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The singularity theorems in General Relativity

About

rigorous results in Lorentzian differential geometry

physically reasonable ass. (collapse, expanding univ.) ; singularities

singularity ∼ incomplete causal geodesic

occurrence of spacetime singularities as a generic feature of GR

Why should you care?

integral part of GR, especially of causality theory

Roger Penrose’s 2020 Nobel Prize in Physics

Here: Explain the structure of arguments & low regularity extensions

causality theory for metrics down to g (loc. Lipschitz) continuous

analysis of geodesic focusing down to g ∈ C 1, or locally Lipschitz
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The structure of the singularity theorems

Pattern theorem (Senovilla, 1998)

A spacetime (M, g) is singular if it satisfies:

(I) A suitable initial condition,

(E) a condition on the curvature (energy condition),

(C) a causality condition.

(I) ; causal geodesics start focusing
(E) ; focusing goes on (Raychaud. Riccati)

; focal/conjugate point
; geos. stop maximising

(C) ; there are maximising causal geos

Resolution: some causal geodesics
stop existing before (first) conjugate point
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geometric conditions
to be fed into analytic
machinery

global structure of spacetime
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The three classical theorems

Thm. (Penrose, 1965) A spacetime is future null incomplete if

(E) Ric (X ,X ) ≥ 0 for all X null (NEC)

(C) there is a non-compact Cauchy hypersurface Σ

(I) there is a future trapped surface S (Θ± < 0)

Thm. (Hawking, 1967) A spacetime is f. tl. incomplete (w. τΣ ≤ 1
b
) if

(E) Ric (X ,X ) ≥ 0 for all X timelike (SEC),

(C) there is a compact spacelike Cauchy surface Σ with

(I) everywhere positive future convergence (k = 1/(n− 1) trSν ≥ b > 0).

Thm. (Hawking and Penrose, 1970) Improvements:

(E) (SEC) and genericity (C) chronological (only!)

(I) cp. achronal set w/o. edge, trapped surface/point/submanifold
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Analytic core: geodesic focusing under curvature bds.

Geodesic curves γ : I → M with ∇γ̇ γ̇ = 0

For data p ∈ M, v ∈ TpM unique maximally extended solution on Ip,v

Maximise (Lorentzian) distance until first conjuagte point
. (∼ almost meeting point of geodesics)

conjugate point ⇐⇒ Expansion θ = −∞; obeys Raychaudhuri eq.

θ̇ = −Ric (γ̇, γ̇)− tr(σ2)− θ2

3
– second term non-positive

– Assume energy condition: Ric(γ̇, γ̇) ≥ 0 (SEC) or (NEC)

– Assume initial condition: θ(0) < 0
=⇒ θ → −∞ for some t in [0,−3/θ(0)) =⇒ conjugate point

Message: Bounds on Ricci curvature bound length of maximisers.
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On the nature of singularities in GR

intuitively unbounded curvature

by definition: causal geodesic incompleteness

+ allows to prove geometric results

+ even more objectionable; completeness as minimal condition

+/- singularities not in spacetime, rather boundary point

– hard to relate to curvature blow up; trivially cutting out pts.

; question of extensions

causal geodesic completeness =⇒ inextendability

; extendability as a source of incompletness has to be avoided

apply thms. to maximally extended spacetimes

!! Here regularity of extensions becomes an issue
classical thms. only rule out C 2-extensions
but extensions are ok as long as field equations make sense
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Low regularity: What can be done?

classical: g ∈ C 2 ; Ricci curvature Ric ∼ ∂2g (∂g)2 continuous

g ∈ C 1,1: first derivatives Lipschitz, finite jump of matter variables
✓ all three classical thms. [KSSV,15], [KSV,15], [GGKS,18]

g ∈ C 1: i.v.p. for geodesic eq. not uniquely solvable
✓ all three class. thms. & Gannon-Lee [Graf,20], [KOSS,22], [SS,21]

g ∈ Lip: argued for in [Hawking & Ellis,73]
✓ Hawking thm. [CGHKS,24]; the rest is work in progress

alternative settings

causal extensions [Minguzzi,19]
synthetic sectional curvatue bounds [Graf,Kunzinger,Grant,19]
synthetic Ricci bounds [Cavalletti & Mondino,20], . . .

Main challenges

(1) extend causality theory: deprived of main geometric tools

(2) extend analytic core: focusing under distributional curvature bds.
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Extensions of causality theory in a nutshell

systematic studies since [Chrusciel & Grant,12], [Fathi & Siconolfi,12]

✓ C 1,1: bulk of causality works [Minguzzi, 15], [KSSV,14]

✓ C 0,1: most things work [Minguzzi, 19] although convexity fails !✗!
!✗! below Lipschitz: some fundamentals break down [CG, 12]

(1) push up principle fails

(J+ ◦ I+) ̸⊆ I+

(2) light cones bubble up

(3) The future I+ needs not to be open [GKS,20]

✓ some topological features are more robust: Avez-Seifert [Sämann, 16]
cone structures [Bernard & Suhr, 18], [Minguzzi, 19]
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Key analytic techniques: convolution & Friedrichs lemma

Basis: chartwise regularisation of metric by convolution

gε(x) := g ⋆M ρε(x) :=
∑

χi (x)ψ
∗
i

((
ψi ∗(ζi · g)

)
∗ ρε

)
(x).

Lemma (Regularisation for Lipschitz g) [CG,12], [CGHKS,24]

There are smooth Lorentzian metrics ǧε, ĝε with

ǧε ≺ g ≺ ĝε sandwiched light cones via tweaked convolution

ǧε, ĝε → g in W 1,p
loc (M) (1 ≤ p <∞)

Non-smooth focusing: The rough guide

1 Formulate distributional (EC) for g ∈ Lip
2 Derive surrogate (EC) for Ric[ǧε](X ,X ) (on K cp.) ...
3 still show smooth focusing for ǧε-geodesics ...extend analysis
4 show that geos of g stop maximising/existing ...extend causality
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1 Formulate distributional (EC) for g ∈ Lip
2 Derive surrogate (EC) for Ric[ǧε](X ,X ) (on K cp.) ...
3 still show smooth focusing for ǧε-geodesics ...extend analysis
4 show that geos of g stop maximising/existing ...extend causality
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Non-smooth focusing: Following the rough guide

Start with distributional condition Ric[g ] ≥ 0

Problem: Ric[ǧε] → Ric[g ] only distributionally
; cannot carry Ric[g ] ≥ 0 through construction

Solution: compatibility of distinct regularisations
Ric[ǧε] − Ric[g ] ⋆M ρε︸ ︷︷ ︸

≥0

locally uniformly only for g ∈ C 1

. standard Friedrichs, conv. of geodesics

Lemma (Compatibility of regularisations for g ∈ Lip) [CGHKS,24]

∥Ric[ǧε]− Ric[g ] ⋆M ρε∥Lp(K) → 0 (1 ≤ p <∞)

∥Ric[ǧε]− Ric[g ] ⋆M ρε∥L∞(K) ≤ CK (advanced Friedrichs lemma)

Feed into the geometric focusing machinery via

volume estimates [Treude & Grant, 13]

segment inequality [Graf, Kontou, Ohanyan, Schinnerl, 24]
estimate line -

∫
by volume -

∫
inspired by [Cheeger & Colding, 96]
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The Penrose and the Hawking theorems in C 1/Lipschitz

Thm. (Penrose, 1965) A C 2-spacetime is future null incomplete if

(E) Ric (X ,X ) ≥ 0 for all X null (NEC)

(C) there is a non-compact Cauchy hypersurface Σ

(I) there is an achronal closed future trapped surface S (Θ± < 0)

Thm. Let g be a metric s.t.

(E) Ric (X ,X ) ≥ 0 for all X timelike

(C) there is a smooth spacelike Cauchy surface Σ with

(I)

then the future time separation τΣ from Σ is bounded by τΣ ≤ 1
b .
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The Penrose and the Hawking theorems in C 1/Lipschitz

Thm. (Graf, 2020) A C 1-spacetime is future null incomplete if

(E) Ric (X ,X ) ≥ 0 for all X null as distribution (DNEC)

(C) there is a non-compact Cauchy hypersurface Σ

(I) there is an achronal closed future trapped surface S (Θ± < 0)

Thm. Let g be a metric s.t.
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Thm. (Hawking, 1967) Let g be a C2-metric s.t.

(E) Ric (X ,X ) ≥ 0 for all X timelike (SEC)

(C) there is a smooth spacelike Cauchy surface Σ with

(I) everywhere positive future convergence (k = 1/(n − 1) trSν ≥ b > 0)

then the future time separation τΣ from Σ is bounded by τΣ ≤ 1
b .
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(C) there is a non-compact Cauchy hypersurface Σ

(I) there is an achronal closed future trapped surface S (Θ± < 0)

Thm. (CGHKS, 2024) Let g be a loc. Lipschitz metric s.t.

(E) Ric (X ,X ) ≥ 0 for all X timelike as distribution (DSEC)

(C) there is a smooth spacelike Cauchy surface Σ with

(I) slab mean curvature bounded below by b > 0.

then the future time separation τΣ from Σ is bounded by τΣ ≤ 1
b .
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The Hawking-Penrose theorem in C 1

Thm. (Hawking,Penrose,1970) A C 2-spacetime is caus. incompl. if

(E) (SEC) and the genericity cond. hold i.e.,

∀γ ∃t0 : R(., γ̇)γ̇ : [γ̇(t0)]
⊥ → [γ̇(t0)]

⊥ non-trivial (GC)

(C) it is chronological

and it has at least one of

(I1) a cp. achronal set without edge, (I2) a future trapped surface

(I3) a closed future trapped submanifold w.
∑n−m

i=1 ⟨R(Ei , γ̇)γ̇,Ei ⟩ ≥ 0

(I3) a future trapped point .
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The Hawking-Penrose theorem in C 1

Thm. (KOSS, 2022) A C 1-spacetime is caus. incompl. if

(E) (DSEC) and the D′-genericity cond. hold i.e.,

∀γ g
(
R(X̃ , Ṽ )Ṽ , X̃

)
≥ C > 0 in D′(1)(U) (DGC)

(C) it is causal

(B) it is maximally, causally non-branching and it has at least one of

(I1) a cp. achronal set without edge, (I2) a future trapped C 0-surface

(I3) a closed future trapped C 0-submanifold w.
∑n−m

i=1 ⟨R(Ei , γ̇)γ̇,Ei ⟩ ≥ 0

(I3) a future trapped point all in the support sense.
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(C) it is causal

(B) it is maximally, causally non-branching and it has at least one of

(I1) a cp. achronal set without edge, (I2) a future trapped C 0-surface

(I3) a closed future trapped C 0-submanifold w.
∑n−m

i=1 ⟨R(Ei , γ̇)γ̇,Ei ⟩ ≥ 0

(I3) a future trapped point all in the support sense.
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Summary, discussion, results beyond the spacetime setting

(0) spacetime results above for g ∈ C 1/Lipschitz
– close to the class. results; natural extensions of most notions
– but additional non-branching assumption in HP-thm.
– rely on extensions of causality theory & focusing results
– segment inequality (worldvolume, QEIs): ∼ semi-classical thms.

– further prospects g ∈ Lip. H
5
2+ε, (∇ ∈ L2), GT-class g ∈ H1 ∩ L∞

(1) causal cone structures [Minguzzi, 2019]
upper semi-cont. distribution of cones on M (generalises light cones)
causal core of singularity theorems may be established
analytic parts (ECs) only to produce sets with specific causality props.

(Causal Penrose theorem, Minguzzi, 2019)

Let (M,C ) be a globally hyperbolic closed cone structure admitting a
non-compact stable Cauchy hypersurface Σ. Then there are no compact
future trapped sets and if Σ is non-empty and compact there is an
inextendible future null geodesic entirely contained in E+(S).
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Results beyond the spacetime setting

(2) Synthetic approaches: Lorentzian length spaces

causal space (X , d ,≤≪, τ) with τ intrinsic
(timelike) sectional curvature bounds via triangle comparison

Ricci bds via optimal transport (RCD-spaces, Lott-Villani, Sturm)
smooth metric measure spacetimes [McCann, 20], [Mondino, Suhr, 22]
[Cavaletti, Mondino, 22-24] TCD(K,N) and TMCP(K,N) properties

(TMCP-Hawking Theorem, Cavaletti, Mondino, 2022)

Let X be a timelike non-branching, globally hyperbolic LLS with a TMCP
property. Let V be a Borel achronal future timelike complete subset with mean
curvature bded above. Then every future timelike geodesic starting in V has a
bounded maximal domain of existence.

synthetic (NEC) [McCann, 23], [Braun, McCann, 24]
first-order Sobolev calculus on metric measure spacetimes
(maximal weak subslope of time functions akin L-modulus of diff.)
. [Beran, Braun, Calisti, Gigli, McCann, Ohanyan, Rott, Sämann, 24]
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Steinbauer (TMF 2024, Turin) Singularity theorems in low regularity 14 / 15



Results beyond the spacetime setting

(2) Synthetic approaches: Lorentzian length spaces

causal space (X , d ,≤≪, τ) with τ intrinsic
(timelike) sectional curvature bounds via triangle comparison

Ricci bds via optimal transport (RCD-spaces, Lott-Villani, Sturm)
smooth metric measure spacetimes [McCann, 20], [Mondino, Suhr, 22]
[Cavaletti, Mondino, 22-24] TCD(K,N) and TMCP(K,N) properties

(TMCP-Hawking Theorem, Cavaletti, Mondino, 2022)

Let X be a timelike non-branching, globally hyperbolic LLS with a TMCP
property. Let V be a Borel achronal future timelike complete subset with mean
curvature bded above. Then every future timelike geodesic starting in V has a
bounded maximal domain of existence.

synthetic (NEC) [McCann, 23], [Braun, McCann, 24]
first-order Sobolev calculus on metric measure spacetimes
(maximal weak subslope of time functions akin L-modulus of diff.)
. [Beran, Braun, Calisti, Gigli, McCann, Ohanyan, Rott, Sämann, 24]
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