Analysis in einer Variable für das Lehramt

Sommersemester 2024, 1. Termin, 27.6.2022, Roland Steinbauer Prüfungsausarbeitung

Teil 1: Multiple Choice Aufgaben

1 Zentrale Begriffe und fundamentale Ideen

- 1. (Zur Grenzwertdefinition.) Für eine relle Folge $(a_n)_n$ und ein $a \in \mathbb{R}$ gelte $\lim_{n\to\infty} a_n = a$. Welche Aussagen sind dazu äquivalent?
 - (a) [true] In jeder ε -Umgebung von a liegen fast alle Folgenglieder a_n .
 - (b) [true] $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} : \quad |a_n a| < \varepsilon \quad \forall n \geq N.$
 - (c) [false] Es gibt eine ε -Umgebung von a in der fast alle Folgenglieder a_n liegen.
 - (d) [false] $\exists \varepsilon > 0 \quad \forall N \in \mathbb{N} : |a_n a| < \varepsilon \quad \forall n \ge N.$
- 2. (Grenzwert vs. Häufungswerts.) Welche Aussagen sind für reelle Folgen $(a_n)_n$ und $a \in \mathbb{R}$ korrekt?
 - (a) [false] Falls außerhalb jeder ε -Umgebung von a nur endlich viele a_n liegen, dann ist a Häufungswert aber nicht Grenzwert von (a_n) .
 - (b) [true] Falls außerhalb jeder ε -Umgebung von a nur endlich viele a_n liegen, dann ist a Häufungswert und Grenzwert von (a_n) .
 - (c) [false] Falls a der einzige Häufungswert von (a_n) ist, dann ist a auch schon Grenzwert von (a_n) .
 - (d) [true] Ist a Grenzwert von (a_n) , dann ist a auch ein Häufungswert von (a_n) und zwar der einzige.
- 3. (Konvergenz und absolute Konvergenz von Reihen.) Sei $\sum_{n=0}^{\infty} a_n$ eine reelle Reihe. Welche Aussagen sind korrekt?
 - (a) [true] Falls alle a_n positiv sind und die Reihe konvergiert, dann konvergiert sie auch absolut.
 - (b) [false] Falls $a_n \to 0$, dann konvergiert die Reihe.
 - (c) [false] Falls unendlich viele a_n positiv sind und die Reihe konvergiert, dann konvergiert sie auch absolut.
 - (d) [false] Falls $|a_n| \to 0$, dann konvergiert die Reihe absolut.
- 4. (Cauchy-Folge.) Welche Aussagen sind korrekt? Eine reelle Folge (a_n) ist eine Cauchyfolge, falls
 - (a) [true] $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall m, n \geq N : \quad |a_n a_m| \leq \varepsilon.$
 - (b) [true] a_n gegen ein $a \in \mathbb{R}$ konvergiert.
 - (c) [false] eine Teilfoge $(a_{n_k})_k$ von $(a_n)_n$ konvergiert
 - (d) [false] $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geq N : \quad |a_n a_{n+1}| \leq \varepsilon$.
- 5. (Stetigkeit.) Welche Aussagen sind korrekt?

Eine Funktion $f: \mathbb{R} \supseteq D \to \mathbb{R}$ ist stetig in $a \in D$, falls

- (a) [true] $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in D \text{ mit } |x a| < \delta \quad \Rightarrow |f(x) f(a)| < \varepsilon.$
- (b) [false] es eine reelle Folge (x_n) mit $x_n \to a$ gibt, für die schon $f(x_n) \to f(a)$ gilt.
- (c) [false] $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in D \text{ mit } |x a| < \varepsilon \quad \Rightarrow |f(x) f(a)| < \delta.$
- (d) [true] es zu jedem (noch so kleinen) ε ein $U_{\delta}(a) \subseteq D$ gibt, sodass alle $x \in U_{\delta}(a)$ nach $U_{\varepsilon}(f(a))$ abgebildet werden (d.h. f(x) in $U_{\varepsilon}(f(a))$ liegt).
- 6. (Elementar transzendente Funktionen.) Welche Aussagen sind korrekt?
 - (a) [true] Für die Exponentialfunktion gilt $\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ $(x \in \mathbb{R}).$
 - (b) [true] Die Logarithmusfunktion ist auf ihrem gesamten Definitionsbereich $(0,\infty)$ streng monoton wachsend.
 - (c) [false] Für die Sinusfunktion gilt $\sin(0) = 1$ und $\sin'(0) = 1$.
 - (d) [true] Die allgemeine Potenzfunktion ist definiert als $x^{\alpha} = \exp(\alpha \log(x))$ (x > 0, $\alpha \in \mathbb{R}$).

- 7. (Stetigkeit und Differenzierbarkeit.) Welche Aussagen sind für eine Funktion $f:I\to\mathbb{R}$ (I ein Intervall) korrekt?
 - (a) [true] Hat (der Graph von) f einen Knick, so ist f nicht differenzierbar.
 - (b) [true] Hat (der Graph von) f einen Sprung, so ist f nicht differenzierbar.
 - (c) [true] Wenn f stetig ist, so hat (der Graph von) f keinen Sprung.
 - (d) [false] Hat (der Graph von) f einen Knick, so ist f nicht stetig.
- 8. (Stammfunktion.) Welche Aussagen sind korrekt?

Eine Funktion $F:I\to\mathbb{R}$ (mit I einem Intervall) ist Stammfunktion einer Funktion $f:I\to\mathbb{R}$, falls

- (a) [true] F differenzierbar ist und F' = f auf ganz I gilt.
- (b) [true] F gegeben ist durch $F(x) = \int_a^x f(t) dt + 17$ mit $a \in I$ beliebig.
- (c) [false] f' = F + c gilt, für ein $c \in \mathbb{R}$.
- (d) [false] F gegeben ist durch $F(x) = \int_a^x (f(t) + c) dt$ mit $a \in I$ und $c \in \mathbb{R}$ beide beliebig.

2 Sätze & Resultate

- 9. (Beschränktheit & Konvergenz von Folgen). Welche Aussagen über reelle Folgen sind korrekt?
 - (a) [false] Es gibt konvergente Folgen die nicht beschränkt sind.
 - (b) [true] Jede beschränkte Folge hat einen Häufungswert.
 - (c) [false] Es gibt monoton fallende nach unten beschränkte Folgen, die nicht beschränkt sind.
 - (d) [false] Jede beschränkte Folge konvergiert.
- 10. (Folgen & Konvergenz.) Welche Aussagen über reelle Folgen sind korrekt?
 - (a) [true] Jede Cauchy-Folge konvergiert.
 - (b) [true] Jede streng monoton wachsende und nach oben beschränkte Folge konvergiert.
 - (c) [true] Es gibt monotone Folgen, die nicht konvergieren.
 - (d) [false] Es gibt unbeschränkte, monotone Folgen, die konvergieren.
- 11. (Zur Reihenkonvergenz.) Welche der folgenden Aussagen über reelle Reihen $\sum_{n=0}^{\infty} a_n$ sind korrekt?
 - (a) [true] $\sum_{n=0}^{\infty} a_n$ konvergiert absolut, falls $|a_n| \leq \frac{1}{n^2}$ gilt.
 - (b) [false] $\sum_{n=0}^{\infty} a_n$ konvergiert absolut, falls $\frac{a_{n+1}}{a_n} \to 1$ gilt.
 - (c) [true] $\sum_{n=0}^{\infty} a_n$ konvergiert, falls alle $a_n \geq 0$ sind und die Folge der Partialsummen $s_m = \sum_{n=0}^m a_n$ beschränkt ist
 - (d) [false] $\sum_{n=0}^{\infty} a_n$ konvergiert, falls die Folge (a_n) eine Nullfolge ist.
- 12. (Zur Vollständigkeit.) Welche der folgenden Aussagen sind korrekt?
 - (a) [false] Es gibt konvergente Folgen in Q, die keine Cauchyfolgen sind.
 - (b) [true] Es gibt Folgen irrationaler Zahlen, die gegen $\sqrt{2}$ konvergieren.
 - (c) [true] Jede reelle Zahl ist Limes einer Folge rationaler Zahlen.
 - (d) [true] Jede Cauchy-Folge in ℚ konvergiert (als Folge in ℝ) aber ihr Limes muss nicht in ℚ liegen.
- 13. (Eigenschaften stetiger Funktionen.) Welche Aussagen sind korrekt?
 - (a) [true] Stetige Funktionen auf abgeschlossenen und beschränkten Intervallen haben Maximum und Minimum.
 - (b) [true] Jede stetige Funktion $f:[a,b] \to [a,b]$ hat einen Fixpunkt.
 - (c) [true] Ist f stetig auf [a, b] und nicht konstant, dann ist f([a, b]) wieder ein Intervall.
 - (d) [false] Jedes stetige $f:(0,1]\to\mathbb{R}$ ist beschränkt.
- 14. (*Mittelwertsatz.*) Sei $f:[a,b]\to\mathbb{R}$ stetig und differenzierbar auf (a,b). Welche der folgenden Aussagen sind korrekt?

- (a) [true] Es gibt ein $\xi \in (a,b)$ mit $f(b) f(a) = f'(\xi)(b-a)$.
- (b) [true] Es gibt eine Stelle $\xi \in (a,b)$ in der die Tangente $g(x)=f(\xi)+f'(\xi)(x-\xi)$ den Anstieg $\frac{f(b)-f(a)}{b-a}$ hat.
- (c) [false] Dann ist f auch auf [a,b] differenzierbar, wobei in a und b nur die einseitigen Ableitungen existieren.
- (d) [true] Gilt zusätzlich f(a)=f(b), so gibt es einen Punkt in (a,b), in dem die Ableitung von f verschwindet.
- 15. (Extrema.) Sei $f:[a,b]\to\mathbb{R}$ zweimal differenzierbar. Welche der folgenden Aussagen ist korrekt?
 - (a) [false] Falls f in ξ ein lokales Maximum hat, so gilt $f'(\xi) = 0$ und $f''(\xi) < 0$.
 - (b) [false] f kann in ξ ein lokales Extremum haben, obwohl $f'(\xi) \neq 0$ gilt.
 - (c) [true] f kann in ξ ein globales Extremum haben, obwohl $f'(\xi) \neq 0$ gilt.
 - (d) [true] Hat f ein lokales Minimum in ξ , dann ist f knapp links von ξ monoton fallend und knapp rechts von ξ monoton wachsend.
- 16. (Hauptsatz der Differential- und Integralrechnung.) Welche Aussagen sind für eine auf einem Intervall I definierte stetige Funktion $f: I \to \mathbb{R}$ und ein beliebiges $a \in I$ korrekt?
 - (a) [true] $\frac{d}{dx} \int_a^x f(t)dt = f(x)$.
 - (b) [true] f hat eine Stammfunktion.
 - (c) [false] $F(x) = \int_{a}^{x} f(t)dt$ ist eine Stammfunktion von f und f ist stetig differenzierbar.
 - (d) [false] $\frac{d}{dt} \int_{a}^{x} f(t) dx = f(x)$.

3 Beispiele, Gegenbeispiele, Rechenaufgaben

17. (Konvergenz von Folgen.) Welche der folgenden Aussagen über Folgen sind korrekt?

(a) [true]
$$\left(\frac{n!}{n}\right)_{n\geq 1}$$
 ist unbeschränkt.

(c) [true]
$$\frac{3n^3 + 2n^2 + n}{n^2 + 7 - 6n^3} \rightarrow -\frac{1}{2}$$
.

- (b) [false] $\frac{(-1)^n}{n}$ hat zwei verschiedene Häufungswerte.
- (d) [true] Falls für eine reelle Folge $(a_n)_n$ für alle n gilt, dass $0 \le a_n \le 1/n^2$, dann ist (a_n) eine Nullfolge.
- 18. (Konvergenz & absolute Konvergenz von Reihen.) Welche der folgenden Aussagen sind korrekt?

3

- (a) [false] $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ konvergiert absolut nach dem Quotiententest.
- (b) [false] $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert absolut nach dem Quotiententest.

(c) [true]
$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = 1$$

- (d) [true] $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^n$ konvergiert absolut nach dem Wurzeltest.
- 19. (Funktionsgrenzwerte 1) Welche der folgenden Aussagen sind korrekt?

(a) [false]
$$\lim_{x \to \infty} \cos(x) = 1$$
.

(c) [false]
$$\lim_{x \to 0} x \sin(1/x) = 1$$
.

(b) [true]
$$\lim_{x \to 0} \log(x) = -\infty$$
.

(d) [true]
$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$
.

20. (Funktionsgrenzwerte 2) Welche der folgenden Aussagen sind korrekt?

(a) [true]
$$\lim_{x\to\infty} e^{-x} = 0$$
.

(c) [true]
$$\lim_{x\to 0} \frac{\sin(x)}{x} = 1$$

(b) [true]
$$\lim_{x \to 0} x \log(x) = 0$$

(d) [false]
$$\lim_{x\to\infty} \frac{x^k}{e^x} = \infty$$

21. (Stetigkeit & Differenzierbarkeit). Welche der folgenden Aussagen sind korrekt?

(a) [false]
$$f(x) = |x|$$
 ($x \in \mathbb{R}$) ist überall stetig und differenzierbar.

(b) [true]
$$f(x) = \sqrt{x}$$
 $(x \in [0, \infty))$ ist überall stetig aber differenzierbar nur für alle $x > 0$.

(c) [true] Die Funktion
$$f:\mathbb{R} \to \mathbb{R}$$
 mit

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & \text{sonst} \end{cases}$$

ist überall stetig.

(d) [false] Die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} 0 & x \le 0 \\ 2x & x \ge 0 \end{cases}$$

ist in $\xi = 0$ differenzierbar.

22. (Differenzierbarkeit.) Wir betrachten die Funktion

$$f: [0, \infty) \to \mathbb{R}, \quad f(x) = \sqrt{x}.$$

Welche der folgenden Aussagen sind korrekt?

- (a) [true] Der Limes des Differenzenquotienten von f bei $\xi=0$ divergiert für $0\neq h\searrow 0$ und daher ist f in $\xi=0$ nicht differenzierbar.
- (b) [false] Es gilt $\lim_{x \searrow 0} f(x) = \infty$ und daher ist f in $\xi = 0$ nicht differenzierbar.
- (c) [false] Es gilt $\lim_{x\searrow 0} f'(x) = \infty$ und daher ist f in $\xi = 0$ nicht differenzierbar.
- (d) [true] Es gilt $\lim_{0 \neq h \searrow 0} \frac{\sqrt{h}}{h} = \infty$ und daher ist f in $\xi = 0$ nicht differenzierbar.

23. (Funktionen, vermischtes.) Welche der folgenden Aussagen sind korrekt?

- (a) [true] $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^5$ ist streng monoton steigend, obwohl f'(0) verschwindet.
- (b) [false] $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x}$ hat in x = 1 ein (lokales und globales) Maximum, obwohl die Funktion dort nicht f'(1) = 0 erfüllt.
- (c) [false] $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4$ hat in x = 0 ein Minimum, weil f'(0) = 0 gilt.
- (d) [true] $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = 1/x^2$ ist stetig in 0 fortsetzbar, weil die einseitigen Grenzwerte für $x \to 0$ beide existieren und übereinstimmen.

24. (Integrierbare Funktionen und Integral.) Welche der folgenden Aussagen über beschränkte Funktionen $f:[0,1]\to\mathbb{R}$ sind korrekt?

- (a) [true] f(x) = |x| ist stetig und daher auch Riemann integrierbar.
- (b) [true] $f(x) = \cos(x)$ ist streng monoton fallend, und daher auch Riemann integrierbar.
- (c) [true] Sei f die charakteristische Funktion von $[\frac{1}{4},\frac{3}{4}]$ (d.h. f(x)=1 für $\frac{1}{4}\leq x\leq \frac{3}{4}$ und f(x)=0 sonst), dann ist f Riemann integrierbar und es gilt

$$\int_{-\infty}^{1} f(x) \ dx = \frac{1}{2}.$$

(d) [false]
$$\int_{0}^{2\pi} \sqrt{1 - \sin^2(x)} \ dx = \int_{0}^{2\pi} \cos^2(x) \ dx = 0.$$

Teil 2 - Offene Aufpoben >
1) (O) Die Summe Duce konvupon tu Folgen (ist vielle konvupent und) konvupent
gegen die seemme de acentuate.
Um diese Aussope to bevaiser, mussen wir peijen, doss ou le holl jeles & Umgehay
vor 0+6 now endlich viole to gengliede de Summerfolse Coniba), kiept.
Fre vargige bern 6 > 0 liegen wegen on- so und ba -> 5 new jeach and live
Viche de ons bis be achold von VEhlas bis VELS); Sogenor
Sprechender Folgengliebe (Ont bn) in UE(a+b).
(b) Intervall school klangs printip: Sa (In) next cine Feolge object lossens, beschröndle
1 Inhevolle sodoss
(i) To 2 In 2 2 In 2 In 2 In 2 (ii) chiom (In) > 0 (n->a).
$ \left(\begin{array}{c} (u) \text{ cliom } (1n) \rightarrow 0 & (n \rightarrow a) \\ \end{array} \right) $
Donn Flor NIn
De Bever verloudt prob in h. Schritten:
(1) Aus den Voroussetnengen folgt, doss die Folge de linken (genousopet de rechtin)
Kondports on de In (= lon, bu]) ehe louchy tolge billet
(2) Dos Couly privip epill fa=lmon
(3) Dieses à liept vegen des sonduid-lemmes in ollen La
(6) Die Eindeutiskat von a Polyt oes (ii).
(C) Detimolderstellung. ± Zon 10th leonsepret, unt die geometrische Reche
Une konu. Rojoronte bildel: Zfon jon) & GZ (10) 4 20
Albunotivist de Folje de Portiol summer monolon & hexlint, ohe konvapent.
[2] (a) Bsp f. Funktionen (i) fex;=/x (unbeschant laxvo)
(ii) f(x)=1x-1/21 (unbeschool lax) (unbeschool lax) (iii) f(x)=1x-1/21
(iii) $f(x) = Sin(\frac{1}{x})$ ist bentional (Isinco)=1) (hich diffhoring = 1/2) united x>0 diffhor not Kettenrepel, $h = 1 + us (11/2) + us (11/2)$
unilla x>0 diffha nol Ketterrepel,
korn du niet slubg nod x=0 lost percht auch y Sin(xn)= y tn)

