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Abstract We present a novel variational view at Lagrangian mechanics based on
the minimization of weighted inertia-energy functionals on trajectories. In particular,
we introduce a family of parameter-dependent global-in-time minimization problems
whose respective minimizers converge to solutions of the system of Lagrange’s equa-
tions. The interest in this approach is that of reformulating Lagrangian dynamics as a
(class of) minimization problem(s) plus a limiting procedure. The theory may be ex-
tended in order to include dissipative effects thus providing a unified framework for
both dissipative and nondissipative situations. In particular, it allows for a rigorous
connection between these two regimes by means of Γ -convergence. Moreover, the
variational principle may serve as a selection criterion in case of nonuniqueness of
solutions. Finally, this variational approach can be localized on a finite time-horizon
resulting in some sharper convergence statements and can be combined with time-
discretization.
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1 Introduction

Variational principles in continuum mechanics and thermodynamics have been the
subject of constant attention since their early appearance more than two centuries
ago. From the philosophical viewpoint, the investigation of variational principles is
of a paramount importance for it corresponds to the fundamental quest for general
and simple explanations of reality as we experience it. On the other hand, beside
their indisputable elegance, variational principles have a clear practical impact as they
originate a wealth of new perspectives and serve as unique tools for the analysis of
real physical situations. Correspondingly, the mathematical literature on variational
principles in mechanics is overwhelming and a number of monographs on the subject
are available. Being completely beyond our purposes to attempt a comprehensive
review of the development of this subject, we shall minimally refer the reader to
some classical monographs (Lánczos 1970; Moiseiwitsch 2004) as well as the more
recent (Basdevant 2007; Berdichevsky 2009; Ghoussoub 2008).

The focus of this note is to present a new variational principle in the context of
classical Lagrangian mechanics. In particular, we shall be concerned with the evolu-
tion of a conservative dynamical system described by a set of generalized coordinates
q ∈ R

m (m ∈ N) and characterized by the Lagrangian (Arnol’d 1989)

L(q, q̇) := 1

2
q̇·M q̇ − U(q).

Here, M is the symmetric and positive definite mass matrix, so that q̇·M q̇/2 is the
classical kinetic energy term. Moreover, we assume to be given the potential energy
U ∈ C1(Rm) which we additionally ask to be bounded from below. Lagrangians of
this form naturally arise in connection with a variety of applications ranging from
celestial mechanics to molecular dynamics.

We consider the minimization of the global-in-time functionals Wε defined on
entire trajectories q : R+ → R

m as

Wε[q] :=
∫ ∞

0
e−t/ε

(
ε2

2
q̈(t)·M q̈(t) + U

(
q(t)

))
dt (ε > 0).

Note that the small parameter ε above has the physical dimension of time, so that the
whole integrand in Wε is an energy and Wε is an action. We shall refer to the latter
as Weighted Inertia-Energy functionals (WIE) as they feature the weighted sum of an
inertial term (suitably dimensionalized) and the potential U .

The WIE functional Wε admits minimizers qε in the closed and convex set

Kε := {
q ∈ H2(

R+, e−t/ε dt;R
m
) : q(0) = q0, q̇(0) = q1}

where given initial data q0 ∈ R
m and q1 ∈ R

m are prescribed (see Lemma 2.1 be-
low). Let us stress from the very beginning that q ∈ H1(R+, e−t/ε dt;R

m) implies
the integrability conditions

t �→ e−t/ε|q|2, t �→ e−t/ε|q̇|2 ∈ L1(R+) (1)



J Nonlinear Sci (2013) 23:179–204 181

Fig. 1 Convergence for m = 1,
U(q) = q2/2, q0 = 1, and
q1 = 0. As ε → 0, the
minimizers of Wε on Kε for
ε = 0.3,0.1,0.02 (dashed)
approach locally uniformly the
solution of (2), namely t �→ cos t

(solid)

by virtue of some suitable weighted Poincaré inequality form (Serra and Tilli 2012)
(see (5) later on). The above integrability conditions play a crucial role in the analysis
and be specifically addressed in Sect. 2.6 below.

The first result of this paper that the minimizers qε of the functional Wε on Kε

admit a subsequence which converges to a solution of the system of Lagrange’s equa-
tions (Lagrangian system for short in the sequel). Namely, we have the following.

Theorem 1.1 (WIE principle) Let qε minimize Wε in Kε . Then, for some subse-
quence qεk

we have that qεk
→ q weakly-∗ in W1,∞(R+,R

m) (hence, locally uni-
formly) where q is a classical solution of the Lagrangian system

M q̈ + ∇U(q) = 0 in R+, q(0) = q0, M q̇(0) = Mq1. (2)

In the easiest possible setting, namely the scalar (m = 1) and linear case of U(q) =
q2/2 with q0 = 1 and q1 = 0 the convergence result of Theorem 1.1 is illustrated in
Fig. 1.

The WIE principle provides a new variational reformulation of the Lagrangian sys-
tem (2) as a (limit of a class of) constrained minimization problem(s). Although the
Cauchy problem for the Lagrangian system (2) can be analyzed directly, the WIE for-
mulation paves the way to the treatment of the system by purely variational means.
In particular, the WIE approach allows for the direct application of the tools of the
Calculus of Variations (the Direct Method and Γ -convergence, for instance) to the
evolutive differential system (2). In particular, the WIE principle provides some se-
lection criterion in case of nonuniqueness of solutions (see Sect. 2.7 below). Note that
the WIE principle concerns global minimizers only. In particular, we cannot exclude
that W has extra stationary points (but see Lemma 4.1).

The WIE variational method appears to be rather general and can be readily ex-
tended at least in two relevant directions. At first, in Sect. 4, we focus on a specific
finite-time horizon version of the WIE principle where the integration is confined
to some finite-time interval (0, T ). This allows to sharpen the convergence result of
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Theorem 1.1 in order to obtain error rates and turns out to be better suited for the
purpose of numerical investigation.

Secondly, we extend the WIE principle to treat mixed dissipative/nondissipative
situations such that of viscous dynamics, both in the infinite (Sect. 3) and finite-
time horizon (Sect. 4.4). The flexibility of this variational theory is such that we can
handle with the same method also the limiting purely dissipative (viscous) and purely
nondissipative cases and, in particular, we can handle the case of gradient flows. We
provide in Sect. 5 some Γ -convergence analysis connecting these two regimes as
well as for the finite to infinite time-horizon limit.

1.1 Comparison with the Hamilton Principle

We shall now turn to the illustration of some of the specific features of the WIE
formalism by focusing on its comparison with the more classical Hamilton principle.
The latter asserts that actual trajectories of the Lagrangian system (2) on the time
interval (0, T ) are extremizers of the action functional

S[q] =
∫ T

0

(
1

2
q̇(t)·M q̇(t) − U

(
q(t)

))
dt

among all paths with prescribed initial and final states q0 and qT . In particular, the
Lagrangian system (2) exactly corresponds to the Euler–Lagrange equation for S.

The WIE variational approach differs from the Hamilton principle in three crucial
ways. First, Hamilton’s principle is indeed a stationarity principle for it generally
corresponds to the quest for a saddle point of the action functional (note, however,
that this will be a true minimum for small T ). On the contrary, the WIE principle
relies on a true constrained minimization.

Secondly, the WIE principle is directly formulated on the whole time semiline R+
whereas Hamilton’s approach calls for the specification of an artificial finite-time
interval (0, T ) and a final state. In particular, the WIE functionals directly encode
directionality of time by explicitly requiring the knowledge of just initial states.

Finally, the WIE principle is not invariant by time reversal. This is indeed crucial
as the WIE perspective is naturally incorporating dissipative effects (see Sect. 3),
thus qualifying it as a suitable tool in order to discuss limiting mixed dissipa-
tive/nondissipative dynamics. Note that dissipative effects cannot be directly treated
via Hamilton’s framework and one resorts in considering the classical Lagrange–
D’Alembert principle instead.

The price to pay within the WIE functional method with respect to Hamilton’s is
the check of the extra limit ε → 0. This is exactly the object of Theorem 1.1 and the
main concern of this theory.

1.2 Review of the Literature on Weighted Functionals

Global-in-time minimization of weighted functionals has been already considered in
the purely dissipative (viscous) case. In particular, this functional approach has been
developed for so called Weighted Energy-Dissipation (WED) functionals

q �→
∫ T

0
e−t/ε

(
εΨ

(
q̇(t)

) + U
(
q(t)

))
dt
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where Ψ is a suitable nonnegative and convex dissipation potential, even in the PDE
infinite-dimensional situation. In the linear case Ψ (q̇) = |q̇|2/2, some results can be
found in the classical monograph by Lions and Magenes (1972). As for the nonlin-
ear case, this procedure has been followed by Ilmanen (1994) for proving existence
and partial regularity of the so-called Brakke mean curvature flow of varifolds. Two
examples of relaxation of gradient flows related to microstructure evolution are pro-
vided by Conti and Ortiz (2008). For λ-convex energies U , the convergence proof
qε → q in Hilbert and metric spaces has been provided in Mielke and Stefanelli
(2011) and Rossi et al. (2011a, 2011b), respectively. An application in the context
of gradient flows driven by linear-growth functionals and, in particular, to mean cur-
vature flow of graphs is given in Spadaro and Stefanelli (2011). On the other hand,
the WED technique has been extended to rate-independent evolution Ψ (q̇) = |q̇| by
Mielke and Ortiz (2008), and further detailed in Mielke and Stefanelli (2008). Some
application to crack propagation is given by Larsen et al. (2009). Eventually, the
doubly nonlinear case Ψ (q̇) = |q̇|p/p (p > 2) is addressed in Akagi and Stefanelli
(2010, 2011). Some duality-based WED approach to another large class of nonlinear
evolutions including the two-phase Stefan problem and the porous-media equation is
presented in Akagi and Stefanelli (2012).

Our interest in WIE functionals has been inspired by a conjecture by De Giorgi
(1996) on hyperbolic evolution. In particular, in De Giorgi (1996) it is conjectured
that the minimizers of the PDE version of the functional Wε

u �→
∫ T

0

∫
Rm

e−t/ε

(
ε2

2

∣∣∂ttu(x, t)
∣∣2 + 1

2

∣∣∇u(x, t)
∣∣2 + 1

p

∣∣u(x, t)
∣∣p

)
dx dt (p > 2)

among all space-time functions u with prescribed initial conditions, converge as
ε → 0 to a solution of the semilinear wave equation

∂ttu − �u + |u|p−2u = 0 in R
m × R+.

This conjecture has been checked positively for T < ∞ in Stefanelli (2011) and then
for T = ∞ by Serra and Tilli (2012).

Already in De Giorgi (1996, Rem. 1) it is speculated that some similar result could
hold for more general functionals of the Calculus of Variations as well. Our main
result Theorem 1.1 provides here a positive answer to this extension of the conjecture
in the finite-dimensional case.

2 The WIE Principle on R+

We focus here on the infinite-time horizon result of Theorem 1.1. With no loss of
generality, hereafter we shall assume the potential U to be nonnegative. Note that
our analysis is presently restricted to bounded-below potentials. In particular, we are
not in the position of addressing blow-up phenomena. Moreover, in order to avoid
cumbersome notation, we shall let M = ρI where ρ > 0 and I is the identity matrix.
It should be, however, clear that the corresponding proofs for a general positive-
definite mass matrix M can be then obtained with no particular intricacy.
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A caveat on notation: In the remainder of the paper c stands for any positive
constant, possibly depending on q0, q1, and U and changing from line to line. Note
specifically that c does not depend on ρ and, later, ν and T .

2.1 Existence of Minimizers

Let us firstly record that minimizers of Wε on Kε actually exist.

Lemma 2.1 (Direct method) Wε admits a minimizer in Kε .

Proof Every minimizing sequence qk ∈ Kε fulfills ρ
∫ ∞

0 e−t/ε|q̈k(t)|2 dt ≤ c and it
is hence compact in L2(R+, e−t/ε dt;R

m) (see (5) below). Upon extracting some
subsequence, one can exploit the lower semicontinuity of U and pass to the lim inf in
Wε by Fatou’s lemma. �

2.2 A Priori Estimate

The proof of Theorem 1.1 relies on an a priori estimate on the minimizers qε of Wε

on Kε . We have the following.

Lemma 2.2 (A priori estimate) Let qε minimize Wε on Kε . Then

ρ
∣∣q̇ε(t)

∣∣2 ≤ c ∀t > 0. (3)

The lemma follows from the argument by Serra and Tilli (2012) where the PDE
case of semilinear wave equations is treated. We hence claim no originality here. Still,
we record the proof of Lemma 2.2 for the sake of later reference with respect to its
extension to the mixed dissipative/nondissipative case presented in Sect. 3 below.

Proof Assume qε to be a minimizer and rescale time by letting p(t) := qε(εt). We
define the rescaled functional Gε as

Gε[p] :=
∫ ∞

0
e−t

(
ρ

2

∣∣p̈(t)
∣∣2 + ε2U

(
p(t)

))
dt

so that εWε[qε] = Gε[p]. At first, let us check that Gε[p] ≤ cε2. Indeed, define
p̂(t) componentwise as p̂i(t) := q0

i + arctan(εq1
i t). We have that p̂(0) = q0 and

(d/dt)p̂(0) = εq1 so that, in particular, t �→ q̂(t) := p̂(t/ε) ∈ Kε . By exploiting the
boundedness of p̂ and the local boundedness of U one has

Gε[p] = εWε[qε] ≤ εWε [̂q] = Gε[p̂] ≤ cε6
∫ ∞

0
t2e−t dt + ε2

∫ ∞

0
e−tU

(
p̂(t)

)
dt

≤ cε2. (4)

In the following, we shall make use of the following elementary inequality (Serra
and Tilli 2012, Lemma 2.3)

∫ ∞

t

e−sf 2(s)ds ≤ 2e−t f 2(t) + 4
∫ ∞

t

e−s ḟ 2(s)ds (5)
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which follows by integration by parts and is valid for all f ∈ H1
loc(R+) and t ≥ 0,

regardless of the finiteness of the integrals. In particular, we exploit inequality (5) in
order to get that

∫ ∞

0
e−s

∣∣ṗ(s)
∣∣2 ds ≤ 2ε2

∣∣q1
∣∣2 + 4

∫ ∞

0
e−s

∣∣p̈(s)
∣∣2 ds ≤ cε2 + c

ρ
Gε[p]. (6)

The latter entails that t �→ e−t |ṗ(t)|2 ∈ W1,1(R+) so that e−t |ṗ(t)|2 → 0 as t → ∞.
Define now, for all t ≥ 0, the auxiliary function

H(t) :=
∫ ∞

t

e−s

(
ρ

2

∣∣p̈(s)
∣∣2 + ε2U

(
p(s)

))
ds

and note that H ∈ W1,1
loc (R+), it is nonincreasing and nonnegative.

By considering competitors p̃(t) = p(s(t)) where s is some smooth time repara-
meterization, the minimality of p and the computations in Serra and Tilli (2012,
Prop. 3.1) ensure that

(
ρ

2
p̈·ṗ

)·
= 1

2

(
etH(t)

)· + ρ|p̈|2 + ρ

2
p̈·ṗ. (7)

Let a second auxiliary function E be defined as

E(t) := ρ

4

∣∣ṗ(t)
∣∣2 − ρ

2
p̈·ṗ + 1

2
etH(t).

By virtue of relation (7), we compute that

Ė = ρ

2
p̈·ṗ − ρ

2
(p̈·ṗ)· + 1

2

(
etH(t)

)·

(7)= ρ

2
p̈·ṗ −

(
1

2

(
etH(t)

)· + ρ|p̈|2 + ρ

2
p̈·ṗ

)
+ 1

2

(
etH(t)

)· = −ρ|p̈|2, (8)

so that E ∈ W1,1
loc (R+) and nonincreasing. The function E is defined in such a way

that

−ρ

4

(
e−t

∣∣ṗ(t)
∣∣2)· + 1

2
H(t) = e−tE(t). (9)

Let us now integrate the latter on (t, T ) getting

ρ

4
e−t

∣∣ṗ(t)
∣∣2 − ρ

4
e−T

∣∣ṗ(T )
∣∣2 + 1

2

∫ T

t

H(s)ds

=
∫ T

t

e−sE(s)ds ≤ E(t)

∫ T

t

e−s ds = E(t)
(
e−t − e−T

)
(10)

where the inequality follows from the monotonicity of E. Hence, by letting T → ∞
in (10) and recalling that e−T |ṗ(T )|2 → 0, we have proved that

ρ

4

∣∣ṗ(t)
∣∣2 ≤ E(t) ≤ E(0). (11)
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We now turn to the estimate of E(0). At first, note that, by exploiting the bounds
(4) and (6) we have that

∫ 1

0

∣∣p̈(t)
∣∣2 dt ≤ e

∫ ∞

0
e−t

∣∣p̈(t)
∣∣2 dt ≤ 2e

ρ
Gε[p̂] (4)≤ c

ρ
ε2, (12)

∫ 1

0

∣∣ṗ(t)
∣∣2 dt ≤ e

∫ ∞

0
e−t

∣∣ṗ(t)
∣∣2 dt

(6)≤ cε2 + c

ρ
Gε[p̂] (4)≤ c

(
1 + 1

ρ

)
ε2. (13)

In particular, these bounds and H(t) ≤ H(0) = Gε[p] ≤ cε2 suffice in order to con-
clude that

∫ 1

0
E(t)dt ≤ c(1 + ρ)ε2. (14)

Eventually, by using equality (8) and integrating in time, we have

E(0) =
∫ 1

0
E(0)dt

(8)=
∫ 1

0

(
E(t) + ρ

∫ t

0

∣∣p̈(s)
∣∣2 ds

)
dt

≤
∫ 1

0
E(t)dt + ρ

∫ 1

0

∣∣p̈(t)
∣∣2 dt

(14)≤ c(1 + ρ)ε2. (15)

Going back to (11), we have finally checked the pointwise bound ρ|ṗ(t)|2 ≤ cε2 and
estimate (3) ensues by time rescaling. �

2.3 Euler–Lagrange Equation

The proof of Theorem 1.1 follows by passing to the limit for ε → 0 in the Euler–
Lagrange equation for the minimizers qε of Wε on Kε . By considering internal vari-
ations, one has that

0 =
∫ ∞

0
ρ
(
e−t/εq̈ε(t)

) · v̈ dt + 1

ε2

∫ ∞

0
e−t/ε∇U

(
qε(t)

)·v(t)dt (16)

for all v ∈ C∞
c (R+;R

m). Hence, minimizers of Wε solve the Euler–Lagrange equa-
tion

ε2ρq(4) − 2ερq(3) + ρq̈ + ∇U(q) = 0 in R+ (17)

in the distributional sense, where q(k) stands for the kth derivative. In particular, the
minimizers qε solve a fourth-order elliptic-in-time regularization of the Lagrangian
system (2). Indeed, system (17) is solved in the strong sense as ∇U is continuous and
the uniform bound (3) entail that

ε2ρ
(
e−t/εq̈ε(t)

)·· = −e−t/ε∇U
(
qε(t)

) ∈ C
(
R+;R

m
)
.
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2.4 Proof of Theorem 1.1

The pointwise estimate of Lemma 2.2 yields that, by possibly passing to not relabeled
subsequences, we have that qε → q locally uniformly. Let us check that q indeed
solves the Lagrangian system (2). To this aim, fix any w ∈ C∞

c (R+;R
m) and choose

v(t) = vε(t) := et/εw(t) in relation (16). As one has that

v̈ε(t) = et/εẅ(t) + (2/ε)et/εẇ(t) + (
1/ε2)et/εw(t),

from (16) we get that

0 =
∫ ∞

0
e−t/ε

(
ρq̈ε(t)·v̈ε(t) + 1

ε2
∇U

(
qε(t)

)·vε(t)

)
dt

=
∫ ∞

0

(
ρq̈ε(t)·ẅ(t) + 2ρ

ε
q̈ε(t)·ẇ(t) + ρ

ε2
q̈ε(t)·w(t) + 1

ε2
∇U

(
qε(t)

)·w(t)

)
dt.

In particular, one deduces from the latter that
∫ ∞

0

(
ρqε(t)·ẅ(t) + ∇U

(
qε(t)

)·w(t)
)

dt

=
∫ ∞

0

(
ε2ρq̇ε(t)·w(3)(t) + 2ερq̇ε(t)·ẅ(t)

)
dt

=
∫ T

0
ρq̇ε(t)·

(
ε2w(3)(t) + 2εẅ(t)

)
dt.

By passing to the limit in the latter as ε → 0 and using the bound (3) we have that
∫ ∞

0

(
ρq(t)·ẅ(t) + ∇U

(
q(t)

)·w(t)
)

dt = 0.

Namely, q solves ρq̈ = −∇U(q) in the distributional sense. By comparison in the
latter we have that q ∈ C2(R+;R

m) so that q is indeed the classical solution of (2).
In case U ∈ C1,1

loc (Rm), the solution of the second order Cauchy problem (2) is unique
and the convergence qε → q holds for the whole sequence.

2.5 More General Potentials

By inspecting the proof of Lemmas 2.1–2.2 one realizes that the statement of Theo-
rem 1.1 is indeed valid in some greater generality. In particular, one could require the
potential U to be defined just on a non-empty open subset D ⊂ R

m and, by letting
Uext be its trivial extension to ∞ out of D, impose

0 ≤ U ∈ C1(D) and Uext be lower semicontinuous. (18)

Note that the lower semicontinuity of Uext expresses the fact that the potential U is
actually confining the evolution to D. In particular U becomes unbounded by ap-
proaching the boundary of D. By requiring q0 ∈ D, under assumption (18) Theo-
rem 1.1 still holds. The extension of the WIE principle to the latter type of potentials
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is not at all academical as it qualifies the WIE functional to be applicable also in some
singular potential situation.

We shall also mention that, although completely neglected in this paper for the
sake of simplicity, a suitably well-behaved time-dependence of the potential U

(hence, in particular, a non-homogeneous flow) can be considered.

2.6 Integrability Conditions at Infinity

Before going on, we shall explicitly remark the crucial role of the two integrabil-
ity conditions at infinity (1) which are fulfilled by all trajectories q in Kε . These
conditions correspond to the two missing boundary conditions needed in order to
complement the fourth-order problem (17). In particular, conditions (1) are respon-
sible for the noncausality of the problem at all levels ε > 0: The solution q at time
t depends on future, i.e., its value on (t,∞). Note, however, that by taking the limit
ε → 0 causality is eventually restored; see (2).

In order to illustrate this remark, let us consider once more the scalar linear situ-
ation of U(q) = q2/2 and ρ = 1. In this case, the solution of ε2q(4) − 2εq(3) + q̈ +
q = 0 can be computed explicitly as q(t) = ∑4

i=1 ci exp(λε,i t) with

λε,1 = 1 − uε

2ε
, λε,2 = 1 − vε

2ε
, λε,3 = 1 + uε

2ε
, λε,4 = 1 + vε

2ε
.

In the latter uε, vε ∈ C are chosen in such a way that u2
ε = 1 − 4εi and v2

ε = 1 + 4εi,
respectively. By exploiting conditions (1) we readily check that, necessarily, c3 =
c4 = 0. Hence, solutions to (17) in fulfilling (1) are of the form q(t) = c1 exp(λε,1t)+
c2 exp(λε,2t) and we easily check that λε,1 → i and λε,2 → −i. This corresponds to
the fact that the limit of minimizers of Wε in Kε converge to a linear combination of
sin and cos, i.e., a solution of q̈ + q = 0.

2.7 The WIE Principle as a Selection Criterion

In case the Lagrangian system (2) admits multiple solutions the WIE principle may
serve as a variational selection criterion. Heuristically, this is related to the specific
noncausality of the minimization process for all ε > 0. Indeed, differently from the
solutions of the limiting differential problem (2), the minimizers of Wε are allowed
in some sense to peek into the future and to expend some inertia in order to exploit
some possible lower-potential state.

We shall illustrate this fact by a scalar example. Fix the initial data to be q0 =
q1 = 0 and choose the potential

U(q) =
{−8(q+)3/2 for q ≤ 1,

8((2 − q)+)3/2 − 16 for q > 1.

Note that the potential U is C1 but not λ-convex at q = 0. In particular, U is maximal
for q ≤ 0 and minimal for q ≥ 2.

The corresponding equation (2) reads q̈ = 12
√

q+ which, along with the pre-
scribed initial conditions, admits the trivial solution q(t) = 0 as well as a contin-
uum of solutions of the form t �→ ((t − h)+)4 for all h > 0. For all fixed ε > 0, the
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Fig. 2 The solution q0 for
ε = 1/2

corresponding Euler–Lagrange equation (17) (along with the initial conditions and
integrability conditions at ∞) admits multiple solutions as well. At first, one has of
course the trivial solution. Then, by observing that the potential U is locally Lipschitz
continuous for q > 0, one can uniquely find the solution q0 to (17) which vanishes
just in t = 0; see Fig. 2. Moreover, as the Euler–Lagrange equation (17) is translation
invariant, all trajectories of the form qh(t) = q0(t − h) are solutions as well.

Note that for small times (approximately t < 1) we have that q̈0 �= 0 and U(q0) is
negative but still not minimal. Then, at later times, the trajectory q0 reaches the region
where U is minimal and gets basically affine (q̈ ∼ 0). In particular, the integrand of
the WIE functional over q0 changes sign over time and we can (numerically) evaluate
the value Wε[q0] to be negative; see Fig. 3.

As clearly Wε = 0 for the trivial solution and Wε[qh] = e−h/εWε[q0] > Wε[q0],
one has that the WIE principle selects exactly the trajectory q0. Eventually, by tak-
ing the limit ε → 0, the minimizers of the WIE functional can hence be expected to
converge to the particular solution t �→ t4 of the limiting problem (2).

3 Dissipative Evolutions

A distinctive feature of the present variational approach to Lagrangian mechanics
resides in its flexibility in encompassing dissipative situations. Indeed, Theorem 1.1
can be quite straightforwardly extended to handle mixed dissipative/nondissipative
situations. Let now ρ ≥ 0 and the viscosity coefficient ν ≥ 0 be given and consider
the Weighted Inertia-Dissipation-Energy (WIDE) functionals

Wε[q] :=
∫ ∞

0
e−t/ε

(
ε2ρ

2

∣∣q̈(t)
∣∣2 + εν

2

∣∣q̇(t)
∣∣2 + U

(
q(t)

))
dt (ε > 0).

Let qε be the minimizer of Wε on the closed and convex set

Kρ
ε :=

{ {q ∈ H2(R+, e−t/ε dt;R
m) : q(0) = q0, q̇(0) = q1} if ρ > 0,

{q ∈ H1(R+, e−t/ε dt;R
m) : q(0) = q0} if ρ = 0.
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Fig. 3 The function

t �→ ∫ t
0 e−s/ε( ε2

2 |q̈0(s)|2 +
U(q0(s)))ds for ε = 1/2

Then we have the following extension of the principle to mixed dissipative/non-
dissipative situations.

Theorem 3.1 (WIDE principle) Assume ρ + ν > 0 and let qε minimize Wε on K
ρ
ε .

Then, for some subsequence qεk
we have that qεk

→ q weakly-∗ in W1,∞(R+;R
m)

if ρ > 0 and weakly in H1(R+;R
m) if ρ = 0 (hence, locally uniformly), where

ρq̈ + νq̇ + ∇U(q) = 0 in R+, q(0) = q0, ρq̇(0) = ρq1.

Note that the very same considerations of Sect. 2.1 can be extended to the present
case in order to ensure that such minimizers exist. Let us explicitly mention that the
latter result holds more generally for two symmetric and positive-definite mass and
viscosity matrices M and N such that M +N > 0. In particular, we are in the position
of treating systems resulting form the combinations of conservative and dissipative
dynamics.

3.1 A Priori Estimate

As for the purely nondissipative case of Theorem 1.1, the convergence proof of The-
orem 3.1 follows from an a priori estimate.

Lemma 3.2 (A priori estimate, WIDE principle) Let qε minimize Wε on K
ρ
ε . Then

ρ
∣∣q̇ε(t)

∣∣2 + ν

∫ t

0

∣∣q̇ε(s)
∣∣2 ds ≤ c ∀t > 0. (19)

Before proceeding to the proof, let us remark that the two terms in estimate (19) are
exactly the ones which are expected in the limit ε = 0. As such, the estimate shows a
remarkable optimality with respect to possibly mixed dissipative/nondissipative dy-
namics. The proof of estimate (19) results by extending the one of Lemma 2.2. In
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particular, we extend here the argument from (Serra and Tilli 2012) in order to han-
dle dissipative effects.

Proof We shall reconsider the proof of Lemma 2.2: By letting qε be a minimizer of
Wε on K

ρ
ε we redefine the rescaled quantities

p(t) := qε(εt), Gε[p] :=
∫ ∞

0
e−t

(
ρ

2

∣∣p̈(t)
∣∣2 + εν

2

∣∣ṗ(t)
∣∣2 + ε2U

(
p(t)

))
dt

and, accordingly,

H(t) :=
∫ ∞

t

e−s

(
ρ

2

∣∣p̈(s)
∣∣2 + εν

2

∣∣ṗ(s)
∣∣2 + ε2U

(
p(s)

))
ds.

By choosing again p̂i(t) := q0
i + arctan(εq1

i t) we have that

Gε[p] ≤ Gε[p̂] ≤ c

∫ ∞

0
e−t

(
ε6ρ + ε3ν

)
dt + ε2

∫ ∞

0
e−tU

(
p̂(t)

)
dt ≤ cε2.

In particular, the bound (6) reads in this case as

(ρ + εν)

∫ ∞

0
e−s

∣∣ṗ(s)
∣∣2 ds ≤ cε2 + cGε[p] ≤ cε2. (20)

On the other hand, relation (7) in this dissipative/nondissipative context reads
(

ρ

2
p̈·ṗ

)·
= 1

2

(
etH(t)

)· + ρ|p̈|2 + ρ

2
p̈·ṗ + εν|ṗ|2. (21)

Hence, we can redefine the function E as

E(t) := ρ

4

∣∣ṗ(t)
∣∣2 − ρ

2
p̈·ṗ + εν

∫ t

0

∣∣ṗ(s)
∣∣2 ds + 1

2
etH(t) ∀t ≥ 0

so that, by taking the time derivative and using relation (21), we again have that

Ė = −ρ|p̈|2. (22)

Moreover, we readily check that (see (9))

−ρ

4

(
e−t

∣∣ṗ(t)
∣∣2)· + 1

2
H(t) + ενe−t

∫ t

0

∣∣ṗ(s)
∣∣2

ds = e−tE(t).

Hence, by integrating on (t, T ) and using the fact that E is nonincreasing one con-
cludes

ρ

4
e−t

∣∣ṗ(t)
∣∣2 − ρ

4
e−T

∣∣ṗ(T )
∣∣2 + 1

2

∫ T

t

H(s)ds + εν

∫ T

t

e−s

(∫ s

0

∣∣ṗ(r)
∣∣2 dr

)
ds

=
∫ T

t

e−sE(s)ds ≤ (
e−t − e−T

)
E(t) ≤ (

e−t − e−T
)
E(0). (23)
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Let us now take the limit for T → ∞. By recalling that e−T |ṗ(T )|2 → 0 we get

ρ

4
e−t

∣∣ṗ(t)
∣∣2 + εν

∫ ∞

t

e−s

(∫ s

0

∣∣ṗ(r)
∣∣2 dr

)
ds ≤ e−tE(0).

In particular, t �→ e−t
∫ t

0 |ṗ(s)|2 ds ∈ L1(R+) and, owing also to bound (20), it is a
standard matter to compute

(
e−t

∫ t

0

∣∣ṗ(s)
∣∣2 ds

)·
= −e−t

∫ t

0

∣∣ṗ(s)
∣∣2 ds + e−t

∣∣ṗ(t)
∣∣2

and deduce that indeed t �→ e−t
∫ t

0 |ṗ(s)|2 ds ∈ W1,1(R+). Hence, we also have that
e−t

∫ t

0 |ṗ(s)|2 ds → 0 as t → ∞.
We shall now go back to relation (23), handle the εν-term by

εν

∫ T

t

e−s

(∫ s

0

∣∣ṗ(r)
∣∣2 dr

)
ds = −ενe−T

∫ T

0

∣∣ṗ(s)
∣∣2 ds + ενe−t

∫ t

0

∣∣ṗ(s)
∣∣2 ds

+ εν

∫ T

t

e−s
∣∣ṗ(s)

∣∣2 ds,

and take the limit T → ∞ in order to get

ρ

4

∣∣ṗ(t)
∣∣2 + εν

∫ t

0

∣∣ṗ(s)
∣∣2 ds ≤ E(0).

By arguing exactly as in (15) we check that E(0) ≤ cε2. Eventually, estimate (19)
follows by time rescaling. �

3.2 Proof of Theorem 3.1

We aim now at passing to the limit in the Euler–Lagrange equation

0 =
∫ ∞

0

(
ε2ρ

(
e−t/εq̈ε(t)

)·· − εν
(
e−t/εq̇ε(t)

)· + e−t/ε∇U
(
qε(t)

))·v(t)dt (24)

for all v ∈ C∞
c (R+;R

m). By compactness we get that qε → q locally uniformly
for some not relabeled subsequence. Fix any w ∈ C∞

c (R+;R
m) and choose v(t) =

vε(t) := et/εw(t) in relation (24) getting

0 =
∫ ∞

0
e−t/ε

(
ε2ρq̈ε(t)·v̈ε(t) + ενq̇ε(t)·v̇ε(t) + ∇U

(
qε(t)

)·vε(t)
)

dt

=
∫ ∞

0

(
ε2ρq̈ε(t)·ẅ(t) + 2ερq̈ε(t)·ẇ(t) + ρq̈ε(t)·w(t)

)
dt

+
∫ ∞

0

(
ενq̇ε(t)·ẇ(t) + νq̇ε(t)·w(t)

)
dt +

∫ ∞

0
∇U

(
qε(t)

)·w(t)dt.
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Hence, we have proved that
∫ ∞

0

(
ρq̈ε(t) + νq̇ε(t) + ∇U

(
qε(t)

))·w(t)dt

=
∫ ∞

0

(
ε2ρq̇ε(t)·w(3)(t) + 2ερq̇ε(t)·ẅ(t) − ενq̇ε(t)·ẇ(t)

)
dt

=
∫ ∞

0
ρq̇ε(t)·

(
ε2w(3)(t) + 2εẅ(t)

)
dt −

∫ ∞

0
νq̇ε(t) · εẇ(t)dt.

Eventually, by using (19) and by passing to the lim sup as ε → 0 we have that q

solves

ρq̈ + νq̇ + ∇U(q) = 0 in R+.

The check of the initial conditions q(0) = q0 and ρq̇(0) = ρq1 is immediate. In case
we have that U ∈ C1,1

loc (Rm), the limiting problem has a unique solution and the whole
sequence qε converges.

3.3 Gradient Flows

As a corollary of Theorem 3.1, we have checked the ε → 0 limit also in the fully
dissipative situation of gradient flows, namely ρ = 0 and ν > 0. For the sake of defi-
niteness, we shall record this fact in the following.

Corollary 3.3 (WED principle, gradient flows) Let qε minimize the functional

q �→
∫ ∞

0
e−t/ε

(
εν

2
|q̇|2 + U

(
q(t)

))
dt

among all trajectories t �→ q(t) ∈ H1(R+, e−t/ε dt;R
m) such that q(0) = q0. Then,

for some subsequence qεk
we have that qεk

→ q weakly in H1(R+;R
m) where q is

the unique classical solution of the gradient flow problem

νq̇ + ∇U(q) = 0 in R+, q(0) = q0.

We shall mention that the limit ε → 0 in the case of gradient flows has already
been tackled by a fairly different approach in Rossi et al. (2011a, 2011b). Indeed, in
the latter the case of (geodesically) convex (Rossi et al. 2011b) and λ-convex (Rossi
et al. 2011a) potentials in metric spaces is discussed by a Pontryagin-type argument.
In particular, minimizers of the corresponding metric version of the functional are
proved to converge, up to subsequences, to so-called curves of maximal slope. Let
us remark that the above mentioned results do not apply to the present case as the
potential is here just C1(Rm). This, in particular, allows us to use the variational
principle as a selection criterion in case of nonuniqueness of solution of the gradient
flow in the exact same spirit as in Sect. 2.7. Finally, in the case T < ∞, we shall
directly argue on Euler–Lagrange equation. In particular, convergence will be proved
starting from any sequence of stationary points.
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4 The WIE Principle on (0,T )

Let us now move to the consideration of the finite-time horizon situation. In partic-
ular, we shall substitute in time integral on (0,∞) in the definition of Wε (and Wε ,
later) by an integration on (0, T ) for some fixed reference time T > 0. Namely, we
consider the functionals

WT
ε [q] :=

∫ T

0
e−t/ε

(
ε2ρ

2

∣∣q̈(t)
∣∣2 + U

(
q(t)

))
dt (ε > 0)

to be minimized on the convex and closed set

Kρ :=
{ {q ∈ H2(0, T ;R

m) : q(0) = q0, q̇(0) = q1} if ρ > 0,

{q ∈ H1(0, T ;R
m) : q(0) = q0} if ρ = 0.

This change brings the WIE approach closer to the classical formulation of the
Hamilton principle where some suitable final time is prescribed. The aim of this
section is that of reproducing, and in place sharpen, the convergence results of the
infinite-time horizon frame of Sect. 2. Indeed, also in the finite-horizon case T < ∞
the limit as ε → 0 of minimizers of the WT

ε functional converge to solutions of the
Lagrangian system (Theorem 4.2). Moreover, an explicit convergence rate can be ex-
hibited (Theorem 4.3). The latter quantitative error bound is presently not available
in the infinite-horizon case.

Note that the convergence proof of WT
ε is substantially different from the corre-

sponding one of the infinite-horizon case. In fact, the arguments of Sect. 2 heavily
rely on the invariance of the time-integration interval R+ with respect to linear time
rescalings. Additionally, the appearance of the finiteness of the time interval of inte-
gration entails the arising of two final boundary conditions at time T (see (28) below).
These final boundary conditions are clearly bound to disappear in the limit ε → 0.
Still, they require specific attention for all ε > 0, exactly in the spirit of Sect. 2.6.

4.1 Well-Posedness of the Minimum Problem

From here on, we shall assume that U ∈ C1,1
loc (Rm). Let us start by checking that

indeed minimizers of WT
ε on KT exist. In the present finite-time situation the re-

sult is even stronger with respect to Lemma 2.1. Indeed, by requiring further that
U ∈ C1,1(Rm), the functionals WT

ε turn out to be uniformly convex (for small ε). In
particular, the minimum problem is well-posed and minimizers are unique.

Lemma 4.1 (Direct method, T < ∞) The functional WT
ε admits a minimizer in Kρ .

Moreover, if U ∈ C1,1(Rm) and ε is small enough, the functional WT
ε is uniformly

convex in Kρ so that the minimizer of WT
ε on Kρ is unique.

Proof The existence part of the statement follows exactly as in Lemma 2.1. Let us
check for uniform convexity. Recall that U ∈ C1,1(Rm) implies that there exists λ > 0
such that p �→ U(q) + (λ/2)|q|2 is convex. Given q ∈ Kρ , consider the function
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p(t) := e−t/(2ε)q(t). We rewrite WT
ε [q] via p as

WT
ε [q] =

∫ T

0

(
ε2ρ

2

∣∣p̈(t)
∣∣2 + ρ

2

∣∣ṗ(t)
∣∣2 + ρ − 16ε2λ

32ε2

∣∣p(t)
∣∣2

)
dt

+
∫ T

0

(
ερp̈(t)·ṗ(t) + ρ

4
p̈(t)·p(t) + ρ

4ε
ṗ(t)·p(t)

+ e−t/ε

(
U

(
q(t)

) + λ

2

∣∣q(t)
∣∣2

))
dt

=
∫ T

0

(
ε2ρ

2

∣∣p̈(t)
∣∣2 + ρ

4

∣∣ṗ(t)
∣∣2 + ρ − 16ε2λ

32ε2
ρ
∣∣p(t)

∣∣2
)

dt

+ ρ

(
ε
∣∣ṗ(T )

∣∣2 − ε
∣∣ṗ(0)

∣∣2 + 1

4
ṗ(T )·p(T ) − 1

4
ṗ(0)·p(0) + 1

2ε

∣∣p(T )
∣∣2

− 1

2ε

∣∣p(0)
∣∣2

)
+

∫ T

0
e−t/ε

(
U

(
q(t)

) + λ

2

∣∣q(t)
∣∣2

)
dt

=: Aε[p] + Bε[p] + Cε[q].
Here, Aε is quadratic and uniformly convex (of constant αε > 0, say) with respect
to p in H2(0, T ;R

m) for all ε < (ρ/(16λ))1/2 and Cε is clearly convex with respect
to q . The same holds also for the functional Bε for it is quadratic in p(T ) and ṗ(T ).
Let now θ ∈ [0,1], q0,q1 ∈ Kρ , and define accordingly p0,p1 as above. We have
that

WT
ε

[
(1 − θ)q0 + θq1

] = Aε

[
(1 − θ)p0 + θp1

] + Bε

[
(1 − θ)p0 + θp1

]
+ Cε

[
(1 − θ)q0 + θq1

]

≤ −αε

2
θ(1 − θ)‖p0 − p1‖2

H2 + (1 − θ)WT
ε [q0] + θWT

ε [q1]

and the assertion follows as ‖p0 − p1‖2
H2 ≥ ε4e−T/ε‖q0 − q1‖2

H2 . �

4.2 Convergence of Stationary Points

We shall specify here some growth conditions on ∇U . Namely, besides 0 ≤ U ∈
C1,1

loc (Rm), we assume that

∀δ > 0 ∃cδ ≥ 0 ∀q ∈ R
m : ∣∣∇U(q)

∣∣ ≤ δ
(
U(q) + |q|2) + cδ. (25)

This follows for instance for U being the sum of a homogeneous and a subcubic
potential. Let us specify the Euler–Lagrange equation for the minimizers qε of WT

ε

on Kρ . In particular, one has that

0 = ρe−T/εq̈ε(T )·v̇(T ) − ρ
(
e−t/εq̈ε

)·
(T )·v(T )

+
∫ T

0

(
ρ
(
e−t/εq̈ε(t)

)·· + 1

ε2
e−t/ε∇U

(
qε(t)

))·v(t)dt
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for all v ∈ C∞(0, T ;R
m) with v(0) = v̇(0) = 0, and hence

ε2ρq(4) − 2ερq(3) + ρq̈ + ∇U(q) = 0 in (0, T ), (26)

q(0) = q0, ρq̇(0) = ρq1, (27)

ρq̈(T ) = ρq(3)(T ) = 0. (28)

Note the occurrence of the two extra final boundary conditions (28) at time T . These
conditions will disappear in the limit ε → 0, see (29).

The main result of this section is the following.

Theorem 4.2 (WIE principle, T < ∞) Let qε solve the Euler–Lagrange equation
(26)–(28). Then, qε → q weakly in H1(0, T ;R

m) where q solves the Lagrangian
system

ρq̈ + ∇U(q) = 0 in (0, T ), q(0) = q0, ρq̇(0) = ρq1. (29)

Proof One has to start by establishing uniform estimates on qε in the spirit of
Lemma 2.2, although necessarily by a different technique. We follow here the ar-
gument of Stefanelli (2011) and perform some modifications in order to cope with
the possible nonconvexity of U (the original argument from Stefanelli (2011) works
for convex potentials only). Take the scalar product of (26) and q̇ε − q1 and integrate
on (0, t) getting

0 = ε2ρq(3)
ε (t)·(q̇ε(t) − q1) − ε2ρ

2

∣∣q̈ε(t)
∣∣2 + ε2ρ

2

∣∣q̈ε(0)
∣∣2 − 2ερq̈ε(t)·

(
q̇ε(t) − q1)

+ 2ερ

∫ t

0

∣∣q̈ε(s)
∣∣2 ds + ρ

2

∣∣q̇ε(t) − q1
∣∣2 + U

(
qε(t)

) − U
(
q0)

+
∫ t

0
∇U

(
qε(s)

)·q1 ds. (30)

Now, we integrate (30) on (0, T ) and use the final boundary conditions (28) in order
to get that

0 = ρ

2

∫ T

0

∣∣q̇ε(t) − q1
∣∣2 dt +

∫ T

0
U

(
qε(t)

)
dt

− T U
(
q0) +

∫ T

0

∫ t

0
∇U

(
qε(s)

)·q1 ds dt

− 3ε2ρ

2

∫ T

0

∣∣q̈ε(t)
∣∣2 dt + ε2Tρ

2

∣∣q̈ε(0)
∣∣2 − ερ

∣∣q̇ε(T ) − q1
∣∣2

+ 2ερ

∫ T

0

∫ t

0

∣∣q̈ε(s)
∣∣2 ds dt. (31)
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Finally, add (31) to (30) with t = T and use again the boundary conditions (28)
getting

(
2ε − 3ε2

2

)∫ T

0
ρ
∣∣q̈ε(t)

∣∣2 dt + ε2(1 + T )

2
ρ
∣∣q̈ε(0)

∣∣2 +
(

1

2
− ε

)
ρ
∣∣q̇ε(T ) − q1

∣∣2

+ 2ερ

∫ T

0

∫ t

0

∣∣q̈ε(s)
∣∣2 ds dt + ρ

2

∫ T

0

∣∣q̇ε(t) − q1
∣∣2 dt + U

(
qε(T )

)

+
∫ T

0
U

(
qε(t)

)
dt ≤ c(T ) +

∫ T

0
∇U

(
qε(t)

)·q1 dt

+
∫ T

0

∫ t

0
∇U

(
qε(s)

)·q1 ds dt. (32)

The last two terms in the above right-hand side can be controlled by means of relation
(25) so that we have

ρ‖q̇ε‖2
L2 ≤ c(T ). (33)

Hence, by possibly passing to not relabeled subsequences, we have that qε → q uni-
formly. Eventually, we check that q indeed classically solves the Lagrangian system
(26) by arguing along the lines of Sect. 3.2. In particular, the whole sequence con-
verges. �

4.3 Quantitative Error Bound

As already mentioned, in the finite-time case T < ∞ the convergence result of The-
orem 4.2 can be refined in order to yield a quantitative rate estimate.

Theorem 4.3 (Error control, T < ∞) Under the assumptions of Theorem 4.2 we
have that ρ‖q − qε‖H1+η ≤ c(T )ε(1−η)/2 for all η ∈ [0,1).

Proof The argument relies on establishing an extra estimate. From bound (33) and the
local Lipschitz continuity of ∇U , we have that ε2ρq

(4)
ε − 2ερq

(3)
ε +ρq̈ε is uniformly

bounded in L2(0, T ;R
m), depending on T . Hence, by integrating its squared norm

we have that

ε4
∫ T

0
ρ
∣∣q(4)

ε (t)
∣∣2

dt + 4ε2
∫ T

0
ρ
∣∣q(3)

ε (t)
∣∣2

dt +
∫ T

0
ρ
∣∣q̈ε(t)

∣∣2
dt

≤ c(T ) + 2ε3
∫ T

0
ρq(4)

ε (t)·q(3)
ε (t)dt + 2ε

∫ T

0
ρq(3)

ε (t)·q̈ε(t)dt

− ε2
∫ T

0
ρq(4)

ε (t)·q̈ε(t)dt

(28)= c(T ) − ε3ρ
∣∣q(3)

ε (0)
∣∣2 − ερ

∣∣q̈ε(0)
∣∣2 + ε2ρq(3)

ε (0)·q̈ε(0)

+ 2ε2
∫ T

0
ρ
∣∣q(3)

ε (t)
∣∣2 dt.
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This entails that ε2ρ1/2q
(4)
ε , ερ1/2q

(3)
ε , and ρ1/2q̈ε are bounded in L2(0, T ;R

m).
Moreover, the Gagliardo–Nirenberg inequality ensures that

ρ1/2
∥∥q(3)

ε

∥∥
L∞ ≤ c(T )

(
ρ1/2

∥∥q(3)
ε

∥∥
L2 + ρ1/2

∥∥q(3)
ε

∥∥1/2
L2

∥∥q(4)
ε

∥∥1/2
L2

)

≤ c(T )

(
1

ε
+ 1

ε3/2

)
, (34)

ρ1/2‖q̈ε‖L∞ ≤ c(T )

(
1 + 1

ε

)
.

Take now the difference between (29) and (26), test it on ṗε := q̇ − q̇ε , and integrate
on (0, t) getting

ρ

2

∣∣ṗε(t)
∣∣2 = −ε2

∫ t

0
ρq(4)

ε (s)·ṗε(s)ds + 2ε

∫ t

0
ρq(3)

ε (s)·ṗε(s)ds

−
∫ t

0

(∇U
(
q(s)

) − ∇U
(
qε(s)

))·ṗε(s)ds

≤ −ε2ρq(3)
ε (t)·ṗε(t) + ε2

∫ t

0
ρq(3)

ε (s)·p̈ε(s)ds + 2ερq̈ε(t)·ṗε(t)

− 2ε

∫ t

0
ρq̈ε(s)·p̈ε(s)ds + c

∫ t

0
ρ
∣∣pε(s)

∣∣∣∣ṗε(s)
∣∣ds

(34)≤ c(T )ε + ρ

4

∣∣ṗε(t)
∣∣2 + c(T )

∫ t

0
ρ
∣∣ṗε(s)

∣∣2 ds

so that by means of the Gronwall lemma we get that ρ‖q̇ − q̇ε‖2
L∞ ≤ c(T )ε. By

interpolation (Bergh and Löfström 1976), for all η ∈ (0,1) we have

ρ‖q − qε‖(W1,∞,H2)η,1
≤ c(T )‖q̇ − q̇ε‖1−η

L∞ ‖q − qε‖η

H2 ≤ c(T )ε(1−η)/2

(which is stronger than the statement). Eventually, we conclude by noting that
(
W1,∞,H2)

η,1 ⊂ (
W1,∞,H2)

η,2 ⊂ (
H1,H2)

η,2 = H1+η

with continuous injections. �

4.4 Dissipative Evolutions

Also in the finite-time case, the convergence result of Theorem 4.2 can be extended
to mixed dissipative/nondissipative situations. In particular, by letting ρ, ν ≥ 0 one
considers the minimization of the WIDE functionals

W
T
ε [q] :=

∫ T

0
e−t/ε

(
ε2ρ

2

∣∣q̈(t)
∣∣2 + εν

2

∣∣q̇(t)
∣∣2 + U

(
q(t)

))
dt (ε > 0)

over the convex set Kρ . By assuming ρ + ν > 0 and letting ε be small enough the

same results of Lemma 4.1 hold. In particular, for U ∈ C1,1(Rm) the functional W
T
ε
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is uniformly convex hence admitting a unique minimizer on Kρ . Moreover, we have
the following.

Theorem 4.4 (WIDE principle, T < ∞) Let ρ + ν > 0, qε minimize W
T
ε in Kρ ,

and (25) hold. Then, qε → q weakly-∗ in W1,∞(0, T ;R
m) if ρ > 0 and weakly in

H1(0, T ;R
m) if ρ = 0 (hence, locally uniformly), where

ρq̈ + νq̇ + ∇U(q) = 0 in (0, T ), q(0) = q0, ρq̇(0) = ρq1.

We shall not present here the detailed proof of the latter as it can be obtained
along the very same lines (and some additional technicalities) of the proof of Theo-
rem 3.1. Some detail in this direction is however provided in the forthcoming (Liero
and Stefanelli 2012) where some infinite-dimensional PDE situation is discussed. The
conclusions of Theorem 4.3 hold unchanged as long as ρ > 0 and the proof is indeed
an extension of the proposed one. For ρ = 0, one resorts in the (necessarily weaker)
quantitative convergence result ν‖q − qε‖Hη ≤ c(T )ε(1−η)/2 for η ∈ [0,1).

5 Γ -Convergence

The present variational formalism is well-suited in order to describe limiting be-
haviors. In particular, starting from the mixed dissipative/nondissipative situation of
Sect. 3, we shall here comment on the possibility of considering from a variational
viewpoint the limits ρ → 0 and ν → 0. This will be done within the classical frame
of Γ -convergence (Dal Maso 1993; De Giorgi and Franzoni 1979). Additionally, we
will prove that, under suitable specifications, the finite-horizon problem Γ -converges
to the infinite-horizon problem as T → ∞.

Let us mention that all the Γ -limits are taken for constant ε as combined Γ -
convergence analyses for both parameters and ε → 0 are currently not available. The
reader is, however, referred to Mielke and Ortiz (2008) and Akagi and Stefanelli
(2011), Mielke and Stefanelli (2008) for some Γ -convergence result on WED func-
tionals in the doubly nonlinear parabolic setting.

5.1 Viscous Γ -Limit ρ → 0

We start by defining the functionals Fρ over the common space H1(R+, e−t/ε dt;R
m)

for ρ ≥ 0, ν > 0 as

Fρ[q] =
{∫ ∞

0 e−t/ε(
ε2ρ

2 |q̈(t)|2 + εν
2 |q̇(t)|2 + U(q(t)))dt if q ∈ K

ρ
ε ,

∞ else.

Our result reads as follows.

Lemma 5.1 (Γ -limit ρ → 0) We have that Fρ Γ→ F 0 weakly in L2(R+, e−t/ε dt;R
m).
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Proof Given q ∈ K0
ε one can use singular perturbations in order to find a sequence

qρ ∈ K
ρ
ε with qρ → q strongly in K0

ε such that ρ
∫ ∞

0 e−t/ε|q̈ρ(t)|2 dt → 0. On the
other hand, let qρ → q weakly in L2(R+, e−t/ε dt;R

m). As F 0 ≤ Fρ , we readily
check that F 0[q] ≤ lim infρ→0 F 0[qρ] ≤ lim infρ→0 Fρ[qρ]. �

Let us now check that the latter Γ -convergence result is sufficient in order to prove
that, as ρ → 0, (subsequences of) minimizers converge to a minimizer. To this aim,
we just need to check for the precompactness of the minimizers of Fρ with respect to
the weak L2(R+, e−t/ε dt;R

m) topology. Although for minimizers, this follows from
estimate (19), we could also argue directly by

ρ

2

∫ ∞

0
e−t/ε

∣∣q̈ρ
∣∣2 dt ≤ Fρ

(
qρ

) ≤ Fρ( q̂ ) < ∞

where q̂i (t) = q0
i + arctan(q1

i t). Hence, again by (5), the required precompactness
follows.

5.2 Nondissipative Γ -Limit ν → 0

In order to formalize our Γ -convergence result, we introduce the functionals Gν for
ρ > 0 and ν ≥ 0 as

Gν[q] =
{∫ ∞

0 e−t/ε(
ε2ρ

2 |q̈(t)|2 + εν
2 |q̇(t)|2 + U(q(t)))dt if q ∈ Kε,

∞ else.

We have the following.

Lemma 5.2 (Γ -limit ν → 0) We have that Gν Γ→ G0 weakly in L2(R+, e−t/ε dt;R
m).

Proof The existence of a recovery sequence is immediate by pointwise convergence
since Gν[q] → G0[q] for all q ∈ Kε . Moreover, we have that G0 ≤ Gν and we read-
ily check that G0[q] ≤ lim infν→0 G0[qν] ≤ lim infν→0 Gν[qν] and the assertion fol-
lows. �

Arguing exactly as in Sect. 5.1 we can check that the minimizers of Gν are weakly
precompact in L2(R+, e−t/ε dt;R

m). In particular, the latter Γ -convergence result
entails the convergence of (subsequences of) minimizers of Gν to a minimizer of G0.

5.3 Infinite-Horizon Γ -Limit T → ∞

We shall be considering all functionals to be defined on the common space
H2(R+, e−t/ε dt;R

m) and specify, for all t ∈ (0,∞],
F t [q] := Wt

ε[q] if q ∈ Kρ
ε and q is affine on [T ,∞) and F t [q] = ∞ else.

Hence, our result reads as follows.
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Lemma 5.3 (Γ -limit T → ∞) Assume that U is quadratically bounded. Then we

have that FT Γ→ F∞ weakly in L2(R+, e−t/ε dt;R
m).

Proof For all q ∈ K
ρ
ε define qT = q on [0, T ] and qT affine on [T ,∞). Then, it is

easy to check that FT [qT ] → F∞[q]. Assume now to be given qT → q∞ weakly
in L2(R+, e−t/ε dt;R

m). By taking with no loss of generality lim infT →∞ FT [qT ] <

∞, we have that

lim inf
T →∞

∫ T

0
e−t/ε

∣∣q̈T (t)
∣∣2

dt ≥
∫ ∞

0
e−t/ε

∣∣q̈∞(t)
∣∣2

dt

and qT → q∞ pointwise almost everywhere. Eventually, FT [qT ] → F∞[q∞] by
dominated convergence as U(qT ) ≤ c(1 + |qT |2). �

Let now q̃(t) = q0 + tq1. Then all minimizers qT of FT fulfill

ρ

2

∫ ∞

0
e−t/ε

∣∣q̈T
∣∣2 dt = ρ

2

∫ T

0
e−t/ε

∣∣q̈T
∣∣2 dt ≤ FT

[
qT

] ≤ FT [q̃] < ∞

independently of T . In particular, qT are weakly precompact in L2(R+, e−t/ε dt;R
m).

Hence, by Lemma 5.3, it converges up to subsequences to a minimizer of F∞.

6 Time Discretization

We collect in this section some remark on suitable time-discrete versions of the WIE
principle. Let us focus first on the finite-time case of Sect. 4. Setting the time step
τ := T/n (n ∈ N), we consider the time-discrete functionals

Wετ [q0, . . . ,qn] =
m∑

j=2

τeετ,j

ε2ρ

2

∣∣δ2qj

∣∣2 +
n−1∑
j=2

τeετ,j+2U(qj ).

Given (q0, . . . ,qn), in the latter we have indicated with δq its discrete derivative,
namely δqj := (qj − qj−1)/τ , δ2q = δ(δq), and so on. The weights eετ,j are given
by eετ,j := (ε/(ε + τ))j and play the role of the decaying weight t �→ e−t/ε in the
discrete setting. In particular, note that eετ,0 = 1 and δeετ,j + eετ,j /ε = 0. Namely,
eετ,j is the implicit Euler discretization of the Cauchy problem ẇ + w/ε = 0 and
w(0) = 1.

We shall be concerned with minimizing Wετ over the discrete analog of Kε that is

Kετ :=
{ {(q0, . . . ,qn) : q0 = q0, δq1 = q1} if ρ > 0,

{(q0, . . . ,qn) : q0 = q0} if ρ = 0.

In case U ∈ C1,1(Rm) it can be proved that, at least for small ε, this minimization
problem has a unique solution. Moreover, the minimizer fulfills the discrete Euler–
Lagrange system

ε2ρδ4qj+2 − 2ερδ3qj+1 + ρδ2qj + ∇U(qj ) = 0, j = 2, . . . , n − 2, (35)
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Fig. 4 Convergence in the
nonlinear case of U(q) = q4/4,
q0 = 1, q1 = 0, T = 10. The
figure plots in log-log scale the
error in the uniform norm
sup[0,T ] |q − qετ | against 1/τ .
The different error curves
correspond to the different
choices ε = 0.2, 0.1, 0.05, 0.02
(top to bottom)

q0 = q0, ρδq1 = ρq1, (36)

ρδ2qn = ρδ3qn = 0. (37)

This scheme is proved to be convergent in Stefanelli (2011) and can be extended in
order to cope with the dissipative case of Sect. 3 (see Liero and Stefanelli 2012).

The system (35)–(37) can be regarded as the variational integrator (Hairer et al.
2006) corresponding to the WIE principle. We shall stress that the scheme (35)–(37) is
computationally more expensive (a system of n×m nonlinear equations) with respect
to the classical implicit Euler scheme (corresponding to ε = 0 in (35), n systems of
m nonlinear equations), not speaking of explicit or symplectic Euler (direct substi-
tution) (Hairer et al. 2006). Indeed, for all ε > 0 the time-discrete WIE principle is
noncausal and a full system over the time indices has to be solved. This is particularly
critical for final conditions (37) are crucially entering the picture. An illustration of
the convergence of the scheme is given in Fig. 4.

A remarkable trait of the scheme (35)–(37) is, however, that of showing some
additional stability for ε > 0. In particular, some explicit version of the scheme (35)–
(37) (i.e., replacing ∇U(qj ) with ∇U(qj−1) in (35)) shows conditional stability.
This contrasts with the instability of the explicit Euler scheme.

Let us mention that the infinite-horizon situation T = ∞ seems less amenable
from the numerical viewpoint. This is due to the fact that the final conditions (37)
have to be replaced with specific summability conditions at infinity as commented in
Sect. 2.6. In order to avoid solving an infinite system of equations, one might consider
imposing two extra initial conditions such that the above mentioned summability is
met in a sort of a shooting strategy. As the linear case of Sect. 2.6 shows, this turns,
however, out to be a tricky task.

Before closing this section, let us mention that the same drawback is of course
exhibited also by the modifications of (35) given by

ε2ρδ4qj − 2ερδ3qj + ρδ2qj + ∇U(qi ) = 0 for i = j, j − 1, j − 2.
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Note that the latter schemes cannot be obtained as Euler–Lagrange equation of (vari-
ants of) the functionals Wετ .
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