψ with

Ψ(r, ϕ, θ1, . . . , θn−2) := (r sin θn−2, ϕ, θ1, . . . , θn−3, r cos θn−2) =: (ρ, ϕ, θ1, . . . , θn−3, xn),
Tz(ρ, ϕ, θ1, . . . , θn−3, xn) := (Tn−1(ρ, ϕ, θ1, . . . , θn−3), xn).

Now by the induction hypothesis |detDTz| = ρn−2 sin θ1 . . . (sin θn−3)n−3 and observing that
|detDΨ| = r as well as the definition of ρ we obtain

|detTn| = |detDTz| | detDψ| = rn−1 sin θ1(sin θ2)2 . . . (sin θn−2)n−2.
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Surface integrals

The next topic we discuss is integration over m-dimensional surfaces in Rn. We start with
some linear algebra and recall that given m vectors v1, . . . , vm in Rn the Gram determinant
G(v1, . . . , vm) of v1, . . . , vm is defined by

G(v1, . . . , vm) := det

 〈v1, v1〉 . . . 〈v1, vm〉
...

...
〈vm, v1〉 . . . 〈vm, vm〉

 ,

where 〈 , 〉 denotes the standard scalar product in Rn. Also recall that the volume of the paral-
lelepiped spanned by v1, . . . , vm equals the square root of the Gram determinant, i.e.,

Vol(v1, . . . , vm) =
(
G(v1, . . . , vm)

)1/2
.

In particular, if n = 3 and m = 2 then we have that

Vol(v1, v2) =
√
||v1||2||v2||2 − 〈v1, v2〉2,

the surface of the parallelogram spanned by v1, v2.
Let now Ω ⊆ Rm be open and let S ∈ C1(Ω,Rn) be an immersion, that is

rank(DS(x)) = m for all x ∈ Ω.

Recall that the latter condition is equivalent to linear independence of the vectors D1S(x), . . . ,
DmS(x), which tells us that they span an m-dimensional subspace in Rn. So we call S(Ω) or more
sloppy S an m-dimensional (parametrized) surface in Rn.

Now we want to determine the area of S. To this end we imagine that the surface consist
of many infinitesimal parallelepipeds spanned by D1S(x), . . . , DmS(x) and we have to sum all of
them. Mathematically this sum has to be turned into an integral and so the following definition
is justified: We define the area |S| of S to be

|S| :=
∫
Ω

√
G(DS(y)) dy =

∫
Ω

√
det
(
〈 ∂S
∂yi

,
∂S

∂yj
〉
)m
i,j=1

dy.

One often writes gij(S) = 〈 ∂S∂yi
, ∂S∂yj
〉 and dS(y) =

√
G(DS(y))dy =

√
det gij(S)dy and moreover∫

S
dS(y) =

∫
Ω

√
G(DS(y))dy. With this notation we define for any continuous f : Rn → R the

integral of f over S by ∫
S

f(y) dS(y) :=
∫
Ω

f(S(y))
√
G(DS(y)) dy.

Spheres and balls

As an application of the above we calculate the surface of the unit sphere Sn−1 in Rn as well
as the volume of the unit ball B(0, 1). We again start with some linear algebra and observe that
in the case m = n, hence for vectors v1, . . . vn in Rn we have with A := (v1, . . . , vn) that

G(v1, . . . , vn) = detA2. (5)

Next we parametrize the unit sphere Sn−1 in Rn using (3), i.e,

S := Tn |r=1: (0, 2π)× (0, π)n−2 → Rn

y = (ϕ, θ1, . . . , θn−2) 7→ Tn(1, ϕ, θ1, . . . , θn−2).

3



To determine dS(y) we have to calculate G(DS(y)). To do so we first show that G(DS) =
G(DTn)|r=1 and then use (5) to obtain G(DTn)|r=1 via detDT 2

n which we already know from (4).
Indeed from (2) we see that

〈∂rTn, ∂rTn〉 = 1, 〈∂rTn, ∂ϕTn〉 = 0 = 〈∂rTn, ∂θiTn〉 (1 ≤ i ≤ n− 2),

hence

G(DTn) |r=1= det


1 0 . . . 0
0
... gij(S)
0

 = det(gij(S)) = G(DS)

and so we obtain

dS(y) =
√
G(DS(y))dy =

√
G(DTn) |r=1 dy =

√
(detDTn)2 |r=1 dy = |detDTn|r=1dy

= sin θ1(sin θ2)2 . . . sin(θn−2)n−2dϕdθ1 . . . dθn−2.

Now to compute the area of the unit sphere we just have to evaluate

|Sn−1| ≡ |∂B(0, 1)| =
∫

∂B(0,1)

dS(y)

=

2π∫
0

π∫
0

. . .

π∫
0

sin θ1 . . . sin(θn−2)n−2dϕdθ1 . . . dθn−2 =: nα(n),

and an explicit calculation (cf. e.g. [1, Bsp. (5.7)]) shows that

α(n) =
πn/2

Γ(n2 + 1)
,

where Γ denotes Euler’s gamma function.
Now it is easy to calculate the volume of the unit ball B(0, 1) in Rn: Observe that its

interior B◦(0, 1) is given by B◦(0, 1) = Tn((0, 1) × (0, 2π) × (0, π)n−2) =: Tn(Ω) hence by the
change of variables formula (1) we obtain

|B(0, 1)| = |B◦(0, 1)| =
∫

B◦(0,1)

dx =
∫
Ω

|detDTn(x)| dx

=

1∫
0

2π∫
0

π∫
0

. . .

π∫
0

rn−1 sin θ1 . . . sin(θn−2)n−2dϕdθ1 . . . dθn−1dr

=

1∫
0

rn−1

∫
∂B(0,1)

dS(y) dr =
rn

n
α(n)n |10= α(n).

Finally, we want to integrate some continuous function u over general balls and spheres.
For ∂B(x, r) with arbitrary x ∈ Rn and r > 0 we choose the parametrization

S : y = (ϕ, θ1, . . . θn−2) 7→ x+ Tn(r, ϕ, θ1, . . . θn−2) = x+ r Tn(1, ϕ, θ1, . . . θn−2).

Now we have in analogy to the above that

dS(y) = |detDTn|r = rn−1 sin θ1 . . . sin(θn−2)n−2dϕdθ1 . . . dθn−2,
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and so we obtain∫
∂B(x,r)

u(y)dS(y)

=

2π∫
0

π∫
0

. . .

π∫
0

u(x+ r Tn(1, ϕ, θ1, . . . θn−2) rn−1 sin θ1 . . . sin(θn−2)n−2dϕdθ1 . . . dθn−2

= rn−1

∫
∂B(0,1)

u(x+ ry) dS(y).

Similarly we may write B◦(x, r) = x+ Tn((0, r)× (0, 2π)× (0, π)n−2) =: T (Ω), where we have set
T (s, ϕ, θ1, . . . , θn−2) 7→ x+ Tn(s, ϕ, θ1, . . . , θn−2). This immediately gives∫
B(x,r)

u(x) dx =
∫
Ω

u(T (s, ϕ, θ1, . . . , θn−2)|detDT | d(s, ϕ, θ1, . . . , θn−2)

=

r∫
0

2π∫
0

π∫
0

. . .

π∫
0

u(T (s, ϕ, . . . , θi, . . .)sn−1 sin θ1 . . . sin(θn−2)n−2dϕdθ1 . . . dθn−2ds

=

r∫
0

sn−1

∫
∂B(0,1)

u(x+ sy)dS(y)ds =

r∫
0

∫
∂B(x,s)

u(y)dS(y)ds.

Finally, if we set u ≡ 1 we obtain the area of the spheres as well as the volume of the balls of
radius r

|∂B(x, r)| = rn−1|∂B(0, 1)| = rn−1nα(n)

|B(x, r)| =

r∫
0

sn−1nα(n)ds = rnα(n).

Some integral theorems and formulas

To finish this note we recall the Gaussian divergence theorem and some of its consequences which
are essential in several places of the lecture course.

Let U ⊆ Rn open and bounded with C1-boundary ∂U and outer unit normal vector ν : ∂U →
Rn. Moreover, let F : U → Rn be a C1-function. Then the divergence theorem (see e.g. [1,
§15, Satz 3]) says that ∫

U

divF dx =
∫
∂U

F · ν dS.

In particular, for F of the form F = (0, . . . , 0, u, 0, . . . , 0) where the i-th component of F is given
by some C1-function u : U → R we obtain the Gauss-Green theorem∫

U

uxi
dx =

∫
∂U

uνi dS (1 ≤ i ≤ n).

Applying this formula with u replaced by the product uv of some C1(U)-functions u, v we obtain
the integration by parts formula∫

u

uxi
v dx = −

∫
U

uvxi
dx +

∫
∂U

uv νi dS.

The following so-called Gaussian formulas for u, v ∈ C2(U)-functions are again easy conse-
quences of the integration by parts formula:
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(i)
∫
U

4u dx =
∫
∂U

∂u

∂ν
dS

(ii)
∫
U

Du ·Dv dx = −
∫
U

u4 v dx +
∫
∂U

u
∂v

∂ν
dS

(iii)
∫
U

(
u4 v − v4 u

)
dx =

∫
∂U

(
u
∂v

∂ν
− v

∂u

∂ν

)
dS
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