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Background: Singularity theorems of General Relativity

Focusing of geodesics under curvature bounds is the
main analytical ingredient in the singularity thms. of GR

About: The singularity theorems of GR

rigorous results in Lorentzian differential geometry

phys. reasonable assumptions ; incomplete causal geodesic

singularities are a generic feature of the theory

Why should you care?

Roger Penrose’s 2020 Nobel Prize in Physics

recent extensions: non-smooth spacetimes
. & Lorentzian length spaces

Contains quite some interesting analysis

regularisation of distributional curvature,
. & Friedrichs lemma-type estimates
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Main actors: geodesics, maximisers, conjugate points

Geodesic curves γ : I → M with ∇γ̇ γ̇ = 0, locally

γ̈ i (s) = Γijk
(
γ(s)

)
γ̇j(s) γ̇k(s) with Γ ∼ g−1 ∂g (curvature)

For data p ∈ M, v ∈ TpM (here always v causal) there is a
. unique maximally extended solution on Ip,v

Maximises (Lorentzian) distance until first conjuagte point
. (∼ almost meeting point of geodesics)

In context of singularity Theorems

assumptions guarantee existence of maximisers
contradicts existence of conjugate points
geodesics have to stop existing before first conjugate point
; Ip,v finite, hence incompleteness

Task: Proof occurrence of conjugate points via geodesic focusing
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Geodesic focusing under curvature bounds

Expansion θ of geodesics: θ → −∞ ⇐⇒ conjugate point

obeys Raychaudhuri equation along (causal) geodesic γ : I → M

θ̇ = −Ric (γ̇, γ̇)− tr(σ2)− θ2

3

Ric ∼ ∂2g (∂g)2 (Ricci curvature)

middle term is non-positive

Assume energy condition: Ric(γ̇, γ̇) ≥ 0 (SEC)

Assume initial condition: θ(0) < 0

=⇒ θ → −∞ for some t in [0,−3/θ(0)) =⇒ conjugate point

=⇒ γ stops maximising, hence existing before −3/θ(0)

Key argument: Estimate on Ricci curvature provides incompleteness
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Low regularity: Why & What can be done?

Why: nature of “singularities”, phys. models, analysis of i.v.p.

Recall Ricci curvature: Ric ∼ ∂2g (∂g)2 , classical: g ∈ C 2

Past:

g ∈ C 1,1 ✓ [KSSV,15], [KSV,15], [GGKS,18]

g ∈ C 1 ✓ [Graf,20], [SS,21], [KOSS,22]
Synthetic setting: [GKS,19], [Cavalletti & Mondino,20], . . .

Present: g ∈ Lip (so Ric ∈ ∂(L∞))

Future: g ∈ H1 ∩ L∞ (long-term goal)

Main challenges: from distributional curvature of g ∈ Lip get

(A) useful curvature bounds on regularisations via convergence,

(B) and put this into geometric machinery (focusing)
. without convergence of geodesics (̸ ∃ geos. for g)
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Low regularity: How?

Basis: chartwise regularisation of metric by convolution

gε(x) := g ⋆M ρε(x) :=
∑

χi (x)ψ
∗
i

((
ψi ∗(ζi · g)

)
∗ ρε

)
(x).

Lemma (Regularising Lipschitz g) [Chrusciel&Grant,12], [CGHKS,24]

There are smooth Lorentzian metrics ǧε, ĝε with

ǧε ≺ g ≺ ĝε (sandwiched lightcones)

ǧε, ĝε → g in W 1,p
loc (M) (1 ≤ p <∞)

Lipschitz-focusing: The rough guide

1 Formulate distributional (SEC) for g ∈ Lip
2 Derive surrogate (SEC) for Ric[ǧε](X ,X ) (on K cp.) . . . (A)
3 still show smooth focusing for ǧε-geodesics
4 show that geodesics of g stop maximising/existing . . . (B)
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ǧε ≺ g ≺ ĝε (sandwiched lightcones)
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4 show that geodesics of g stop maximising/existing . . . (B)

Steinbauer (GF 2024, Turin) Steinbauer, Focusing & distibutional curvature bds. 6 / 10



Lipschitz-focusing: Following the rough guide

Start with distributional condition Ric[g ] ≥ 0

Problem: Ric[ǧε] → Ric[g ] only distributionally
; cannot carry Ric[g ] ≥ 0 through construction

Solution: compatibility of distinct regularisations
Ric[ǧε] − Ric[g ] ⋆M ρε︸ ︷︷ ︸

≥0

locally uniformly only for g ∈ C 1

Lemma (Compatibility of Lip. regularisations [CGHKS,24]

∥Ric[ǧε]− Ric[g ] ⋆M ρε∥L1(K) → 0

∥Ric[ǧε]− Ric[g ] ⋆M ρε∥L∞(K) ≤ CK on all compact K

This is issue (A)
. . . . to be fed into the geometric focusing machinery later on (B)
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Lipschitz-focusing details: A Friedrichs-type lemma is key

relevant terms in Ric[ǧε]− Ric[g ] ⋆M ρε[
(ψβ)∗gε

]ij︸ ︷︷ ︸
=:aε

( [
ξ∂k((ψβ)∗g)lm

]︸ ︷︷ ︸
=:f

∗ρε
)
−
( [

(ψβ)∗g
]ij︸ ︷︷ ︸

=:a

ξ∂k((ψβ)∗g)lm︸ ︷︷ ︸
=f

)
∗ ρε

Prove aεfε − (af )ε → 0 in W 1,1 & bounded in W 1,∞ on K ⋐ M for

a ∈ Lip, f ∈ L∞, C∞ ∋ aε → a loc. unif., fε := f ∗ ρε,

Write relevant term as integral op. [Braverman, Milatovic, Shubin,02]

Kεf (x) =

∫
kε(x , y)f (y)dy =

∫
∂x

((
a(x)− a(y)

)
ρε(x − y)

)
f (y) dy

∫
|kε(x , y)| dx ≤ C Lip(a) =⇒ Kε a unif. bd. family of ops. on L1(K )

So it suffices to show ∥Kεf ∥L1(K) → 0 for all f ∈ C∞
c (Rn).

works since
∫
K

∣∣∣∂a(x)∂x j

∣∣∣ ∫Rn |f (y)− f (x)| ρε(x − y) dy dx

splitting the task works ≤ ε Lip(a)∥∇f ∥L∞
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)
∗ ρε

Prove aεfε − (af )ε → 0 in W 1,1 & bounded in W 1,∞ on K ⋐ M for

a ∈ Lip, f ∈ L∞, C∞ ∋ aε → a loc. unif., fε := f ∗ ρε,

Write relevant term as integral op. [Braverman, Milatovic, Shubin,02]

Kεf (x) =

∫
kε(x , y)f (y)dy =

∫
∂x

((
a(x)− a(y)

)
ρε(x − y)

)
f (y) dy

∫
|kε(x , y)| dx ≤ C Lip(a) =⇒ Kε a unif. bd. family of ops. on L1(K )

So it suffices to show ∥Kεf ∥L1(K) → 0 for all f ∈ C∞
c (Rn).

works since
∫
K

∣∣∣∂a(x)∂x j

∣∣∣ ∫Rn |f (y)− f (x)| ρε(x − y) dy dx

splitting the task works ≤ ε Lip(a)∥∇f ∥L∞
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Feeding the analytic result into the focusing machinery

Lemma (Curvature estimates) [CGHKS,24]

Ric[ǧε]−(γ̇, γ̇) → 0 in L1(K )

Ric[ǧε](γ̇, γ̇) ≥ nκ for some κ < 0

Look at set of good points in Cauchy surface
Reg(T ) ∋ x if geo. starting at x max. up to T

Volume estimate [Treude, Grant, 13]
& segment inequality: line-

∫
from volume-

∫
. [Graf, Kontou, Ohanyan, Schinnerl, 24]
. inspired by [Cheeger & Colding, 96]

areag (Reg(T )) ≤ limsup areaǧε(
ε̌Reg(T ))

≤ C

∫
Ω
|Ric[ǧε]−(U,U)| → 0

Reg(T )

So areagReg(T ) = 0; as good as a conjugate point
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