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Curvature beyond smooth spacetimes

Why at all?
@ physically relevant models (matched spacetimes, impulsive wave, etc.)
@ PDE point-of-view
@ singularities vs curvature blow-up — CCH of Penrose

@ approaches to Quantum Gravity (no metric, e.g. causal sets)

Why it matters?

Basic geometric properties change even if g € C1®

Squeezing a sphere:
Equator still geodesic
but it's always shorter to

deviate into hemispheres
(Hartman-Wintner '52)
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How to detect curvature: A glimpse on Riemannian world

R(X, Y)Y, X
Sectional curvature Sec(X,Y) = ||XT|2||(y‘7|2 ) (aX >Y>2

Theorem (Toponogov) Sec > K +—

For all (small) geodesic triangles Aabc in (M, h) consider a comparison
triangle Aabc in the 2D space of const. curvature K. Then for all for all
P, q on its sides and corresponding comparison points p, q

c c
Triangle condition
q g @ needs no manifold structure
@ only distances between pts.
a a = @ works on metric spaces
P b p b
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Sectional curvature bounds for metric spaces

Definition (Length space)

A metric space (X, d) is called a length space if d is intrinsic, i.e.,

d(xz,y) = inf{L(~) | v from z to y continuous}

geodesics v : [0,1] — X with d(v(s),7(¢)) = |t — s| - d(7(0),7(1))

Definition (Synthetic curvature bounds)

A length space has curvature bounded below by K if (locally) for all
triangles Aabc and their comparison triangles Aabe and all points p, ¢ on
its sides and corresponding p, ¢

d(p,q) > d(p,q).

curvature bounded below / above: Alexandrov spaces /| CAT(K)-spaces
rich theory since the 1980-ies: GH-convergence, Gromov compactness thm.
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How to detect curvature: Lorentzian world
(R(X,Y)Y, X)
Kulkarni (1979): If Sec(g) is bounded below (above), then it is constant.

Sectional curvature Sec(X,Y) =

Definition (“Correct” curvature bounds, Andersson-Howard 1998)

A smooth Lorentzian manifold has Sec > K if spacelike sectional
curvatures > K and timelike sectional curvatures < K.

Theorem (Alexander-Bishop 2008)

A smooth Lorentzian manifold has Sec > K if for all (small) geodesic
Aabc and their comparison Aabe in 2D space of const. curvature K
(Minkowski, (anti-)de Sitter) and all p, ¢ resp. p, ¢

dsigned (p’ Q) > Czsigned (ﬁ’ Cj) o
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How to go beyond Lorentzian manifolds?

Riemannian manifolds C  metric (length) spaces

=

Lorentzian mfs. / spacetimes C 7

What is the analogue of metric (length) spaces in the Lorentzian setting?
Serious issue:

@ natural analogue to distance: time separation function

7(p, q) = sup{L(y)| 7 future dir. causal from p to ¢}

@ but triangle inequality is reversed ~» no metric structure
~> Lorentzian (pre-)length spaces (Kunzinger-Samann 2018)
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Lorentzian (pre-)length spaces

Causal space: X (metrizable) topological space with abstract causality
< preorder on X, < transitive relation contained in <
Abstract time separation: 7: X x X — [0, c0] lower semicontinuous

Definition (Kunzinger-Samann 2018)
(X, <, <,7) is a Lorentzian pre-length space if forp < q¢ <r

=0 ifzx
7(p,r) > 7(p,q) + 7(¢,7) and 7(p,q) { S0 o f<<yy

Examples

@ smooth spacetimes (M, g) with usual time separation function 7
o Lorentz-Finsler spacetimes, spacetimes of low regularity (g € C° +...)

e finite directed graphs (causal sets)

Lorentzian causality theory T intrinsic. .. Lorentzian length space
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Timelike curvature via triangle comparison

Definition (Synthetic curvature bounds)
(X, <, <,7) has timelike curvature > K if

@ some technical conditions hold

@ for all small timelike triangles Aabc and their comparison Aabé in
My and all p,q resp. p, ¢

Faithful extension of
sectional curvature bounds
to “metric” Lorentzian setting
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Selected results
Theorem (Kunzinger-Samann 2018, Beran-Samann 2022)

In a strongly causal Lorentzian pre-length space with timelike curvature
bounded below timelike geodesics do not branch.

Theorem (Grant-Kunzinger-Samann 2019)

A timelike geodesically complete spacetime (or LLS) is inextendible as a
regular LLS, i.e., any LLS-extension necessarily has unbounded curvature. )

Extends (Beem-Ehrlich) and C%-result (Galloway-Ling-Sbierski 2018).

Splitting theorem (Beran-Ohanyan-Rott-Solis 2023)

Let (X, <, <,7) be a globally hyperbolic LLS with global timelike K > 0.
If X contains a complete timelike line (+ some technical conditions) then
it splits into a product R x S with S an Alexandrov space with K > 0.

Generalises smooth Lorentzian as well as synthetic Riemannian results.
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More on Lorentzian (pre-)length spaces

o causal ladder (Kunzinger-Samann 2018, Aké Hau-Cabrera-Solis 2020)

@ Generalized cones, i.e., Lorentzian warped products of length spaces
with 1-dim base and singularity theorems
(Alexander-Graf-Kunzinger-Samann 2021)

null distance & Lorentzian length spaces (Kunzinger-S. 2022)
Gluing of Lorentzian length spaces (Beran-Rott 2022)
Hyperbolic angles (Barrera-de Oca-Solis 2022, Beran-Samann 2022)

time functions on Lorentzian (pre-)length spaces
(Burtscher-Garcia-Heveling 2021)

Lorentzian Hausdorff dimension, measure (McCann-Samann 2021)

e Causal boundaries (Ake Hau-Burgos-Solis 2023,
Burgos-Flores-Herrera 2023)

@ Machine learning in spacetimes (Law-Lucas 2023)
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Ricci bounds via optimal transport: the basic idea

@ Optimal Transport: Monge, Kantorovich, move matter in the

cheapest / optimal way from X to Y
o Minimize

c(z,y) dr(z,y)
XxY

over couplings 7 € P(X x Y') w. given marginals

(prx)gm = p1, (pry )gm = po
@ What is optimal depends on

distances and geometry !

@ Turn this on its head:
define curvature by requiring that
OT behaves as in model spaces

- Riemannian case: cost ¢ =d Figure: Transporting clouds of
- Lorentzian case: cost c =T points on the sphere
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Ricci Bounds via Optimal Transport: Riemannian case

Thm. (Ric. bds. & displacement convexity, Lott-Villani, Sturm 2006-09)
(M, g) complete Riemannian manifold

Ricy > 0 <= (M, dg4, voly) is an RCD(0, co)-space

Definitions. On a metric measure space (X, d, m) we define

=

o Wasserstein distance: Wa(ug, 1) = (HellfT Jxwx d(x, y)? dr(z, y)) ’

o Wasserstein geodesic: continuous curve (t)o<t<1 in Po(X) with

Wa(ps, pe) = [t — s| - Wa (1, p2)
e Entropy functional: Ent(u|m) = /plog )dm for = pm
e RCD(0, )-space: Ent(u|m) convex along Wasserstein geodesics
Again turn this into definition of synthetic curvature bounds.
~» theory of CD-spaces: stability under measured GH-convergence
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Ricci Bounds via Optimal Transport: Lorentzian case

Thm. (Ric. bds. & displacement conv., McCann, Mondino-Suhr 2020)
(M, g) globally hyperbolic spacetime

Ric(X, X) > 0 for X timelike <= (M, dy, vol,) is TCD(K, N)-space

Definitions. Measured Lorentzian pre-length space (X,d, m <, <,7)
e OT & causality (Eckstein-Miller 2017) py, g € T1c
@ p-Lorentz Wasserstein distance: (0 < p < 1)

» 1/p
lp(MlaM2) = (SUPweH<< fX><X 7(z,y) dﬂ(%l/))
e Entropy functional: Ent(ulm) = —/plog(p)dm for = pm

e TCD(K, N): along l,-geos ji we have for e(t) := Ent(g¢|m)

e’(t) — %e’(t)2 > K / 7(z,y) 7 (dedx)
XxX
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Selected results

Hawking's singularity theorem in TMCP  (Cavaletti-Mondino 2024)
Let (X,d,m <, <,7) be a globally hyperbolic measured LLS such that

@ TCD(0,N) (replaces (SEC)), with

@ a Borel achronal FTC set V' w. synthetic mean curvature < Hy < 0.
Then 7 < Dp,on on IT(V).

Complements low regularity spacetime singularity theorems
(Graf 2020, Kunzinger-Ohanyan-Schinnerl-S. 2022, see S. 2023)

@ Synthetic vacuum Einstein equations (Mondino-Suhr 2023)

o Differential calculus for time functions on LLS:
(Beran-Braun-Calisti-Gigli-McCann-Ohanyan-Rott-Samann 2024)

@ Lorentzian splitting (new proof for class. result, synthetic in progress)
(Braun-Gigli-McCann-Ohanyan-Samann 2024)
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Outlook

(Measured) Measured Lorentzian Length Spaces (X,d, m <, <, 1)

@ provide a general mathematical setting for
sectional curvature and
Ricci curvature (bounds)

@ that contains

low regularity spacetimes but also
discrete spaces

Gives framework for

@ approaches to non-smooth spacetime geometry
g€ C%, g€ %+ causally plain

e fundamentally discrete approaches to QG
Causal set theory, Causal Fermion systems
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Outlook: Causal set theory
e ingredients: (X, <), partial order; called causal set that is
locally finite: J(x,y) ={z: 2 < z <y} finite
@ CS hypothesis: QT of causal sets X; (M, g) approximation of X

C(M,pc) 3 X +—(M,g) sprinkling

Hauptvermutung of CST

X can be embedded at density p¢ into
two distinct spacetimes iff they are
“close”.

@ terminology:
» chain: C = (z;)jo1: @ < Xiq1 > length: L(C)=n
» 7(z,y) :=sup{L(C) : C chain from z to y}
(X, <, <,7) is a Lorentzian pre-length space

Hauptvermutung translates into statement on convergence of LLS. J
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