The singularity theorems of General Relativity and their low regularity extensions

Roland Steinbauer Faculty of Mathematics, University of Vienna

Melanie Graf, James Grant,
Michael Kunzinger & James Vickers

TMF 2024, Turin, September 2024

The singularity theorems in General Relativity

About

- rigorous results in Lorentzian differential geometry
- physically reasonable ass. (collapse, expanding univ.) → singularities
- ullet singularity \sim incomplete causal geodesic
- occurrence of spacetime singularities as a generic feature of GR

The singularity theorems in General Relativity

About

- rigorous results in Lorentzian differential geometry
- physically reasonable ass. (collapse, expanding univ.) → singularities
- ullet singularity \sim incomplete causal geodesic
- occurrence of spacetime singularities as a generic feature of GR

Why should you care?

- integral part of GR, especially of causality theory
- Roger Penrose's 2020 Nobel Prize in Physics

The singularity theorems in General Relativity

About

- rigorous results in Lorentzian differential geometry
- physically reasonable ass. (collapse, expanding univ.) → singularities
- ullet singularity \sim incomplete causal geodesic
- occurrence of spacetime singularities as a generic feature of GR

Why should you care?

- integral part of GR, especially of causality theory
- Roger Penrose's 2020 Nobel Prize in Physics

Here: Explain the structure of arguments & low regularity extensions

- ullet causality theory for metrics down to g (loc. Lipschitz) continuous
- analysis of geodesic focusing down to $g \in C^1$, or locally Lipschitz

The structure of the singularity theorems

Pattern theorem (Senovilla, 1998)

A spacetime (M, g) is singular if it satisfies:

- (I) A suitable initial condition,
- (E) a condition on the curvature (energy condition),
- (C) a causality condition.

The structure of the singularity theorems

Pattern theorem (Senovilla, 1998)

A spacetime (M, g) is singular if it satisfies:

- (I) A suitable initial condition,
- (E) a condition on the curvature (energy condition),
- (C) a causality condition.

geometric conditions to be fed into analytic machinery

global structure of spacetime

The structure of the singularity theorems

Pattern theorem (Senovilla, 1998)

A spacetime (M, g) is singular if it satisfies:

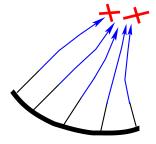
- (I) A suitable initial condition,
- (E) a condition on the curvature (energy condition),
- (C) a causality condition.

geometric conditions to be fed into analytic machinery

global structure of spacetime

- (I) → causal geodesics start focusing
- (E) → focusing goes on (Raychaud. Riccati)
 - → focal/conjugate point
 - → geos. stop maximising
- (C) → there are maximising causal geos

Resolution: some causal geodesics stop existing before (first) conjugate point



The three classical theorems

Thm. (Penrose, 1965) A spacetime is future null incomplete if

- (E) $Ric(X, X) \ge 0$ for all X null (NEC)
- (C) there is a non-compact Cauchy hypersurface Σ
- (I) there is a future trapped surface S $(\Theta^{\pm} < 0)$

The three classical theorems

Thm. (Penrose, 1965) A spacetime is future null incomplete if

- (E) $Ric(X, X) \ge 0$ for all X null (NEC)
- (C) there is a non-compact Cauchy hypersurface Σ
- (I) there is a future trapped surface S ($\Theta^{\pm} < 0$)

Thm. (Hawking, 1967) A spacetime is f. tl. incomplete (w. $\tau_{\Sigma} \leq \frac{1}{b}$) if

- (E) $Ric(X, X) \ge 0$ for all X timelike (SEC),
- (C) there is a compact spacelike Cauchy surface Σ with
- (I) everywhere positive future convergence $(k = 1/(n-1) \text{ tr} S_{\nu} \geq b > 0)$.

The three classical theorems

Thm. (Penrose, 1965) A spacetime is future null incomplete if

- (E) $Ric(X, X) \ge 0$ for all X null (NEC)
- (C) there is a non-compact Cauchy hypersurface Σ
- (I) there is a future trapped surface S ($\Theta^{\pm} < 0$)

Thm. (Hawking, 1967) A spacetime is f. tl. incomplete (w. $\tau_{\Sigma} \leq \frac{1}{b}$) if

- (E) $Ric(X, X) \ge 0$ for all X timelike (SEC),
- (C) there is a compact spacelike Cauchy surface Σ with
- (I) everywhere positive future convergence $(k = 1/(n-1) \text{ tr} S_{\nu} \geq b > 0)$.

Thm. (Hawking and Penrose, 1970)

Improvements:

- (E) (SEC) and genericity (C) chronological (only!)
- (I) cp. achronal set w/o. edge, trapped surface/point/submanifold

- Geodesic curves $\gamma:I \to M$ with $\nabla_{\dot{\gamma}}\dot{\gamma}=0$
- ullet For data $p\in M$, $v\in T_pM$ unique maximally extended solution on $I_{p,v}$

- Geodesic curves $\gamma:I \to M$ with $\nabla_{\dot{\gamma}}\dot{\gamma}=0$
- For data $p \in M$, $v \in T_pM$ unique maximally extended solution on $I_{p,v}$ Maximise (Lorentzian) distance until first conjuagte point (\sim almost meeting point of geodesics)

- Geodesic curves $\gamma:I o M$ with $\nabla_{\dot{\gamma}}\dot{\gamma}=0$
- For data $p \in M$, $v \in T_pM$ unique maximally extended solution on $I_{p,v}$ Maximise (Lorentzian) distance until first conjuagte point (\sim almost meeting point of geodesics)
- conjugate point \iff **Expansion** $\theta = -\infty$; obeys **Raychaudhuri eq.**

$$\dot{\theta} = -\operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) - \operatorname{tr}(\sigma^2) - \frac{\theta^2}{3}$$

- Geodesic curves $\gamma:I o M$ with $\nabla_{\dot{\gamma}}\dot{\gamma}=0$
- For data $p \in M$, $v \in T_pM$ unique maximally extended solution on $I_{p,v}$ Maximise (Lorentzian) distance until first conjuagte point (\sim almost meeting point of geodesics)
- conjugate point \iff **Expansion** $\theta = -\infty$; obeys **Raychaudhuri eq.**

$$\dot{\theta} = -\operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) - \operatorname{tr}(\sigma^2) - \frac{\theta^2}{3}$$

- second term non-positive
- Assume energy condition: $|\operatorname{Ric}(\dot{\gamma},\dot{\gamma})\geq 0|$ (SEC) or (NEC)

- Geodesic curves $\gamma:I o M$ with $abla_{\dot{\gamma}}\dot{\gamma}=0$
- For data $p \in M$, $v \in T_pM$ unique maximally extended solution on $I_{p,v}$ Maximise (Lorentzian) distance until first conjuagte point (\sim almost meeting point of geodesics)
- conjugate point \iff **Expansion** $\theta = -\infty$; obeys **Raychaudhuri eq.**

$$\dot{\theta} = -\operatorname{\mathsf{Ric}}(\dot{\gamma},\dot{\gamma}) - \operatorname{tr}(\sigma^2) - \frac{\theta^2}{3} \leq -\frac{\theta^2}{3}$$

- second term non-positive
- Assume energy condition: $|\operatorname{Ric}(\dot{\gamma},\dot{\gamma})\geq 0|$ (SEC) or (NEC)
- Assume initial condition: $\theta(0) < 0$ $\implies \theta \to -\infty$ for some t in $[0, -3/\theta(0)) \implies$ conjugate point

- Geodesic curves $\gamma:I \to M$ with $\nabla_{\dot{\gamma}}\dot{\gamma}=0$
- For data $p \in M$, $v \in T_pM$ unique maximally extended solution on $I_{p,v}$ Maximise (Lorentzian) distance until first conjuagte point (\sim almost meeting point of geodesics)
- conjugate point \iff **Expansion** $\theta = -\infty$; obeys **Raychaudhuri eq.**

$$\dot{\theta} = -\operatorname{\mathsf{Ric}}(\dot{\gamma},\dot{\gamma}) - \operatorname{tr}(\sigma^2) - \frac{\theta^2}{3} \leq -\frac{\theta^2}{3}$$

- second term non-positive
- Assume energy condition: $|\operatorname{Ric}(\dot{\gamma},\dot{\gamma})\geq 0|$ (SEC) or (NEC)
- Assume initial condition: $\theta(0) < 0$ $\implies \theta \to -\infty$ for some t in $[0, -3/\theta(0)) \implies$ conjugate point

Message: Bounds on Ricci curvature bound length of maximisers.

- intuitively unbounded curvature
- by definition: causal geodesic incompleteness

- intuitively unbounded curvature
- by definition: causal geodesic incompleteness
 - + allows to prove geometric results
 - + even more objectionable; completeness as minimal condition
 - +/- singularities *not in* spacetime, rather boundary point
 - hard to relate to curvature blow up; trivially cutting out pts.

- intuitively unbounded curvature
- by definition: causal geodesic incompleteness
 - + allows to prove geometric results
 - + even more objectionable; completeness as minimal condition
 - +/- singularities *not in* spacetime, rather boundary point
 - hard to relate to curvature blow up; trivially cutting out pts.
- → question of extensions
 - ullet causal geodesic completeness \Longrightarrow inextendability
 - ightarrow extendability as a source of incompletness has to be avoided
 - apply thms. to maximally extended spacetimes

- intuitively unbounded curvature
- by definition: causal geodesic incompleteness
 - + allows to prove geometric results
 - + even more objectionable; completeness as minimal condition
 - +/- singularities *not in* spacetime, rather boundary point
 - hard to relate to curvature blow up; trivially cutting out pts.
- → question of extensions
 - ullet causal geodesic completeness \Longrightarrow inextendability
 - → extendability as a source of incompletness has to be avoided
 - apply thms. to maximally extended spacetimes
 - !! Here **regularity of extensions** becomes an issue classical thms. only rule out C^2 -extensions but extensions are ok as long as field equations make sense

• classical: $g \in C^2 \rightarrow \text{Ricci curvature} \left| \text{Ric} \sim \partial^2 g (\partial g)^2 \right| \text{continuous}$

- ullet classical: $g \in \mathcal{C}^2 \leadsto \mathsf{Ricci}$ curvature $\boxed{\mathsf{Ric} \sim \partial^2 g \, (\partial g)^2}$ continuous
- $g \in C^{1,1}$: first derivatives Lipschitz, finite jump of matter variables \checkmark all three classical thms. [KSSV,15], [KSV,15], [GGKS,18]

- ullet classical: $g \in \mathcal{C}^2 \leadsto \mathsf{Ricci}$ curvature $\boxed{\mathsf{Ric} \sim \partial^2 g \, (\partial g)^2}$ continuous
- $g \in C^{1,1}$: first derivatives Lipschitz, finite jump of matter variables \checkmark all three classical thms. [KSSV,15], [KSV,15], [GGKS,18]
- $g \in C^1$: i.v.p. for geodesic eq. not uniquely solvable \checkmark all three class. thms. & Gannon-Lee [Graf,20], [KOSS,22], [SS,21]

- classical: $g \in \mathcal{C}^2 \leadsto \mathsf{Ricci}$ curvature $\left[\mathsf{Ric} \sim \partial^2 g \, (\partial g)^2 \right]$ continuous
- $g \in C^{1,1}$: first derivatives Lipschitz, finite jump of matter variables \checkmark all three classical thms. [KSSV,15], [KSV,15], [GGKS,18]
- $g \in C^1$: i.v.p. for geodesic eq. not uniquely solvable \checkmark all three class. thms. & Gannon-Lee [Graf,20], [KOSS,22], [SS,21]
- g ∈ Lip: argued for in [Hawking & Ellis,73]
 √ Hawking thm. [CGHKS,24]; the rest is work in progress

- ullet classical: $g \in \mathcal{C}^2 \leadsto \mathsf{Ricci}$ curvature $\boxed{\mathsf{Ric} \sim \partial^2 g \, (\partial g)^2}$ continuous
- $g \in C^{1,1}$: first derivatives Lipschitz, finite jump of matter variables \checkmark all three classical thms. [KSSV,15], [KSV,15], [GGKS,18]
- $g \in C^1$: i.v.p. for geodesic eq. not uniquely solvable \checkmark all three class. thms. & Gannon-Lee [Graf,20], [KOSS,22], [SS,21]
- g ∈ Lip: argued for in [Hawking & Ellis,73]
 ✓ Hawking thm. [CGHKS,24]; the rest is work in progress
- alternative settings
 - causal extensions [Minguzzi,19]
 - synthetic sectional curvatue bounds [Graf, Kunzinger, Grant, 19]
 - synthetic Ricci bounds [Cavalletti & Mondino,20], ...

- ullet classical: $g \in \mathcal{C}^2 \leadsto \mathsf{Ricci}$ curvature $\boxed{\mathsf{Ric} \sim \partial^2 g \, (\partial g)^2}$ continuous
- $g \in C^{1,1}$: first derivatives Lipschitz, finite jump of matter variables \checkmark all three classical thms. [KSSV,15], [KSV,15], [GGKS,18]
- $g \in C^1$: i.v.p. for geodesic eq. not uniquely solvable \checkmark all three class. thms. & Gannon-Lee [Graf,20], [KOSS,22], [SS,21]
- g ∈ Lip: argued for in [Hawking & Ellis,73]
 ✓ Hawking thm. [CGHKS,24]; the rest is work in progress
- alternative settings
 - causal extensions [Minguzzi,19]
 - synthetic sectional curvatue bounds [Graf, Kunzinger, Grant, 19]
 - synthetic Ricci bounds [Cavalletti & Mondino,20], ...

Main challenges

- (1) extend causality theory: deprived of main geometric tools
- (2) extend analytic core: focusing under distributional curvature bds.

• systematic studies since [Chrusciel & Grant,12], [Fathi & Siconolfi,12]

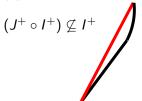
- systematic studies since [Chrusciel & Grant,12], [Fathi & Siconolfi,12]
- \checkmark $C^{1,1}$: bulk of causality works [Minguzzi, 15], [KSSV,14]

- systematic studies since [Chrusciel & Grant,12], [Fathi & Siconolfi,12]
- \checkmark $C^{1,1}$: bulk of causality works [Minguzzi, 15], [KSSV,14]
- \checkmark $C^{0,1}$: most things work [Minguzzi, 19] although convexity fails ! \checkmark !

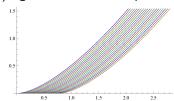
- systematic studies since [Chrusciel & Grant,12], [Fathi & Siconolfi,12]
- \checkmark $C^{1,1}$: bulk of causality works [Minguzzi, 15], [KSSV,14]
- \checkmark $C^{0,1}$: most things work [Minguzzi, 19] although convexity fails ! \checkmark !
- !X! below Lipschitz: some fundamentals break down [CG, 12]

- systematic studies since [Chrusciel & Grant,12], [Fathi & Siconolfi,12]
- \checkmark $C^{1,1}$: bulk of causality works [Minguzzi, 15], [KSSV,14]
- \checkmark $C^{0,1}$: most things work [Minguzzi, 19] although convexity fails ! \checkmark !
- !X! below Lipschitz: some fundamentals break down [CG, 12]

- systematic studies since [Chrusciel & Grant,12], [Fathi & Siconolfi,12]
- \checkmark $C^{1,1}$: bulk of causality works [Minguzzi, 15], [KSSV,14]
- \checkmark $C^{0,1}$: most things work [Minguzzi, 19] although convexity fails ! \checkmark !
- !X! below Lipschitz: some fundamentals break down [CG, 12]
 - (1) push up principle fails



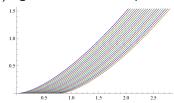
(2) light cones bubble up



(3) The future I^+ needs not to be open [GKS,20]

- systematic studies since [Chrusciel & Grant,12], [Fathi & Siconolfi,12]
- \checkmark $C^{1,1}$: bulk of causality works [Minguzzi, 15], [KSSV,14]
- \checkmark $C^{0,1}$: most things work [Minguzzi, 19] although convexity fails ! \checkmark !
- !X! below Lipschitz: some fundamentals break down [CG, 12]
 - (1) push up principle fails

(2) light cones bubble up



- (3) The future I^+ needs not to be open [GKS,20]
- ✓ some topological features are more robust: Avez-Seifert [Sämann, 16] cone structures [Bernard & Suhr, 18], [Minguzzi, 19]

Key analytic techniques: convolution & Friedrichs lemma

Basis: chartwise regularisation of metric by convolution

$$g_{\varepsilon}(x) := g \star_{M} \rho_{\varepsilon}(x) := \sum_{i} \chi_{i}(x) \psi_{i}^{*} \Big((\psi_{i} * (\zeta_{i} \cdot g)) * \rho_{\varepsilon} \Big)(x).$$

Key analytic techniques: convolution & Friedrichs lemma

Basis: chartwise regularisation of metric by convolution

$$g_{\varepsilon}(x) := g \star_{M} \rho_{\varepsilon}(x) := \sum_{i} \chi_{i}(x) \psi_{i}^{*} \Big((\psi_{i} * (\zeta_{i} \cdot g)) * \rho_{\varepsilon} \Big)(x).$$

Lemma (Regularisation for Lipschitz g)

There are smooth Lorentzian metrics \check{g}_{ε} , \hat{g}_{ε} with

- $\check{g}_{\varepsilon} \prec g \prec \hat{g}_{\varepsilon}$ sandwiched light cones via tweaked convolution
- \check{g}_{ε} , $\hat{g}_{\varepsilon} \to g$ in $W^{1,p}_{\mathrm{loc}}(M)$ $(1 \le p < \infty)$

Key analytic techniques: convolution & Friedrichs lemma

Basis: chartwise regularisation of metric by convolution

$$g_{\varepsilon}(x) := g \star_{M} \rho_{\varepsilon}(x) := \sum_{i} \chi_{i}(x) \psi_{i}^{*} \Big((\psi_{i} * (\zeta_{i} \cdot g)) * \rho_{\varepsilon} \Big)(x).$$

Lemma (Regularisation for Lipschitz g)

There are smooth Lorentzian metrics \check{g}_{ε} , \hat{g}_{ε} with

- $\check{g}_{\varepsilon} \prec g \prec \hat{g}_{\varepsilon}$ sandwiched light cones via tweaked convolution
- ullet $\check{g}_{arepsilon},\ \hat{g}_{arepsilon} o g\ ext{in}\ W^{1,p}_{\mathrm{loc}}(M)\quad (1\leq p<\infty)$

Non-smooth focusing: The rough guide

- **①** Formulate distributional (EC) for $g \in \text{Lip}$
- ② Derive surrogate (EC) for $Ric[\check{g}_{\varepsilon}](X,X)$ (on K cp.)
- \odot still show smooth focusing for \check{g}_{ε} -geodesics
- lacktriangledown show that geos of g stop maximising/existing ...extend causality

<ロト <部ト <きト <きト。

...extend analysis

Non-smooth focusing: Following the rough guide

- Start with distributional condition $Ric[g] \ge 0$
- Problem: $Ric[\check{g}_{\varepsilon}] \to Ric[g]$ only distributionally \sim cannot carry $Ric[g] \ge 0$ through construction

Non-smooth focusing: Following the rough guide

- ullet Start with distributional condition $\mathrm{Ric}[g] \geq 0$
- Problem: $Ric[\check{g}_{\varepsilon}] \to Ric[g]$ only distributionally \sim cannot carry $Ric[g] \ge 0$ through construction
- Solution: compatibility of distinct regularisations $\operatorname{Ric}[\check{g}_{\varepsilon}] \ \ \operatorname{\underline{Ric}}[g] \star_M \rho_{\varepsilon} \quad \text{locally uniformly only for } g \in C^1$ standard Friedrichs, conv. of geodesics

Lemma (Compatibility of regularisations for $g \in Lip$)

- $\|\operatorname{Ric}[\check{g}_{\varepsilon}] \operatorname{Ric}[g] \star_{M} \rho_{\varepsilon}\|_{L^{p}(K)} \to 0 \ (1 \leq p < \infty)$
- $\|\operatorname{Ric}[\check{g}_{\varepsilon}] \operatorname{Ric}[g] \star_{M} \rho_{\varepsilon}\|_{L^{\infty}(K)} \le C_{K}$ (advanced Friedrichs lemma)

Non-smooth focusing: Following the rough guide

- ullet Start with distributional condition $\mathrm{Ric}[g] \geq 0$
- Problem: $\mathrm{Ric}[\check{g}_{\varepsilon}] \to \mathrm{Ric}[g]$ only distributionally \sim cannot carry $\mathrm{Ric}[g] \geq 0$ through construction
- Solution: compatibility of distinct regularisations $\operatorname{Ric}[\check{g}_{\varepsilon}] \ \ \operatorname{Ric}[g] \star_M \rho_{\varepsilon} \quad \text{locally uniformly only for } g \in C^1$ standard Friedrichs, conv. of geodesics

Lemma (Compatibility of regularisations for $g \in Lip$)

- $\|\operatorname{Ric}[\check{g}_{\varepsilon}] \operatorname{Ric}[g] \star_{M} \rho_{\varepsilon}\|_{L^{p}(K)} \to 0 \ (1 \leq p < \infty)$
- $\|\operatorname{Ric}[\check{g}_{\varepsilon}] \operatorname{Ric}[g] \star_{M} \rho_{\varepsilon}\|_{L^{\infty}(K)} \leq C_{K}$ (advanced Friedrichs lemma)

Feed into the geometric focusing machinery via

- volume estimates [Treude & Grant, 13]
- segment inequality [Graf, Kontou, Ohanyan, Schinnerl, 24]
 estimate line ∫ by volume ∫ inspired by [Cheeger & Colding, 96]

Thm. (Penrose, 1965) A C-spacetime is future null incomplete if

- (E) $Ric(X, X) \ge 0$ for all X null (NEC)
- (C) there is a non-compact Cauchy hypersurface Σ
 - (I) there is an achronal closed future trapped surface S $(\Theta^{\pm} < 0)$

Thm. (Graf, 2020) A C¹-spacetime is future null incomplete if

- (E) $Ric(X,X) \ge 0$ for all X null as distribution (DNEC)
- (C) there is a non-compact Cauchy hypersurface Σ
- (I) there is an achronal closed future trapped surface S $(\Theta^{\pm} < 0)$

Thm. (Graf, 2020) A C-spacetime is future null incomplete if

- (E) $Ric(X, X) \ge 0$ for all X null as distribution (DNEC)
- (C) there is a non-compact Cauchy hypersurface Σ
 - (I) there is an achronal closed future trapped surface S $(\Theta^{\pm} < 0)$

Thm. (Hawking, 1967)

Let g be a C^2 -metric s.t.

- (E) $Ric(X, X) \ge 0$ for all X timelike (SEC)
- (C) there is a smooth spacelike Cauchy surface Σ with
- (I) everywhere positive future convergence $(k=1/(n-1) \text{ tr} S_{\nu} \geq b > 0)$ then the future time separation τ_{Σ} from Σ is bounded by $\tau_{\Sigma} \leq \frac{1}{h}$.

Thm. (Graf, 2020) A C-spacetime is future null incomplete if

- (E) $Ric(X, X) \ge 0$ for all X null as distribution (DNEC)
- (C) there is a non-compact Cauchy hypersurface Σ
 - (I) there is an achronal closed future trapped surface S $(\Theta^{\pm} < 0)$

Thm. (CGHKS, 2024)

Let g be a loc. Lipschitz metric s.t.

- (E) $Ric(X, X) \ge 0$ for all X timelike as distribution (DSEC)
- (C) there is a smooth spacelike Cauchy surface Σ with
- (I) slab mean curvature bounded below by b > 0.

then the future time separation τ_{Σ} from Σ is bounded by $\tau_{\Sigma} \leq \frac{1}{b}$.

The Hawking-Penrose theorem in C^1

Thm. (Hawking, Penrose, 1970) A C2-spacetime is caus. incompl. if

- (E) (SEC) and the genericity cond. hold i.e.,
 - $\forall \gamma \quad \exists t_0: \quad R(.,\dot{\gamma})\dot{\gamma}: \left[\dot{\gamma}(t_0)\right]^{\perp}
 ightarrow \left[\dot{\gamma}(t_0)\right]^{\perp} \quad \mathsf{non-trivial} \qquad \mathsf{(GC)}$
- (C) it is chronological and it has at least one of
- (11) a cp. achronal set without edge, (12) a future trapped surface
- (13) a closed future trapped submanifold w. $\sum_{i=1}^{n-m} \langle R(E_i, \dot{\gamma}) \dot{\gamma}, E_i \rangle \geq 0$
- (I3) a future trapped point .

The Hawking-Penrose theorem in C^1

Thm. (KOSS, 2022)

A C¹-spacetime is caus. incompl. if

(E) (DSEC) and the \mathcal{D}' -genericity cond. hold i.e.,

$$\forall \gamma \quad g(R(\tilde{X}, \tilde{V})\tilde{V}, \tilde{X}) \ge C > 0 \text{ in } \mathcal{D}'^{(1)}(U)$$
 (DGC)

- (C) it is causal
- (B) it is maximally, causally non-branching and it has at least one of
- (I1) a cp. achronal set without edge, (I2) a future trapped C^0 -surface
- (13) a closed future trapped C^0 -submanifold w. $\sum_{i=1}^{n-m} \langle R(E_i, \dot{\gamma}) \dot{\gamma}, E_i \rangle \geq 0$
- (13) a future trapped point all in the support sense.

The Hawking-Penrose theorem in C^1

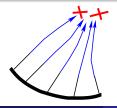
Thm. (KOSS, 2022)

A C¹-spacetime is caus. incompl. if

(E) (DSEC) and the \mathcal{D}' -genericity cond. hold i.e.,

$$\forall \gamma \quad g(R(\tilde{X}, \tilde{V})\tilde{V}, \tilde{X}) \ge C > 0 \text{ in } \mathcal{D}'^{(1)}(U)$$
 (DGC)

- (C) it is causal
- (B) it is maximally, causally non-branching and it has at least one of
- (I1) a cp. achronal set without edge, (I2) a future trapped C^0 -surface
- (13) a closed future trapped C^0 -submanifold w. $\sum_{i=1}^{n-m} \langle R(E_i, \dot{\gamma}) \dot{\gamma}, E_i \rangle \geq 0$
- (13) a future trapped point all in the support sense.



or



Summary, discussion, results beyond the spacetime setting

- (0) spacetime results above for $g \in C^1/\text{Lipschitz}$
 - close to the class. results; natural extensions of most notions
 - but additional non-branching assumption in HP-thm.
 - rely on **extensions** of **causality** theory & **focusing** results
 - segment inequality (worldvolume, QEIs): ∼ semi-classical thms.
 - further prospects $g\in {\sf Lip.}\ H^{\frac{5}{2}+arepsilon}$, $(
 abla\in L^2)$, GT-class $g\in H^1\cap L^\infty$

Summary, discussion, results beyond the spacetime setting

- (0) spacetime results above for $g \in C^1/\text{Lipschitz}$
 - close to the class. results; natural extensions of most notions
 - but additional **non-branching** assumption in HP-thm.
 - rely on **extensions** of **causality** theory & **focusing** results
 - segment inequality (worldvolume, QEIs): \sim semi-classical thms.
 - further prospects $g \in \text{Lip. } H^{\frac{5}{2}+\varepsilon}$, $(\nabla \in L^2)$, GT-class $g \in H^1 \cap L^{\infty}$
- (1) causal cone structures [Minguzzi, 2019]
 - \bullet upper semi-cont. distribution of cones on M (generalises light cones)
 - causal core of singularity theorems may be established
 - analytic parts (ECs) only to produce sets with specific causality props.

(Causal Penrose theorem, Minguzzi, 2019)

Let (M,C) be a globally hyperbolic closed cone structure admitting a non-compact stable Cauchy hypersurface Σ . Then there are no compact future trapped sets and if Σ is non-empty and compact there is an inextendible future null geodesic entirely contained in $E^+(S)$.

- (2) Synthetic approaches: Lorentzian length spaces
 - causal space $(X, d, \leq \ll, \tau)$ with τ intrinsic
 - (timelike) sectional curvature bounds via triangle comparison

- (2) Synthetic approaches: Lorentzian length spaces
 - causal space $(X, d, \leq \ll, \tau)$ with τ intrinsic
 - (timelike) sectional curvature bounds via triangle comparison

(Synthetic Hawking Thm., Alexander, Graf, Kunzinger, Sämann, 22)

Let $Y=(a,b)\times_f X$ be a warped product $(X \text{ metric length space}, f\in C^\infty$, non-const.) with positive timelike sectional curvature. Then $a>-\infty$ or $b<\infty$ and hence Y is past/future timelike geodesically incomplete.

- (2) Synthetic approaches: Lorentzian length spaces
 - causal space $(X, d, \leq \ll, \tau)$ with τ intrinsic
 - (timelike) sectional curvature bounds via triangle comparison

(Synthetic Hawking Thm., Alexander, Graf, Kunzinger, Sämann, 22)

Let $Y=(a,b)\times_f X$ be a warped product $(X \text{ metric length space}, f\in C^\infty$, non-const.) with positive timelike sectional curvature. Then $a>-\infty$ or $b<\infty$ and hence Y is past/future timelike geodesically incomplete.

$$L(\gamma = (\alpha, \beta)) = \int \sqrt{\dot{\alpha}^2 - (f \circ \alpha)^2 v_{\beta}^2}$$
 with v_{β} the metric derivative.

- (2) Synthetic approaches: Lorentzian length spaces
 - causal space $(X, d, \leq \ll, \tau)$ with τ intrinsic
 - (timelike) sectional curvature bounds via triangle comparison
 - Ricci bds via optimal transport (RCD-spaces, Lott-Villani, Sturm)
 - smooth metric measure spacetimes [McCann, 20], [Mondino, Suhr, 22]
 - [Cavaletti, Mondino, 22-24] TCD(K,N) and TMCP(K,N) properties

- (2) Synthetic approaches: Lorentzian length spaces
 - causal space $(X, d, \leq \ll, \tau)$ with τ intrinsic
 - (timelike) sectional curvature bounds via triangle comparison
 - Ricci bds via optimal transport (RCD-spaces, Lott-Villani, Sturm)
 - smooth metric measure spacetimes [McCann, 20], [Mondino, Suhr, 22]
 - [Cavaletti, Mondino, 22-24] TCD(K,N) and TMCP(K,N) properties

(TMCP-Hawking Theorem, Cavaletti, Mondino, 2022)

Let X be a timelike non-branching, globally hyperbolic LLS with a TMCP property. Let V be a Borel achronal future timelike complete subset with mean curvature bded above. Then every future timelike geodesic starting in V has a bounded maximal domain of existence.

- (2) Synthetic approaches: Lorentzian length spaces
 - causal space $(X, d, \leq \ll, \tau)$ with τ intrinsic
 - (timelike) sectional curvature bounds via triangle comparison
 - Ricci bds via optimal transport (RCD-spaces, Lott-Villani, Sturm)
 - smooth metric measure spacetimes [McCann, 20], [Mondino, Suhr, 22]
 - [Cavaletti, Mondino, 22-24] TCD(K,N) and TMCP(K,N) properties

(TMCP-Hawking Theorem, Cavaletti, Mondino, 2022)

Let X be a timelike non-branching, globally hyperbolic LLS with a TMCP property. Let V be a Borel achronal future timelike complete subset with mean curvature bded above. Then every future timelike geodesic starting in V has a bounded maximal domain of existence.

- synthetic (NEC) [McCann, 23], [Braun, McCann, 24]
- first-order Sobolev calculus on metric measure spacetimes (maximal weak subslope of time functions akin L-modulus of diff.)
 [Beran, Braun, Calisti, Gigli, McCann, Ohanyan, Rott, Sämann, 24]

Some Literature

- [CV,24] F. Cavalletti and A. Mondino. Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications. Camb. J. Math., 12(2):417–534, 2024.
- [GGKS,18] M. Graf, J. Grant, M. Kunzinger, R. Steinbauer, The Hawking-Penrose Singularity Theorem for C^{1,1}-Lorentzian Metrics. Commun. Math. Phys., 360(3): 1009–1042, 2018.
- [G,20] M. Graf, Singularity theorems for C^1 -Lorentzian metrics. *Commun. Math. Phys.*, 378(2):1417–1450, 2020.
- [GKOS,22] M. Graf, E.-A. Kontou, A. Ohanyan, and B. Schinnerl, Hawking-type singularity theorems for worldvolume energy inequalities. *Lett. Math. Phys.* 2024.
- [KOSS,22] M. Kunzinger, A. Ohanyan, B. Schinnerl, R. Steinbauer, The Hawking- Penrose Singularity Theorem for C^1 -Lorentzian Metrics. *Commun. Math. Phys.*, 391:1143–1179, 2022.
- [S,23] R. Steinbauer, The singularity theorems of General Relativity and their low regularity extensions. *Jb. Dt. Math.-Ver.* 125(2), 73–119, 2023