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Abstract

An existence result for the quasi-static evolution of incomplete damage in
elastic materials is presented. The absence of gradient terms in the damage var-
iable causes a critical lack of compactness. Therefore, the analysis is developed
in the framework of Young measures, where a notion of solution is defined, pre-
senting some improvements with respect to previous contributions. The main new
feature in the proof of the existence result regards a delicate construction of the
joint-recovery sequence.

1. Introduction

Damage processes are recurrent in Solid Mechanics. By undergoing loading
cycles, real materials experience to a variable extent a deterioration of their respec-
tive elastic properties. This can be generally interpreted as the effect of the occur-
rence and growth of cracks and voids at the level of the microscopic material struc-
ture and it has a dramatic impact upon the performance of structures and materials.
As such, damage modeling has been a remarkably active trend in the engineer-
ing community since the 50s, so that it is largely beyond our scope even to try to
review the huge existing literature on this subject. The reader is, however, referred
to [5,15,21–23] for some recent contributions.

The usual approach to damage in Continuum Mechanics is that of directly
incorporating an internal variable descriptor of the state of the material into the
constitutive relations. In particular, in the case of isotropic damage (that is, by
assuming that deterioration has no preferential orientation), one is led to introduce
a scalar damage variable z taking the value z = 1 at undamaged points and z = 0
at maximally damaged points. Hence, moving within the small-strain realm, one is
generally concerned with an elastic energy functional of the form

W(z, e(v)) :=
∫

�

W (z(x), e(v)(x)) dx,
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where e(v) := (∇v + ∇vT )/2 is the symmetrized strain tensor and v : � → R
d

denotes the displacement from the reference configuration �. Damage evolution
is governed by the interplay of energy minimization and dissipation. In particular,
damage is often very well assimilable to a quasi-static evolution process and, in
this regard, the first possible choice for a dissipation mechanism from the damage
state zold to updated state znew may be assumed to be

D(zold, znew) :=
∫

�

d(zold(x), znew(x)) dx,

where d : R
2 → [0,∞] is the non-symmetric (pseudo-)distance defined by

d(θ1, θ2) :=
{

ρ(θ1 − θ2) if θ1 � θ2

∞ else

for some ρ > 0. The asymmetry of the dissipation distance d encodes the quite
natural ansatz of irreversibility of damage. Moreover, the 1-homogeneity of D is
the trademark of the rate-independent nature of the damage process.

This very frame for a variational theory of rate-independent damage has
attracted a good deal of attention in recent years and rigorous mathematical results
are to be found, for instance, in [2,3,14,16,28,30]. The analysis of this paper
resides exactly within the setting of the result by Thomas and Mielke [35] where
the authors develop an existence theory for incomplete damage by directly includ-
ing a gradient term of the internal variable z into the energy. By including such
a gradient term, one obtains a clear compactifying effect along with the possible
description of nonlocal interactions of damage in the material. On the other hand,
the occurrence of damage localization often seems to be clear experimental evi-
dence. In this respect, one is motivated in considering possibly non-regularized
damage models instead.

The novelty of our contribution with respect to [35] resides, specifically, in
dropping the gradient term in the damage variable from the energy, thus excluding
nonlocal damage interaction. Correspondingly, we are lacking the above mentioned
compact frame and we resort to considering Young measures as plausible objects for
describing damage evolution. Young measures are, indeed, quite naturally suited to
the treatment of non-compact problems. In particular, for rate-independent models,
analyses of mechanical phenomena within the framework of Young measures have
been devised in [12,20,24,26,27,29] for phase transitions, Dal Maso et al. [6,8]
for plasticity with softening, and Cagnetti and Toader [4] for fracture mechanics.
To our knowledge, no Young measure formulation has yet been proposed in the
context of rate-independent damage (in the case of a gradient-flow damage model,
a Young-measure analysis at the time-discrete level is reported in [33]).

The focus of this paper is on providing an existence theory for a suitable Young-
measure quasi-static evolution of the damage model in the frame of so-called ener-
getic solutions à la Mielke and Theil [31]. Our evolution will be represented
by a family ν = (νt )t of time-parametrized Young measures which replace the
pair (z, e(v)). According to the expected unidirectionality of the damage process,
the energetic solution is required to satisfy a suitable irreversibility property. To
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formulate this monotonicity condition in our generalized setting, we tailor a partial
order relation between Young measures (see Section 3.1), in the same spirit as in
[4]. Then, the validity of a specific global stability condition and of the energy
balance will be achieved by passing to the limit argument with respect to time-dis-
cretizations.

As already commented in [35], the discontinuity of the dissipation distance
makes the proof of the stability condition more complicated by requiring the con-
struction of a so-called mutual recovery sequence. This is exactly the point where
the compactifying effect of the gradient of damage in [35] has proved to be use-
ful in order to ensure a stronger convergence of the recovery sequence. Here, we
overcome this point employing by two tools: a regularity result and a measure-
reconstruction lemma. At first, we exploit the fact that some higher integrability
of the approximating sequences can be achieved by exploiting the theory of quasi-
minima [17]. We believe this observation (already done in [12]) to be an interesting
feature of our proof which could also possibly be of some use elsewhere. Then, we
provide a constructive technique to build a recovery sequence satisfying both the
order constraint and the required convergence property.

The technical difficulties related to the Young measure approach force us to
consider some reduced global stability conditions. In particular, as is quite usual
in these situations, we obtain global stability for two classes of competitors: trans-
lations of νt by functions (z̃, ũ) in L1(�; R) × H1

0 (�; R
d), and Young measures

with disintegration of the form μ̃x ⊗ δe(ṽ)(x), for any Young measure μ̃ on � ×
[0, 1]. Minimality with respect to translations by functions coincides with the sta-
bility condition considered in [8] and [11]. Here, nevertheless, we allow milder
assumptions on the energy density. The second class of tests represents, instead,
a quite remarkable enlargement of the set of competitors with respect to previ-
ous contributions. These competitors, in particular, do not depend on the evolution
νt and permit the comparison of the evolution with all other possible damage
states.

A further interesting feature of our result is that the specific form of the dam-
age model allows us to prove the existence result without the help of the technical
tool of compatible systems of Young measures developed in [7] (see also [11]).
In particular, this entails a rather straightforward formulation of our notion of the
solution.

Our damage model is non-brittle in the sense that partially damaged situations
z ∈ (0, 1) are actually to be expected (see Section 2.1). We shall refer to Franc-
fort and Garroni [14], Garroni and Larsen [16], and Babadjian [2] for recent
contributions on damage models for brittle materials, namely assuming z ∈ {0, 1}.
Besides brittleness, we have to remark that the mechanical stand of the latter papers
is quite different from ours. In particular, their starting point is a z-mixture of a line-
arly elastic strong and weak material with elasticity tensors As and Aw, respectively.
This is to say that their energy density is assumed to be of the form

W (z, e) =

⎧⎪⎨
⎪⎩

Asφ(e) if z = 1

Awφ(e) if z = 0

+∞ otherwise,

(1.1)
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with φ(e) = e2/2 (in the one-dimensional case) in [14,16] and a more general con-
vex function φ in [2]. As no gradient terms in the damage variable are considered,
evolution via time-discretization immediately calls for quasi-convexification and
the passage to the limit is performed by determining the limiting materials via its
elasticity tensor by homogenization tools. To this end, the convexity of the energy
density with respect to the strain variable is needed [2, Section 1], and a price to
pay is the replacement of the damage variable z by the elasticity tensor or by the
damage set in the limit.

Our approach here is somewhat different as we start from an (essentially) quasi-
convex energy in the first place so that no quasi-convexification is needed for the
incremental step. On the one hand, this prevents us from considering linear mixture
energies of the form of (1.1) in our frame. In particular, the relaxed models from
[2,14,16] seem not to be directly recoverable in the present setting. On the other
hand, this gives us the advantage of tracing the damage variable z into the evolution.

The paper is organized as follows. In Section 2 we present the mechanical
model, and in Section 3 we recall some mathematical preliminaries. In particular,
Section 3.1 presents a partial order relation between Young measures. Section 4 is
devoted to the formulation of the quasi-static evolution and our main result. The
existence proof is detailed in Section 5. Some technical lemmas are then collected
in the Appendix.

2. The Mechanical Model

Let us specify here some notation and our general assumptions. The reference
configuration of the body is a bounded, connected, and open set � ⊂ R

d with
Lipschitz boundary ∂�. We indicate the displacement field by v and the linearized
strain tensor by e(v) := 1

2 (∇v + ∇vT). The damage variable is z : � → R and
will actually take values solely in [0, 1] as an effect of our general assumptions
below.

The stored energy density of the material is a function W : R × R
d×d
sym →

[0,+∞) satisfying the following hypotheses:

(W.1) W is continuous and S-cross-quasiconvex, that is satisfies property (3.4)
below;

(W.2) there exist two positive constants cW < CW such that cW |ε|2 � W (θ, ε) �
CW |ε|2 for every ε ∈ R

d×d
sym and every θ ∈ (−∞, 2];

(W.3) for every θ ∈ R, W (θ, ·) is C1 and
∣∣ ∂W

∂ε
(θ, ε)

∣∣ � CW (|ε| + 1), for every
(θ, ε) ∈ (−∞, 2] × R

d×d
sym ;

(W.4) θ �→ W (θ, ε) is non-decreasing for every ε ∈ R
d×d
sym ;

(W.5) W (θ, ε) = W (0, ε) for every θ � 0.

Hence, the stored energy of the material reads

W(z, e(v)) :=
∫

�

W (z(x), e(v)(x)) dx .

Though the most natural assumption for the stored energy density in linearized
elasticity is to be quadratic with respect to the strain variable, for sake of generality
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we assume here that W satisfies the weaker condition (W.1). Indeed, our analysis
could be retraced in the case of nonlinear elasticity as well, and in this case the
quasi-convexity assumption is more desirable than the quadratic one.

The dissipation distance between two damage states zold and znew is given by

D(zold, znew) :=
∫

�

d(zold(x), znew(x)) dx,

where the density d is given by

d(θ1, θ2) :=
{

ρ|θ1 − θ2| if θ1 � θ2

+∞ else,

for every θ1, θ2 ∈ R and for a suitable ρ > 0.
Given two times s < t , the global dissipation of a possibly discontinuous-in-

time damage evolution z : [0, T ] → L1(�) in the interval [s, t] is given by

Diss(z; s, t) := sup
k∑

i=1

D(z(τi−1), (z(τi )),

where the supremum is taken among all finite partitions s =τ0 <τ1 <. . .<τk = t .
Note that, if z(τ ) � z(τ ′) almost everywhere in �, whenever τ � τ ′, then

Diss(z; s, t) = ρ

∫
�

(z(s) − z(t)) dx .

For the sake of simplicity, the boundary displacement is prescribed at time t on
the whole boundary ∂� as u = ϕ, where the given function ϕ(t) fulfills

ϕ ∈ AC([0, T ]; W 1,p(�; R
d)), with 2 < p � ∞.

Let us, however, note that other choices of the boundary conditions are indeed
possible. More precisely, boundary conditions of mixed type can be considered,
provided the gradient of the quasi-minima of the functional v �→ ∫

�
|e(v)|2 dx ,

with the chosen mixed boundary condition, can be shown to be higher integrable,
in the spirit of Theorem 1, proved by Giaquinta and Giusti for the fully Dirichlet
boundary condition case.

2.1. A Zero-Dimensional Example

We focus here on a zero-dimensional case, that is, the case in which damage and
strain are independent of x . Our aim is to show that the materials we are considering
are not necessarily brittle, in the sense that the damage variable z can be expected
to take intermediate values between 0 and 1.

We consider a stored energy defined by

W (z, e) := e2

2g(z)
,
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for g(z) := √
2 − z+ for every z ∈ [0, 2). We observe that the function g is C2(0, 2)

with g′ � 0 and g′′ � 0 in (0, 2) and g is constant on (−∞, 0]; it is now easy to see
that the Hessian matrix of W is positive definite and hence W is a convex function
on [0, 2) × R (see [35, Lemma 5.1]).

The dissipation distance is given by

d(z1, z2) :=
{

|z1 − z2| if z1 � z2

+∞ otherwise,

for every z1, z2 ∈ R.
In this example we analyze an evolution driven by time-dependent external

forces instead of time-varying boundary data; the external forces are given by
l(t) := t .

In particular, a quasi-static evolution in the time interval [0, 3
√

2] with ini-
tial datum (z0, e0) := (1, 0) is defined energetically (see [31]) as a pair of time-
dependent functions (z(t), e(t)) with z(t) � 0, such that the following conditions
are satisfied for every z̃, ẽ ∈ R and every t ∈ [0, 3/

√
2]:

initial condition : (z(0), e(0)) = (1, 0); (2.1)

irreversibility : z(s) � z(t) if s � t; (2.2)

stability : e2(t)

2g(z(t))
− te(t) � ẽ2

2g(z̃)
− t ẽ + d(z(t), z̃); (2.3)

energy equality : e2(t)

2g(z(t))
− te(t) + z(0) − z(t) = −

∫ t

0
e(s) ds. (2.4)

Condition (2.3) implies that e(t) = tg(z(t)). Indeed, if we choose z̃ = z(t)
in (2.3), we obtain that e(t) is the unique minimizer of the convex function e �→
e2/(2g(z(t)))− te. Therefore, it is enough to choose z(t) satisfying the initial con-
dition and the irreversibility condition, such that the energy equality (2.4) holds
true for (z(t), tg(z(t))), and satisfying for every t ∈ [0, 3

√
2]

t2g(z(t))

2
− t2g(z(t)) � t2g(z̃)

2
− t2g(z̃) + z(t) − z̃,

for every z̃ � z(t), that is,

t2

2
[g(z̃) − g(z(t))] � z(t) − z̃, (2.5)

for every z̃ � z(t).
Let us first consider z(t) ≡ 1 for every t ∈ [0, 2]. This choice may be easily

proved to fulfill (2.1)–(2.4) and hence is a quasi-static evolution for t ∈ [0, 2]. We
want to show that, for t > 2, z(t) = 1 does not satisfy the stability condition (2.5)
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and hence z(t) has to be strictly smaller than 1. We rephrase this by saying that
there exists z̃ ∈ [0, 1] such that f (z̃) > 0 where f is given by

f (z̃) := t2

2
[g(z̃) − 1] − 1 + z̃.

Indeed, let us consider z̃t := t2 − t4/4 + 1 = (8 − (t2 − 2)2)/4. We observe that
z̃t ∈ (0, 1) and f (z̃t ) = 0 if t ∈ (2, 3/

√
2). Moreover,

f ′(z̃t ) = − t2

4
√

2 − z̃t
+ 1 = − t2

4
√

2 − (
t2 − t4

4 + 1
) + 1

= − t2

4
( t2

2 − 1
) + 1 = t2 − 4

2(t2 − 2)
> 0,

since t > 2. Therefore, there exists z̃ ∈ (z̃t , 1) such that f (z̃) > 0. Hence, z(t) = 1
does not fulfill the stability condition (2.5) for t ∈ (2, 3/

√
2) and we will necessarily

have z(t) ∈ (−∞, 1).
On the other hand, we cannot have z(t) = 1 for t ∈ [0, 2] and z(t) � 0 for

t ∈ (2, 3/
√

2), because in this case the energy balance for s ∈ (2, 3/
√

2) would
not be fulfilled as

s2g(0)

2
− s2g(0) + 1 − z(t) +

∫ s

0
tg(z(t)) dt

= − s2
√

2

2
+ 1 − z(t) +

∫ 2

0
t dt +

∫ s

2
t
√

2 dt

= − s2
√

2

2
+ 1 − z(t) + 2 + s2

√
2

2
− 2

√
2 = 1 − z(t) − 2(

√
2 − 1) > 0.

Eventually, we have proved that there exists t ∈ (2, 3/
√

2) with z(t) ∈ (0, 1).

3. Mathematical Preliminaries

Let Ld denote the Lebesgue measure on R
d , d � 1. We sometimes use the

notation |E | for the Lebesgue measure of the measurable subset E ⊆ R
d as well.

Throughout the paper � will be a bounded, connected, open subset of R
d with

Lipschitz boundary. The Borel σ -algebra on � is denoted by B(�). For 1 � p �
∞, ‖ · ‖p stands for the usual norm on L p, W 1,p(�; R

d) denotes the usual Sobo-
lev space, H1(�; R

d) := W 1,2(�; R
d), and the symbol 〈·, ·〉 is the scalar product

in H1, if not otherwise specified. Given a function f ∈ L1(�) and a measurable
Q ⊆ �, the mean value of f over Q is denoted by ( f )Q , that is,

( f )Q := 1

|Q|
∫

Q
f (x) dx .

We indicate the positive part of a function f with f + := f ∨ 0.
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We recall the notion of quasi-minima of integral functionals. Given ϕ ∈
H1(�; R

d), let G be the functional defined by

G(v) = G(v,�) :=
∫

�

G(x,∇v(x)) dx

for every v ∈ ϕ + H1
0 (�; R

d), where G : � × R
d×d → R is a Carathéodory

function satisfying

G(x, F) � L(|F |2 + 1)

G(x, F) � G̃(F) − l

for suitable positive constants L , l, for every (x, F) ∈ � × R
d×d , where

G̃ : R
d×d → R satisfies the following estimate:

∃K > 0 :
∫

�

G̃(∇φ(x)) dx � K‖∇φ‖2
2 for every φ ∈ H1

0 (�; R
d).

Definition 1. (Quasi-minimum, [17]) Let V ∈ W 1,p(�; R
d) and λ > 0. A func-

tion v ∈ V + H1
0 (�; R

d) is said to be a cubic λ-quasi-minimum for the functional
G if for every cube of side R, Q R ⊂ R

d , and every w ∈ H1(�; R
d) such that

v − w ∈ H1
0 (� ∩ Q R) we have

∫
(Q R∩�)

G(x,∇v(x)) dx � λ

∫
Q R∩�

G(x,∇w(x)) dx .

Theorem 1. (Higher integrability, [18, Ch. 6]) Let V ∈ W 1,p(�; R
d), for 2 < p,

and let v ∈ V + H1
0 (�; R

d) be a λ-cubic quasi-minimum of the functional G. Then,
there exist constants γ > 0 and r > 1, depending only on λ and V , such that

∫
�

|∇v|2r dx � γ

{(∫
�

|∇v|2 dx

)r

+ 1

}
.

We recall the statement of the Korn–Poincaré inequality (see [34]): for every
open, bounded, Lipschitz set D ⊂ R

d , there exists a positive constant C(D) such
that

‖∇v‖H1(D) � C(D)‖e(v)‖L2(D), (3.1)

for every v ∈ H1
0 (D).

We recall the definition of cross-quasiconvexity in the form used in [13] and
a related semicontinuity result [13, Theorem 4.4]. A continuous function G : R ×
R

d×d → R is cross-quasiconvex if for every θ ∈ [0, 1], F ∈ R
d×d we have

G(θ, F) � 1

|�|
∫

�

G(θ + m(x), F + ∇u(x)) dx, (3.2)

for every u ∈ H1
0 (�; R

d) and every m ∈ L∞(�), with θ + m(x) ∈ [0, 1] for
almost every x ∈ � and

∫
�

m(x) dx = 0.
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Lemma 1. (Lower semicontinuity) If G : R × R
d×d → R is cross-quasi-convex

and fulfills

0 � G(θ, F) � g(θ)(1 + |F |2) (3.3)

for every θ ∈ R, F ∈ R
d×d , and some g ∈ L∞

loc(R), we have that

∫
�

G(z(x),∇v(x)) dx � lim inf
k

∫
�

G(zk(x),∇vk(x)) dx,

whenever zk ⇀ z L∞-weakly*, zk(x) ∈ [0, 1] for almost every x ∈ �, and vk ⇀ v

weakly in H1(�; R
d).

Note that if H : R × R
d×d
sym → R is a continuous function satisfying

0 � H(θ, ε) � g(θ)(1 + |ε|2) for g ∈ L∞
loc(R);

H(θ, ε) � 1

|�|
∫

�

H(θ + m(x), ε + e(u)(x)) dx, (3.4)

for every u ∈ H1
0 (�; R

d), m ∈ L∞(�; R) with
∫
�

m(x) dx = 0 and θ + m(x) ∈
[0, 1] for almost every x ∈ �, then the function G(θ, F) := H(S(θ, F)), with

S(θ, F) :=
(
θ, F+FT

2

)
, satisfies properties (3.2) and (3.3). We will say that a

function satisfying (3.4) is S-cross-quasiconvex.
We define Mb(� × R

N ) as the space of bounded Radon measures on � × R
N .

This space can be identified with the dual of the Banach space C0(� × R
N ) of all

continuous functions φ : � × R
N → R such that |φ| � ε is compact for every

ε > 0. We will consider on Mb(� × R
N ) the weak* topology deriving from this

duality.
Let us refer to [36] for a general introduction to Young measures, and recall

some definitions and fix notation. A Young measure μ ∈ Y (�; R
N ) is a nonnega-

tive measure in Mb(�×R
N ), such that π�(μ) = Ld , where π�(x, ξ) := x . By the

Disintegration Theorem, one can associate to μ a measurable family of probability
measures (μx )x∈� on R

N in such a way that

∫
�×RN

f (x, ξ) dμ(x, ξ) =
∫

�

( ∫
RN

f (x, ξ) dμx (ξ)
)

dx,

for every bounded Borel function f : � × R
N → R. We define the barycentre of

μ as the function

bar(μ)(x) :=
∫

RN
ξ dμx (ξ) for a.e. x ∈ �,

and the p-moment of μ, for 1 < p � ∞, as the quantity

∫
�×RN

|ξ |p dμ(x, ξ).
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We denote by Y p(�; R
N ) the set of measures in Y (�; R

N ) with finite p-moments.
Given a sequence (μk)k in Y (�; R

N ), we say that μk ⇀ μ p-weakly*, for 1 <

p � ∞, if

μk ⇀ μ in the weak* topology of Mb(� × R
N ),∫

�×Rn
|ξ |p dμk(x, ξ) are equibounded in k.

Let (D,F) be a measure space and μ ∈ Y (�; R
N ). For every B(� × R

N )-
F-measurable function f : � × R

N → D, the image measure, defined by
μ( f −1(B)) for every measurable set B ⊆ D, will be denoted by f (μ). In particular,
if we define the translation map TrG associated to a function G ∈ L1(�; R

N ) by

TrG(x, ξ) := (x, ξ + G(x)), for a.e. x ∈ � and every ξ ∈ R
N ,

for every measure μ ∈ Y (�; R
N ) we can consider the translated measure TrG(μ),

defined by
∫

�×RN
φ(x, ξ) dTrG(μ)(x, ξ) :=

∫
�×RN

φ(x, ξ + G(x)) dμ(x, ξ),

for every bounded Borel function φ : � × R
N → R.

Given ξ0 ∈ R
N , the measure δξ0 ∈ Mb(R

N ) is classically defined by
∫

RN
f (ξ) dδξ0(ξ) = f (ξ0),

for every bounded Borel function f : R
N → R.

For a fixed B(�)-B(RN )-measurable function u : � → R
N , the Young measure

δu ∈ Y (�; R
N ) is defined by

∫
�×RN

g(x, ξ) dδu(x, ξ) =
∫

�

g(x, u(x)) dx,

for every bounded Borel function g : � × R
N → R.

The following lemma is a slight modification of [32, Proposition 6.5, p. 103].

Lemma 2. (Continuity) Let 1 < p � ∞, and let (μk)k ⊆ Y p(�; R
N ) converge p-

weakly* to μ ∈ Y p(�; R
N ). Then, for every Carathéodory function f : �×R

N →
R, with | f (x, ξ)| � a(x) + b(x)|ξ |q , for every x ∈ �, ξ ∈ R

N , 1 � q < p, b ∈
L p/(p−q)(�), and a ∈ L1(�), it holds

∫
�×RN

f (x, ξ) dμk(x, ξ) −→
∫

�×RN
f (x, ξ) dμ(x, ξ).

Finally, we recall that a measure ν ∈ Y p(�; R
d×d) is a W 1,p-gradient Young

measure (see, for example, [19]) for p > 1 if there exists a bounded sequence
(vn)n ∈ W 1,p(�; R

d) such that δ∇vn ⇀ ν p-weakly* as n → ∞. For the charac-
terization and the properties of such measures we refer to [32].
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Thanks to Lemma 2, given a bounded sequence (vn)n in W 1,p(�; R
d) with

δ∇vn ⇀ ν p-weakly*, for p > 1, we have that δe(vn) ⇀ S(ν) p-weakly*, where

S : � × R
d×d → � × R

d×d
sym is defined by S(x, F) := (x, F+FT

2 ), for every x ∈ �

and F ∈ R
d×d .

Henceforth C will stand for any positive constant, possibly depending on data
and varying from line to line.

3.1. An Order Relation Between Young Measures

In this section we want to define an order relation on the set Y (�; [0, 1]) of the
Young measures on � with values in R and support contained in � × [0, 1].
Definition 2. (Order) Given μ1, μ2 ∈ Y (�; [0, 1]), we write μ1 � μ2 if

μx
1(α,∞) � μx

2(α,∞) for a.e. x ∈ � and for every α ∈ R. (3.5)

It is easy to see that � is an order and that, in the case of μ1 = δz1 and μ2 = δz2

for some measurable functions z1, z2 : � → [0, 1], we have δz1 � δz2 if and only
if z1 � z2 almost everywhere in �.

Now we give an equivalent characterization of this order relation.

Theorem 2. (Order characterization) Given two Young measures μ1, μ2 ∈
Y (�; [0, 1]), we have μ1 � μ2 if and only if there exists μ12 ∈ Y (�; [0, 1]2)

such that

π1(μ12) = μ1, π2(μ12) = μ2, (3.6)

μx
12({θ1 < θ2}) = 0 for a.e. x ∈ �, (3.7)

where π1(x, θ1, θ2) := (x, θ1), π2(x, θ1, θ2) := (x, θ2), for every (x, θ1, θ2) ∈
� × R

2.

Proof. Let us first prove necessity. If μ1 �� μ2, then there exists a measurable
set E ⊆ � with positive measure, such that, for x ∈ E, μx

1((−∞, αx ]) >

μx
2((−∞, αx ]), for a suitable αx ∈ [0, 1]. This implies that, for every μ12 sat-

isfying the projection properties (3.6), we have μx
12({θ1 < θ2}) > 0 for x ∈ E .

Indeed, for every x ∈ E we have

μx
12([0, 1]×[0, αx ])=μx

2((−∞, αx ]) < μx
1((−∞, αx ])=μx

12([0, αx ]×[0, 1]),
and this implies

0 � μx
12((αx , 1] × [0, αx ]) = μx

12([0, 1] × [0, αx ]) − μx
12([0, αx ] × [0, αx ])

< μx
12([0, αx ] × [0, 1]) − μx

12([0, αx ] × [0, αx ]) = μx
12([0, αx ] × (αx , 1])

� μx
12({θ1 < θ2}),

for every x ∈ E .
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Now we prove the sufficiency of inequality (3.5). We fix n ∈ N and consider
the measures μ1,n, μ2,n whose disintegration is defined by

μx
1,n := μx

1([0, 1
n ])δ 1

n
+

n∑
i=2

μx
1(( i−1

n , i
n ])δ i

n
,

μx
2,n := μx

2([0, 1
n ])δ 1

n
+

n∑
i=2

μx
2(( i−1

n , i
n ])δ i

n
.

Since (μx
1,n)x and (μx

2,n)x are measurable families of probability measures on [0, 1],
we have that μ1,n, μ2,n ∈ Y (�; [0, 1]).

Moreover, μ1,n ⇀ μ1 and μ2,n ⇀ μ2 weakly*, as n → ∞. Indeed, let
f ∈ C0(� × R); since f is uniformly continuous, there exists a modulus of conti-
nuity ω f : R → R such that for every (x1, θ1, ξ1), (x2, θ2, ξ2) ∈ � × R

2

| f (x1, θ1, ξ1) − f (x2, θ2, ξ2)| � ω f (|(x1, θ1, ξ1) − (x2, θ2, ξ2)|),
lim
δ→0

ω f (δ) = 0.

Therefore, we have for h = 1, 2
∣∣∣
∫

�×R

f (x, θ) dμh,n(x, θ) −
∫

�×R

f (x, θ) dμh(x, θ)

∣∣∣
=

∣∣∣
∫

�

( ∫
R

f (x, ξ) dμx
h,n(θ) −

∫
R

f (x, θ) dμx
h(θ)

)
dx

∣∣∣

�
∫

�

∣∣∣μx
h([0, 1

n ]) f (x, 1
n ) +

n∑
i=2

μx
h

(
( i−1

n , i
n ]) f

(
x, i

n

)

−
( ∫

R

f (x, θ) dμx
h(θ)

)∣∣∣ dx

�
∫

�

( ∫
[0,

1
n ]

| f (x, 1
n ) − f (x, θ)| dμx

h(θ)
)

dx

+
∫

�

( n∑
i=2

∫
(

i−1
n ,

i
n ]

| f (x, i
n ) − f (x, θ)| dμx

h(θ)
)

dx

� ω f (1/n)

∫
�

μx
h([0, 1]) dx = ω f (1/n)|�| → 0 as n → ∞.

For almost every x ∈ �, we set

Ax
1 := μx

1,n([0, 1
n ]), Ax

i := μx
1,n(( i

n , i+1
n ]) for every i = 2, . . . , n,

Bx
1 := μx

2,n([0, 1
n ]), Bx

j := μx
2,n((

j
n ,

j+1
n ]) for every j = 2, . . . , n.

Since μ1 � μ2, we deduce that

k∑
i=1

Ax
i �

k∑
j=1

Bx
j for every k = 1, . . . , n,
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n∑
i=1

Ax
i = μx

1([0, 1]) = 1 = μx
2([0, 1]) =

n∑
j=1

Bx
j ,

0 � Ax
i � 1, 0 � Bx

j � 1, for every i and j,

for almost every x ∈ �. Hence (Ax
i )i and (Bx

j ) j satisfy the hypotheses of
Theorem 5 in Appendix A, and we can find a matrix (Cx

i j )i j with measurable
entries in [0, 1] such that

n∑
i=1

Cx
i j = Bx

j , (3.8)

n∑
j=1

Cx
i j = Ax

i , (3.9)

Cx
i j = 0 if i < j . (3.10)

Let us define

μx
12,n :=

n∑
i, j=1

Cx
i jδ

(
i
n ,

j
n

),

for almost every x ∈ �. We have, therefore, that μx
12,n([0, 1]2) = ∑

i j Cx
i j =∑

i Ax
i = ∑

j Bx
j =1, and x �→ μx

12,n(E) is measurable for every Borel set E .
Hence, (μx

12,n)x represents the disintegration of a Young measure on � with values
in [0, 1]2. Thanks to conditions (3.8), (3.9), and (3.10), we have

μx
12,n({θ1 < θ2}) =

∑
i< j

Ci j = 0, (3.11)

[π1(μ12,n)]x =
∑

i j

Cx
i jδ i

n
=

∑
i

(∑
j

Cx
i j

)
δ i

n
=

∑
i

Ax
i δ i

n
= μx

1,n, (3.12)

[π2(μ12,n)]x =
∑

i j

Cx
i jδ

j
n =

∑
j

( ∑
i

Cx
i j

)
δ j

n
=

∑
j

Bx
j δ j

n
= μx

2,n, (3.13)

for almost every x ∈ �. Since (μ12,n)n are Young measures with compact support
and hence have equibounded moments of every order, we can always find a subse-
quence (μ12,nk )k and a Young measure μ12 ∈ Y (�; [0, 1]2) such that μ12,n ⇀ μ12
weakly*. Since μ1,n ⇀ μ1 and μ2,m ⇀ μ2 weakly*, thanks to the projections
properties (3.12) and (3.13), we deduce that

π1(μ12) = μ1 π2(μ12) = μ2,

and hence μ12 satisfies the projection property (3.6). Eventually, we observe that
for every open subset E of �, E × {θ1 < θ2} is open, and hence μ12(E × {θ1 <

θ2}) � lim infk μ12,nk (E × {θ1 < θ2}) = 0, thanks to identity (3.11). This implies
that μx

12({θ1 < θ2}) = 0 for almost every x ∈ �, that is, (3.7). ��
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Remark 1. (Order of the barycentres) Note that μ1 � μ2 implies bar(μ1) �
bar(μ2) almost everywhere in �, whereas the opposite implication is false. Indeed,
if μ1 � μ2, by Lemma 2 there exists μ12 ∈ Y (�; [0, 1]2) with πi (μ12) = μi , i =
1, 2 and μx

12({θ1 < θ2}) = 0, for almost every x ∈ �; in particular we have

∫
E
[bar(μ1) − bar(μ2)] dx =

∫
E×[0,1]

θ1 dμ1(x, θ1) −
∫

E×[0,1]
θ2 dμ(x, θ2)

=
∫

E×[0,1]2
(θ1−θ2) dμ12(x, θ1, θ2) =

∫
E×{θ1�θ2}

(θ1−θ2) dμ12(x, θ1, θ2) � 0,

for every measurable subset E of �. This implies bar(μ1) � bar(μ2) almost every-
where in �. On the other hand, let us consider

μx
1 := 1

2
δ1/4 + 1

2
δ3/4 for a.e. x ∈ �

μx
2 := 1

2
δ0 + 1

2
δ1 for a.e. x ∈ �.

We have bar(μ1) = bar(μ2) ≡ 1
2 almost everywhere in �, but μx

1(0, 1] = 1 >

μx
2(0, 1] = 1/2 and μx

1(3/4, 1] = 0 < μx
2(3/4, 1] = 1/2, for almost every x ∈ �,

therefore μ1 � μ2 � μ1.

3.2. Sequences of Functions Generating a Young Measure

Let us recall (see [32, Theorem 7.7]) that any Young measure μ ∈ Y p(�; R
N )

can be generated by a suitable sequence of functions (zn)n ⊂ L p(�; R
N ), in the

sense that δzn ⇀ μ p-weakly*, as n → ∞.
In particular, given a measure μ12 ∈ Y (�; [a, b]× [c, d]), for −∞ < a < b <

∞, −∞ < c < d < ∞, there exists a sequence (z1
n, z2

n)n of pairs of functions
in L1(�; [a, b] × [c, d]), such that δ(z1

n(x),z2
n(x)) ⇀ μ12 weakly*. The question we

want to consider in this section is the following: assume that we have already fixed
a sequence (z̄1

n)n generating the projection of μ12 over � × [a, b]. Is it possible
to construct a sequence (z2

n)n such that δ(z̄1
n ,z2

n) ⇀ μ12 weakly* as n → ∞? An
affirmative answer to this question is given by the following.

Theorem 3. (Measure reconstruction) Let � be a bounded open subset of R
d ,

and μ a measure in Y (�; R
2) with support contained in � × [a, b] × [c, d], for

−∞ < a < b < ∞, −∞ < c < d < ∞. We write μ1 for π1(μ) and μ2 for π2(μ),
where π1(x, θ, ξ) := (x, θ) and π2(x, θ, ξ) := (x, ξ), for every (x, θ, ξ) ∈ �×R

2.
Given a sequence (z1

n)n in L∞(�; [a, b]) such that

δz1
n

⇀ μ1 weakly*, (3.14)

there exists a sequence (z2
n)n in L∞(�; [c, d]) such that

δ(z1
n ,z2

n) ⇀ μ weakly*.
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Proof. For every m, we consider a finite partition of measurable sets (�m
i )

I (m)
i=1 of

�, and two finite partitions of intervals (Hm
j )

J (m)
j=1 of [a − 1, b + 1] and (K m

k )
K (m)
k=1

of [c, d]. We choose these three partitions in such a way that the diameter of each
�m

i , Hm
j , and K m

k is less than 1/m. Since the support of μ1 is strictly contained
in [a − 1, b + 1], it is not difficult to see that we can always choose (Hm

j ) j such
that μ1(�

m
i × ∂ Hm

j ) = 0 for every i = 1, . . . , I (m) and j = 1, . . . J (m). Hence,
μ1(∂(�m

i × Hm
j )) = 0 for every i and j , thanks to the projection property on �

satisfied by the Young measure μ1.
We now fix n ∈ N and, for every i = 1, . . . , I (m), we define a family of subsets

of �m
i , which we term (�

m,n
i j )

J (m)
j=1 , by setting

�
m,n
i j := {x ∈ �m

i : z1
n(x) ∈ Hm

j },
for every j = 1, . . . , J (m). Since (Hm

j ) j are pairwise disjoint, (�m,n
i j ) j are pairwise

disjoint, too, and
⋃J (m)

j=1 �
m,n
i j = �m

i . We observe that
∑K (m)

k=1 μ(�m
i ×Hm

j ×K m
k ) =

μ(
⋃K (m)

k=1 �m
i × Hm

j × K m
k ) = μ(�m

i × Hm
j × [c, d]), hence, if μ(�m

i × Hm
j ×

[c, d]) > 0 we have

μ(�m
i × Hm

j × K m
k )

μ(�m
i × Hm

j × [c, d]) � 1 for every k = 1, . . . , K (m),

K (m)∑
k=1

μ(�m
i × Hm

j × K m
k )

μ(�m
i × Hm

j × [c, d]) = 1.

Let us set A := {(i, j) : μ(�m
i ×Hm

j ×[c, d]) = 0}. Therefore, for every (i, j) /∈ A,

it is possible to find a family of pairwise disjoint subsets of �
m,n
i j , which we denote

by (�
m,n
i jk )

K (m)
k=1 , such that

⋃K (m)
k=1 �

m,n
i jk = �

m,n
i j , and satisfying

|�m,n
i jk | = μ(�m

i × Hm
j × K m

k )

μ(�m
i × Hm

j × [c, d]) |�
m,n
i j |.

Let us define zm,2
n (x) := ξm

k , for some ξm
k ∈ K m

k , whenever x ∈ �
m,n
i jk for (i, j) /∈

A, and zm,2
n (x) := c whenever x ∈ �

m,n
i j for (i, j) ∈ A.

Since δz1
n

⇀ μ1, thanks to assumption (3.14), and μ1(∂(�m
i × Hm

j )) = 0 for
every i, j , we have

|�m,n
i j | = δz1

n
(�m

i × Hm
j ) −→ μ1(�

m
i × Hm

j ) = μ(�m
i × Hm

j × [c, d]),
as n → ∞. Therefore, for every m, there exists nm such that

∣∣∣∣
|�m,n

i j |
μ(�m

i × Hm
j × [c, d]) − 1

∣∣∣∣ � 1

m
for every (i, j) /∈ A, (3.15)

∑
(i, j)∈A

|�m,n
i j | � 1

m
. (3.16)
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whenever n � nm . Without loss of generality we can assume that (nm)m is an
increasing sequence of integers. We are now ready to define z2

n by setting z2
n(x) :=

zm,2
n (x) whenever nm � n < nm+1.

We now have to show that for every f ∈ C0(�×R
2) and for every ε > 0 there

exists N such that
∣∣∣∣
∫

�×R2
f (x, θ, ξ) dδ(z1

n(x),z2
n(x)) −

∫
�×R2

f (x, θ, ξ) dμ(x, θ, ξ)

∣∣∣∣ � ε, (3.17)

whenever n � N .
Given n, let m be such that nm � n < nm+1. Then we have

∫
�×R2

f (x, θ, ξ) dδ(z1
n ,z2

n)(x, θ, ξ) =
∫

�×R2
f (x, θ, ξ) dδ

(z1
n ,zm,2

n )
(x, θ, ξ)

=
∑

(i, j)/∈A

∑
k

∫
�

m,n
i jk

f (x, z1
n(x), ξm

k ) dx +
∑

(i, j)∈A

∫
�

m,n
i j

f (x, z1
n(x), c) dx .

In particular, for every xm
i ∈ �m

i and θm
j ∈ Hm

j we have

∣∣∣
∫

�×R2
f (x, θ, ξ) dδ(z1

n ,z2
n)(x, θ, ξ) −

∑
(i, j)/∈A

∑
k

∫
�

m,n
i jk

f (xm
i , θm

j , ξm
k ) dx

−
∑

(i, j)∈A

∫
�

m,n
i j

f (xm
i , θm

j , c) dx
∣∣∣

�
∑

(i, j)/∈A

∑
k

∫
�

m,n
i jk

| f (x, z1
n(x), ξm

k ) − f (xm
i , θm

j , ξm
k )| dx

+
∑

(i, j)∈A

∫
�

m,n
i j

| f (x, z1
n(x), c) − f (xm

i , θm
j , c)| dx

� ω f (2/m)
[ ∑

(i, j)/∈A

∑
k

|�m,n
i jk | +

∑
(i, j)∈A

|�m,n
i j |

]
= ω f (2/m)

∑
i j

|�m,n
i j |

= ω f (2/m)
∑

i

|�m
i | = ω f (2/m)|�|, (3.18)

where ω f is a modulus of continuity of f ( f is uniformly continuous). Using the
construction of �

m,n
i jk , and the estimates (3.15) and (3.16), we get

∣∣∣ ∑
(i, j)/∈A

∑
k

∫
�

m,n
i jk

f (xm
i , θm

j , ξm
k ) dx +

∑
(i, j)∈A

∫
�

m,n
i j

f (xm
i , θm

j , c) dx

−
∑

(i, j)/∈A

∑
k

f (xm
i , θm

j , ξm
k )μ(�m

i × Hm
j × K m

k )

−
∑

(i, j)∈A
f (xm

i , θm
j , c)μ(�m

i × Hm
j × [c, d])

∣∣∣
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�
∣∣∣ ∑
(i, j)/∈A

∑
k

f (xm
i , θm

j , ξm
k )|�m,n

i jk |

−
∑

(i, j)/∈A

∑
k

f (xm
i , θm

j , ξm
k )μ(�m

i × Hm
j × K m

k )

∣∣∣

+
∣∣∣ ∑
(i, j)∈A

f (xm
i , θm

j , c)|�m,n
i j | − 0

∣∣∣

� ‖ f ‖∞
∑

(i, j)/∈A

∑
k

μ(�m
i × Hm

j × K m
k )

[ |�m,n
i j |

μ(�m
i × Hm

j × [c, d]) − 1
]

+‖ f ‖∞
∑

(i, j)∈A
|�m,n

i j |

= ‖ f ‖∞
m

[ ∑
i j

μ(�m
i × Hm

j × [c, d]) + 1
]

= ‖ f ‖∞
m

[|�| + 1]. (3.19)

Finally, we have
∣∣∣ ∑
(i, j)/∈A

∑
k

f (xm
i , θm

j , ξm
k )μ(�m

i × Hm
j × K m

k )

+
∑

(i, j)∈A
f (xm

i , θm
j , c)μ(�m

i ×Hm
j ×[c, d])−

∫
�×R2

f (x, θ, ξ) dμ(x, θ, ξ)

∣∣∣

�
∑

(i, j)/∈A

∑
k

∫
�m

i ×Hm
j ×K m

k

| f (xm
i , θm

j , ξm
k ) − f (x, θ, ξ)| dμ(x, θ, ξ)

+
∑

(i, j)∈A

∫
�m

i ×Hm
j ×[c,d]

| f (x, θ, ξ)| dμ(x, θ, ξ)

� ω f (3/m)
∑

(i, j)/∈A

∑
k

μ(�m
i × Hm

j × K m
k )

+‖ f ‖∞
∑

(i, j)∈A
μ(�m

i × Hm
j × [c, d])

= ω f (3/m)|�|. (3.20)

Therefore, putting together the estimates (3.18), (3.19), and (3.20) we obtain

∣∣∣
∫

�×R2
f (x, θ, ξ) dδ

(z1
n ,zm,2

n )
(x, θ, ξ) −

∫
�×R2

f (x, θ, ξ) dμ(x, θ, ξ)

∣∣∣
� |�|

[
ω f

( 2

m

)
+ ‖ f ‖∞

m
+ ω f

( 3

m

)]
+ ‖ f ‖∞

m
.

In particular, for fixed ε > 0, condition (3.17) is satisfied for m sufficiently large,
m � M . Hence it is enough to choose N such that nM � N � nM+1. In this way,
for every n � N , we have nm � n < nm+1 for some m � M and hence (3.17)
holds true for every n � N . ��
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Corollary 1. (Measure reconstruction with order) In addition to the hypotheses of
Theorem 3, if a = c, b = d, and μ satisfies the condition

μx ({(θ, ξ) ∈ R
2 : θ < ξ}) = 0 for a.e. x ∈ �, (3.21)

we can construct the sequence (z2
n)n with the property

z1
n(x) � z2

n(x) for a.e. x ∈ �.

Proof. For every m, we can assume that (Hm
j ) j is ordered in the sense that θ j+1 >

θ j whenever θ j ∈ Hm
j , θ j+1 ∈ Hm

j+1. Since [c, d] = [a, b], we can choose K m
k :=

Hm
k ∩ [a, b] for every k. If (i, j) ∈ A, z2,m

n (x) = a � z1
n(x) for almost every x ∈

�
m,n
i j . So let us consider from now on (i, j) /∈ A. Since μx ({θ < ξ}) = 0 for almost

every x ∈ �, due to assumption (3.21), we have that μ(�m
i ×Hm

j ×(Hm
k ∩[a, b])) =

0 for every i and every k > j . In particular, |�m,n
i jk | = 0 whenever k > j . Nothing

changes in the proof of Theorem 3 if we take ξm
k in the closure of K m

k ∩ [a, b].
In this way, for k = j we are able to choose ξm

j with the property ξm
j � z1

n(x)

whenever x ∈ �
m,n
i j (notice that z1

n(x) ∈ [a, b]), so that z2,m
n (x) � z1

n(x) whenever

x ∈ �
m,n
i j j . Finally, if k < j , then for every ξm

k ∈ Hm
k ∩ [a, b] we have ξm

k � z1
n(x)

whenever x ∈ �
m,n
i j and hence z2,m

n (x) � z1
n(x) whenever x ∈ �

m,n
i jk . In conclu-

sion, z2,m
n (x) � z1

n(x) for almost every x ∈ �, and hence z2
n(x) � z1

n(x) for almost
every x ∈ �, too. ��

3.3. Admissible Set in Terms of Young Measures

We now introduce the admissible set for the generalized notion of evolution
we will consider. We recall that μ ∈ Y 2(�; R

d×d) is an H1-gradient Young mea-
sure (H1-GYM), if there exists a bounded sequence (vn)n ∈ H1(�; R

d) such that
δ∇vn ⇀ μ 2-weakly* as n → ∞.

Definition 3. (Admissible set) Given a time interval [0, T ] and ϕ : [0, T ] →
W 1,p(�; R

d), for p > 2, we define AY ([0, T ], ϕ) as the set of all ν ∈
Y 2(�; R × R

d×d
sym )[0,T ] such that for every t ∈ [0, T ] there exists a measure

ν̃t ∈ Y 2(�; R × R
d×d) with

νt = S(ν̃t ), (3.22)

supp π1(ν̃t ) = supp π1(νt ) ⊆ � × [0, 1], (3.23)

π2(ν̃t ) is a H1-GYM, (3.24)

bar(π2(ν̃t )) = ∇v with v ∈ ϕ(t) + H1
0 (�; R

d), (3.25)

where S(x, θ, F) := (x, θ, F+FT

2 ) for every (x, θ, F) ∈ � × R × R
d×d , and π1

and π2 are projections, π1 : �×R×R
d×d → �×R and π2 : � → R×R

d×d →
� × R

d×d , respectively.
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From [13, Theorem 3.1], ν̃t satisfies properties (3.23) and (3.24), (3.25) if
and only if there exist a bounded sequence (zn)n in L∞(�; [0, 1]) and a bounded
sequence (vn)n in H1(�; R

d×d) such that δ(zn ,∇vn) ⇀ ν̃t 2-weakly* as n → ∞.
Moreover, by using, for instance, [1, Lemma 11.4.1], it is possible to choose (vn)n

in ϕ(t) + H1
0 (�; R

d×d). Note that eventually δ(zn ,∇vn) ⇀ ν̃t 2-weakly* implies
δ(zn ,e(vn)) ⇀ S(ν̃t ) 2-weakly*.

4. Main Result

We shall now aim at introducing the existence result for quasi-static damage
evolution.

Before giving the definition of quasi-static damage evolution and stating the
main result, we need to establish some extra notation.

Given ν ∈ Y 2(�; R × R
d×d
sym ) and μ12 ∈ Y 1(�; [0, 1]2), we set

〈W, ν〉 :=
∫

�×R×R
d×d
sym

W (θ, ε) dν(x, θ, ε),

〈d, μ12〉 :=
∫

�×R2
d(θ1, θ2) dμ12(x, θ1, θ2).

Given μ1, μ2 ∈ Y 1(�; [0, 1]), we define

D(μ1, μ2) :=
⎧⎨
⎩

ρ

[∫
�×R

θ dμ1(x, θ) −
∫

�×R

θ dμ2(x, θ)

]
if μ1 � μ2

∞ otherwise.

The distance D(μ1, μ2) coincides with the infimum of 〈d, μ12〉 for μ12 varying in
the set of measures in Y 1(�; [0, 1]2) such that π1(μ12) = μ1 and π2(μ12) = μ2,
where π1(x, θ1, θ2) := (x, θ1) and π2(x, θ1, θ2) := (x, θ2) for every (x, θ1, θ2) ∈
�×R

2. Indeed, this is true if μ1 �� μ2, because, thanks to Theorem 2 and to the def-
inition of d, in this case we have 〈d, μ12〉 = ∞ for every μ12 satisfying the required
projection properties. On the other hand, if μ1 � μ2, by Theorem 2 there exists a
measure μ12 satisfying the projection properties and with μx

12({θ1 < θ2}) = 0 for
almost every x ∈ �. Therefore, for every such measure μ12, we have 〈d, μ12〉 < ∞
and

〈d, μ12〉 =
∫

�×[0,1]2
d(θ1, θ2) dμ12(x, θ1, θ2)

=
∫

�

( ∫
{θ1�θ2}

d(θ1, θ2) dμx
12(θ1, θ2)

)
dx

=
∫

�

( ∫
{θ1�θ2}

ρ(θ1 − θ2) dμx
12(θ1, θ2)

)
dx

= ρ

∫
�×[0,1]2

(θ1 − θ2) dμ12(x, θ1, θ2)

= ρ
[ ∫

�×R

θ1 dμ1(x, θ1) −
∫

�×R

θ2 dμ2(x, θ2)
]
.
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Therefore, 〈d, μ12〉 is independent of the choice of μ12, provided it has the required
order property and coincides with D(μ1, μ2). In other words, D(μ1, μ2) cor-
responds to a Wasserstein-like distance associated with d between μ1 and μ2
(see for example [25]). Note that we may have D(μ1, μ2) = ∞ even in cases
where D(bar(μ1), bar(μ2)) < ∞, because μ1 � μ2 is a stronger condition than
bar(μ1) � bar(μ2) almost everywhere in �, as explained in Remark 1.

Given a measure ν ∈ Y 2(�; [0, 1] × R
d×d), we will denote the projection of

ν on � × [0, 1] by π1(ν). We are now ready to define our solution notion for the
quasi-static problem.

Definition 4. (Quasi-static evolution) Given ϕ : [0, T ] × � → R
d , z0 : � →

[0, 1], v0 : � → R
d , and T > 0, a quasi-static damage evolution with bound-

ary datum ϕ and initial condition (z0, v0), in the time interval [0, T ], is ν ∈
AY ([0, T ], ϕ), satisfying the following conditions:

(E0) initial condition: ν0 = δ(z0,e(v0)),

(E1) irreversibility: π1(νs) � π1(νt ), whenever 0 � s < t � T ,

(E2) translational stability: for every t ∈ [0, T ], we have

〈W, νt 〉 � 〈W, Tr(z̃,e(ũ))(νt )〉 + D(π1(νt ), Tr z̃(π1(νt ))),

for every z̃ ∈ L1(�) and every ũ ∈ H1
0 (�; R

d),
(E3) global-stability for the internal variable: for every t ∈ [0, T ], we have

〈W, νt 〉 � 〈W, (μ̃x ⊗ δe(ṽ)(x))x∈�〉 + D(π1(νt ), μ̃), (4.1)

for every ṽ ∈ ϕ(t) + H1
0 (�; R

d), and every μ̃ ∈ Y (�; R),
(E4) energy equality: for every t ∈ [0, T ] the map

t �→ 〈σ(t), e(ϕ̇(t))〉 (4.2)

is measurable on [0, T ], where σ(t) is the function defined by

σ(t)(x) :=
∫

R×R
d×d
sym

∂W

∂ε
(θ, ε) dνx

t (θ, ε) for a.e. x ∈ �.

Moreover, for every t ∈ [0, T ] we have

〈W, νt 〉 + Diss(ν; 0, t) = W(z0, v0) +
∫ t

0
〈σ(s), e(ϕ̇(s))〉 ds,

with Diss(ν; 0, t) := sup
∑k

i=1 D(π1(νti−1), π1(νti )), where the supremum
is taken among all finite partitions 0 = t0 < · · · < tk = t .

Remark 2. Due to irreversibility property (E1), the total dissipation Diss(ν; 0, t)
of the quasi-static evolution ν in a time interval [0, t] reduces to D(π1(ν0), π1(νt )),
therefore we have

Diss(ν; 0, t) = ρ

[ ∫
�

z0 dx −
∫

�×R

θ dπ1(νt )(x, θ)

]
.
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The main result of this paper reads as follows.

Theorem 4. (Existence of a quasi-static evolution) Let T > 0, p > 2, ϕ ∈
AC([0, T ]; W 1,p(�; R

d)), z0 ∈ L1(�; [0, 1]), and v0 ∈ ϕ(0) + H1
0 (�; R

d) be
such that

W(z0, v0) � W(z̃, ṽ) + D(z0, z̃), (4.3)

for every z̃ ∈ L1(�) and every ṽ ∈ ϕ(0) + H1
0 (�; R

d). Then there exists a quasi-
static evolution with boundary datum ϕ and initial condition (z0, v0) in the time
interval [0, T ].
The proof is obtained via time discretization, incremental minimization, and pas-
sage to the limit and is detailed in Section 5.

5. Proof of the Existence Theorem 4

5.1. The Incremental Minimum Problem

Let us fix a time step τ := T/n, and let t i
τ := iτ and ϕi

τ := ϕ(t i
τ ), for every

i = 0, . . . , n. We will define (zi
τ , v

i
τ ) iteratively: set (z0

τ , v
0
τ ) := (z0, v0), and, for

i > 0, define (zi
τ , v

i
τ ) as a minimizer (see Lemma 3 below) of the functional

F i
τ (z, v) := W(z, e(v)) + D(zi−1

τ , z), (5.1)

among all z ∈ L1(�) and v ∈ ϕi
τ + H1

0 (�; R
d).

Lemma 3. (Incremental minimization) Let (z0, v0) be as in Theorem 4. Then, for
every i the functional F i

τ has a minimizer (z, v) in L1(�) × (ϕi
τ + H1

0 (�; R
d)).

Moreover, (z, v) satisfies the following properties:

0 � z � zi−1
τ a.e. in �, (5.2)

v is a CW
cW

-cubic quasi-minimum of the functional v �→
∫

�

|e(v)|2. (5.3)

Remark 3. In particular, for every i and τ , we have that 0 � zi
τ (x) � z0(x) � 1

for almost every x ∈ �, since z0(x) ∈ [0, 1] for almost every x ∈ �.

Proof. Let us first observe that whenever zi−1
τ � 0 almost everywhere in �, we

have

F i
τ (z, v) � F i

τ ((z ∧ zi−1
τ )+, v), (5.4)

for every (z, v) ∈ L1(�) × H1(�; R
d). Indeed, F i

τ (z, v) < ∞ if and only if
z � zi−1

τ almost everywhere in �, hence F i
τ (z, v) � F i

τ (z ∧ zi−1
τ , v). On the

other hand, W (θ, ε) ≡ W (0, ε) if θ � 0 (see hypothesis (W.5)). Hence, W(z ∧
zi−1
τ , e(v)) = W((z ∧ zi−1

τ )+, e(v)). Finally, since zi−1
τ � 0 almost everywhere

in �, D(zi−1
τ , (z ∧ zi−1

τ )+) � D(zi−1
τ , z ∧ zi−1

τ ) (with the strict inequality if
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z(x) /∈ [0, 1] for almost every x ∈ �). In conclusion, F i
τ (z, v) � F i

τ (z∧zi−1
τ , v) �

F i
τ ((z ∧ zi−1

τ )+, v). This implies that if zi
τ exists, it satisfies

0 � zi
τ (x) � zi−1

τ (x) for a.e. x ∈ �, (5.5)

whenever zi−1
τ � 0 almost everywhere in �. Since z0(x) ∈ [0, 1] for almost every

x ∈ �, by induction we get that, if zi
τ exists, it fulfills (5.5).

Now fix i = 1, . . . , n, and let (zk, vk) be a minimizing sequence for F i
τ . Then

F i
τ (zk, vk) =

∫
�

W (zk, e(vk)) dx + D(zi−1
τ , zk) < C,

for a suitable positive constant C . In particular, thanks to (W.2) and the Korn–
Poincaré inequality (3.1), the sequence (vk)k is bounded in ϕi

τ + H1
0 (�; R

d). Since
zi−1
τ ∈ L1(�; [0, 1]), we can apply (5.4) in order to deduce that ((zk ∧ zi−1

τ )+, vk)

is still a minimizing sequence. Since zi−1
τ � 1, (zk ∧ zi−1

τ )+ is bounded in L∞(�).
Up to a subsequence, we can assume that vk converges weakly in H1 to a function
v ∈ ϕi

τ + H1
0 (�; R

d), and (zk ∧ zi−1
τ )+ converges weakly* in L∞ to a function

z with values in [0, 1] almost everywhere in �. Since W is S-cross-quasiconvex,
thanks to Lemma 1, the functional in (5.1) is sequentially lower semicontinuous
with respect to the product of the weak* topology of L∞ and the weak topology of
H1. This proves that (z, v) is a minimum of functional (5.1) and satisfies condition
(5.2).

Hence, it remains to show that v is a CW
cW

-cubic quasi-minimum of the func-

tional v �→ ∫
�

|e(v)|2. Let w be a function such that v − w ∈ H1
0 (� ∩ Q R). We

extend it to a function in H1(�; R
d) by setting w := v on � \ Q R . Then (z, w) is

a competitor for the minimum problem solved by (z, v). Hence,∫
�

W (z(x), e(v)(x)) dx �
∫

�

W (z(x), e(w)(x)) dx .

By construction of w, this implies∫
�∩Q R

W (z(x), e(v)(x)) dx �
∫

�∩Q R

W (z(x), e(w)(x)) dx .

Hence, by hypothesis (W.2) on W , we get

cW

∫
�∩Q R

|e(v)(x)|2 dx � CW

∫
�∩Q R

|e(w)(x)|2 dx,

which proves that v satisfies condition (5.3). ��
Let (zτ , vτ ) and ϕτ be the functions in L∞([0, T ]; L1(�) × H1(�; R

d)) and
L∞([0, T ]; H1(�; R

d)), respectively, defined by

(zτ (t), vτ (t)) := (zi
τ , v

i
τ ) if t i

τ � t < t i+1
τ ,

ϕτ (t) := ϕi
τ if t i

τ � t < t i+1
τ , i = 0, 1, . . . , n.

We define στ ∈ L∞([0, T ]; L2(�; R
d×d
sym )) (thanks to (W.3)) by

στ (t) := ∂W

∂ε
(zτ (t), e(vτ (t))), (5.6)

for every t ∈ [0, T ].
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5.2. Improved Integrability

Since vi
τ is a CW

cW
-cubic quasi-minimum of the functional v �→ ∫

�
|e(v)|2 dx ,

we use Theorem 1 (see also [12, Appendix]) to obtain the existence of two constants
γ > 0 and r > 1, depending only on cW , CW , and ϕ, such that

∫
�

|e(vi
τ )|2r dx �

∫
�

|∇vi
τ |2r dx � γ 2r

( ∫
�

|∇vi
τ |2 dx + 1

)r

� C(�)2rγ 2r
( ∫

�

|e(vi
τ )|2 dx + 1

)r
, (5.7)

where C(�) is the Korn–Poincaré constant. In particular, all the above constants
are independent of τ and i .

5.3. A Priori Estimates

Next, we obtain an a priori estimate for the piecewise constant interpolations
(zτ , vτ ).

Since (zi−1
τ , vi−1

τ − ϕi−1
τ + ϕi

τ ) ∈ L1(�) × (ϕi
τ + H1

0 (�; R
d)), the minimality

of (zi
τ , v

i
τ ) implies that

W(zi
τ , e(vi

τ )) + D(zi−1
τ , zi

τ ) � W(zi−1
τ , e(vi−1

τ − ϕi−1
τ + ϕi

τ ))

= W(zi−1
τ , e(vi−1

τ ))

+W(zi−1
τ , e(vi−1

τ − ϕi−1
τ + ϕi

τ )) − W(zi−1
τ , e(vi−1

τ )). (5.8)

The last two terms of the right-hand side above may be controlled as follows

W(zi−1
τ , e(vi−1

τ − ϕi−1
τ + ϕi

τ )) − W(zi−1
τ , e(vi−1

τ ))

=
∫ t i

τ

t i−1
τ

[ ∫
�

∂W

∂ε
(zi−1

τ , e(vi−1
τ − ϕi−1

τ + ϕ(s))):e(ϕ̇(s)) dx

]
ds

=
∫ t i

τ

t i−1
τ

[ ∫
�

στ (s):e(ϕ̇(s)) dx

]
ds

+
∫ t i

τ

t i−1
τ

[ ∫
�

(
∂W

∂ε
(zi−1

τ , e(vi−1
τ − ϕi−1

τ + ϕ(s)))

− ∂W

∂ε
(zi−1

τ , e(vi−1
τ ))

)
:e(ϕ̇(s)) dx

]
ds.

Taking the sum in (5.8) for t ∈ [0, T ], τ (t) := max{t i
τ : t i

τ � t}, we have

W(zτ (t), e(vτ (t))) + Diss(zτ ; 0, t)
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� W(z0, v0) +
∫ τ(t)

0

[ ∫
�

στ (s):e(ϕ̇(s)) dx

]
ds

+
∫ τ(t)

0

[ ∫
�

(
∂W

∂ε
(zτ (s), e(vτ (s) − ϕτ (s) + ϕ(s)))

− ∂W

∂ε
(zτ (s), e(vτ (s)))

)
:e(ϕ̇(s)) dx

]
ds. (5.9)

We observe that, thanks to (W.3), we have

∣∣∣∣
∫ τ(t)

0

[ ∫
�

(
∂W

∂ε
(zτ (s), e(vτ (s) − ϕτ (s) + ϕ(s)))

− ∂W

∂ε
(zτ (s), e(vτ (s)))

)
:e(ϕ̇(s)) dx

]
ds

∣∣∣∣
� 2C

(
sup

t∈[0,T ]
‖e(vτ (t))‖2 + sup

t∈[0,T ]
‖e(ϕ(t))‖2 + 1

) ∫ T

0
‖e(ϕ̇(s))‖2 ds.

Now,

∫ T

0
‖e(ϕ̇(s))‖2 ds + sup

t∈[0,T ]
‖e(ϕ(t))‖2 < ∞,

since ϕ ∈ AC([0, T ], H1(�; R
d). Hence, also owing to definition (5.6) and

hypothesis (W.2), we get

cW sup
t∈[0,T ]

‖e(vτ (t))‖2
2 � sup

t∈[0,T ]
W(zτ (t), e(vτ (t))) + Diss(zτ ; 0, T )

� W(z0, v0) + C

(
sup

t∈[0,T ]
‖e(vτ (t))‖2 + 1

)
,

for every t ∈ [0, T ] and a positive constant C . Therefore, we deduce that there
exists a positive constant K , independent of the choice of the time step τ , such that

sup
t∈[0,T ]

‖e(vτ (t))‖2 � K .

In particular, we get

sup
t∈[0,T ]

‖∇vτ (t)‖2 � C(�)K (5.10)

sup
t∈[0,T ]

‖στ (t)‖2 � CW (K + 1). (5.11)

Thanks to the improved regularity estimate (5.7), we get

sup
t∈[0,T ]

‖∇vτ (t)‖2r � C(�)γ
√

K 2 + 1. (5.12)
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5.4. Passage to the Limit

Let us now consider a sequence of time steps (τn)n converging to 0, and the
associated interpolations (zτn , vτn )n . We want to define a family of measures ν ∈
AY ([0, T ];ϕ). We will do this by passing to the limit in the sequence of approx-
imate solutions (zτn (t), vτn (t))n . For technical reasons, which will appear patent
in the proof, we need to proceed by defining νt on larger and larger time sets. In
particular, we will first define νt for t ∈ [0, T ] ∩ Q and then in the rest of [0, T ].

Thanks to the uniform bound (5.10) and to the higher integrability estimate
(5.12), and by using a diagonalization argument, we can find a not-relabeled sub-
sequence (zτn , vτn ) and ν̃ ∈ Y 2r (�; R × R

d×d)[0,T ]∩Q, such that

δ(zτn (t),∇vτn (t)) ⇀ ν̃t 2r -weakly*,

for every t ∈ [0, T ] ∩ Q.
For every t ∈ [0, T ] \ Q, let us choose an increasing sequence of integers nt

k
possibly depending on t , such that

lim sup
n

〈στn (t), e(ϕ̇(t))〉 = lim
k

〈στnt
k
(t), e(ϕ̇(t))〉. (5.13)

Again, we are allowed to extract a further subsequence, still denoted by (zτnt
k
, vτnt

k
)k ,

satisfying (5.13) and such that there exists ν̃t ∈ Y 2r (�; R × R
d×d) with

δ(zτ
nt

k
(t),∇vτ

nt
k
(t)) ⇀ ν̃t 2r -weakly*, as k → ∞

for every t ∈ [0, T ] \ Q. Note that, for every t ∈ [0, T ] \ Q,

lim sup
n

〈στn (t), e(ϕ̇(t))〉 = lim
k

〈στnt
k
(t), e(ϕ̇(t))〉

= lim
k

∫
�

∂W

∂ε
(zτnt

k
(t), e(vτnt

k
(t))):e(ϕ̇(t)) dx = 〈σ(t), e(ϕ̇(t)〉,

where σ is defined by

σ(t, x) :=
∫

R×Rd×d

∂W

∂ε
(θ, ε) dS(ν̃)x

t (θ, ε),

for S(θ, F) := (θ, F+FT

2 ), for every (θ, F) ∈ R × R
d×d . Moreover, for every

t ∈ [0, T ] ∩ Q we have

lim sup
n

〈στn (t), e(ϕ̇(t))〉 = lim
n

〈στn (t), e(ϕ̇(t))〉 = 〈σ(t), e(ϕ̇(t)〉.

This implies that the map in (4.2) is measurable on [0, T ].
In this way, we have defined ν̃ in Y 2r (�; R × R

d×d)[0,T ], satisfying by con-
struction properties (3.23) and (3.24), (3.25) in Definition 3. Therefore, by letting
νt := S(ν̃t ) for every t ∈ [0, T ], we get that ν also satisfies condition (3.22), and
hence ν ∈ AY ([0, T ], ϕ).
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In particular we have:

δ(zτn (t),e(vτn (t))) ⇀νt 2r -weakly*, for t ∈ [0, T ] ∩ Q,

δ(zτ
nt

k
(t),e(vτ

nt
k
(t))) ⇀νt 2r -weakly*, for t ∈ [0, T ] \ Q.

(5.14)

Since (zτn (0), vτn (0)) = (z0, v0) for every n, the initial condition (E0) is auto-
matically satisfied.

5.5. Irreversibility

Let us consider 0 � s < t � T and fix q ∈ [s, t] ∩ Q.
Up to not-relabeled subsequences, we have that there exist μsq , μqt ∈

Y (�; [0, 1]2) with

δ(zτns
k
(s),zτns

k
(q)) ⇀ μsq weakly*,

δ(zτ
nt

k
(q),zτ

nt
k
(t)) ⇀ μqt weakly*.

Thanks to the construction of ν, we have that μsq has projections π1(νs) and
π1(νq), respectively, and μqt has projections π1(νq) and π1(νt ), respectively.

Now, we have zτn (t) � zτn (q) � zτn (s) almost everywhere in �, for every n.
This implies that δ(zτn (s),zτn (q))(E × {θ1 < θ2}) = 0 and δ(zτn (q),zτn (t))(E × {θ1 <

θ2}) = 0 for E ⊆ � open, for every n.
Since δ(zτns

k
(s),zτns

k
(q)) ⇀ μsq weakly* as n → ∞, and E × {θ1 < θ2} is open,

we have

μsq(E × {θ1 < θ2}) � lim inf
k

δ(zτns
k
(s),zτns

k
(q))(E × {θ1 < θ2}) = 0;

therefore μx
sq({θ1 < θ2}) = 0 for almost every x ∈ �. The same holds for μqt :

μx
qt ({θ1 < θ2}) = 0 for almost every x ∈ �.

This implies, by Theorem 2, that π1(νs) � π1(νq) and π1(νq) � π1(νt ). By
transitivity, this implies π1(νs) � π1(νt ), namely the irreversibility condition (E1).

5.6. Stability

Let z̃ ∈ L1(�) and ũ ∈ H1
0 (�; R

d). Let us observe that if z̃ > 0 on �′ ⊆ �

with |�′| > 0, then D(μ, Tr z̃(μ)) = ∞, for every μ ∈ Y (�; [0, 1]). Indeed, if
μ � Tr z̃(μ), then for every α ∈ R we would have μx (α,∞) � Tr z̃(μ)x (α,∞) =
μx (α − z̃(x),∞). Therefore, for x ∈ �′, we would have μx (α − z̃(x), α] = 0, for
every α ∈ R. This would imply μx ([0, 1]) = 0, for x ∈ �′, which is a contradic-
tion with the fact that μx is a probability measure on [0, 1], for almost every x . In
conclusion, if z̃ > 0 on a subset of � with positive measure, (E2) is automatically
satisfied.

Hence, we reduce to the case z̃ � 0 almost everywhere in �. For every n and
every i = 1, . . . , n, the function (zi

τn
+ z̃, vi

τn
+ ũ) is an admissible competitor for

the minimum problem defining (zi
τn

, vi
τn

). Therefore, we have

W(zi
τn

, vi
τn

) + D(zi−1
τn

, zi
τn

) � W(zi
τn

+ z̃, vi
τn

+ ũ) + D(zi−1
τn

, zi
τn

+ z̃).
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Since z̃ � 0 almost everywhere in �, we have that zi
τn

+ z̃ � zi
τn

� zi−1
τn

. This
implies that D(zi−1

τn
, zi

τn
− z̃) = ρ

∫
�
(zi−1

τn
− zi

τn
+ z̃) dx and hence

D(zi−1
τn

, zi
τn

+ z̃) − D(zi−1
τn

, zi
τn

) = D(zi
τn

, zi
τn

+ z̃) = D(0, z̃).

Hence, we get

W(zi
τn

, vi
τn

) � W(zi
τn

+ z̃, vi
τn

+ ũ) + D(0, z̃).

This means that, for every t ∈ [0, T ], we have

W(zτn (t), vτn (t)) � W(zτn (t) + z̃, vτn (t) + ũ) + D(0, z̃). (5.15)

We observe that θ + z̃(x) � 1 for almost every x ∈ �, for every θ ∈ [0, 1] (z̃ � 0
almost everywhere in �). Hence, thanks to (W.2), we have

|W (θ + z̃(x), ε + e(ũ))| � C(|e(ũ)(x)|2 + |ε|2).
Therefore, by using the convergence (5.14) and Lemma 2 we get

∫
�

W (zτnt
k
(t), e(vτnt

k
(t))) dx −→

∫
�×R×R

d×d
sym

W (θ, ε) dνt (x, θ, ε),

∫
�

W (zτnt
k
(t) + z̃(x), e(vτnt

k
(t)) + e(ũ)(x)) dx

−→
∫

�×R×R
d×d
sym

W (θ + z̃(x), ε + e(ũ)(x)) dνt (x, θ, ε)

= 〈W, Tr(z̃,e(ũ))(νt )〉,
for every t ∈ (0, T ], as n → ∞. Therefore, we can deduce the translational stabil-
ity (E2) passing to the limit in inequality (5.15). For t = 0, relation (E2) comes
immediately from the hypothesis on the initial datum (4.3).

Now we want to prove global stability for the internal variable (E3). Let us
denote π1(νt ) by μt , for every t ∈ [0, T ].

Let us start by proving (E3) for μ̃ ∈ Y (�; [0, 1]). From the minimality of
(zi

τn
, vi

τn
), we get that for every (z̃, ṽ) ∈ L1(�) × (ϕi

τn
+ H1

0 (�; R
d)),

W(zi
τn

, vi
τn

) + D(zi−1
τn

, zi
τn

) � W(z̃, ṽ) + D(zi−1
τn

, z̃).

Hence, using the triangle inequality for D, we get

W(zi
τn

, vi
τn

) � W(z̃, ṽ) + D(zi
τn

, z̃).

Therefore, we deduce that for every n, t ∈ [0, T ], and (z̃, ṽ) ∈ L1(�) × (ϕ(t) +
H1

0 (�; R
d)), we have

W(zτn (t), e(vτn (t))) � W(z̃, e(ṽ − ϕ(t) + ϕτn (t))) + D(zτn (t), z̃)

= W(z̃, e(ṽ)) + D(zτn (t), z̃) + Rn(t), (5.16)
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where

Rn(t) := W(z̃, e(ṽ − ϕ(t) + ϕτn (t))) − W(z̃, e(ṽ)).

Arguing as in Section 5.3, it is not difficult to show that

|Rn(t)| � 2C
(

sup
t∈[0,T ]

‖e(ϕ(t))‖2 + ‖e(ṽ)‖2 + 1
) ∫ t

t−τn

‖e(ϕ̇(s))‖2 ds.

Since ϕ̇ ∈ L1([0, T ]; H1(�; R
d)), we have that, for every t ∈ [0, T ]

Rn(t) → 0, as n → ∞. (5.17)

Let us now fix t ∈ [0, T ] and a competitor μ̃ ∈ Y (�; [0, 1]). If μt �� μ̃, we
have D(μt , μ̃) = ∞ and hence (4.1) holds true, so we can assume that μt � μ̃.
Thanks to Theorem 2, there exists a measure μ12,t such that

π1(μ12,t ) = μt , π2(μ12,t ) = μ̃,

μx
12,t ({θ1 < θ2}) = 0 for a.e. x ∈ �.

Let us consider the sequence (zτnt
k
(t), vτnt

k
(t))k such that δ(zτ

nt
k
(t),e(vτ

nt
k
(t))) ⇀ νt

2r -weakly*. This implies, by Lemma 2, that

W(zτnt
k
(t), e(vτnt

k
(t))) = 〈W, δ(zτ

nt
k
(t),e(vτ

nt
k
(t)))〉 → 〈W, νt 〉, (5.18)

as k → ∞. Moreover δzτ
nt

k
(t) ⇀ π1(μ12,t ) weakly*, so we can apply Theorem 3

and Corollary 1 to construct a sequence (z̃k)k in L1(�; [0, 1]) such that, as k → ∞,

z̃k � zτnt
k
(t) a.e. in �,

δ(zτ
nt

k
(t),z̃k) ⇀ μ12,t weakly*,

δ z̃k ⇀ μ̃ weakly*.

We can apply Lemma 2 to obtain

W(z̃k, e(ṽ)) =
∫

�×R

W (θ, e(ṽ(x)) dδ z̃k (x, θ)

→
∫

�×R

W (θ, e(ṽ(x)) dμ̃(x, θ) = 〈W, (μ̃x ⊗ δe(ṽ)(x))x∈�〉, (5.19)

as k → ∞. As z̃k � zτnt
k
(t) almost everywhere in �, we have that

D(zτnt
k
(t), z̃k) =

∫
�

d
(

zτnt
k
(x, t), z̃k(x)

)
dx =

∫
�

ρ
(

zτnt
k
(x, t) − z̃k(x)

)
dx

=
∫

�×R2
ρ(θ1 − θ2) dδ(zτ

nt
k
(t),z̃k)

→
∫

�×R2
ρ(θ1 − θ2) dμ12,t (x, θ1, θ2)

= ρ

[ ∫
�×R

θ1 dμt (x, θ1) −
∫

�×R

θ2 dμ̃(x, θ2)

]

= D(μt , μ̃) = D(π1(νt ), μ̃), (5.20)



Young-Measure Quasi-Static Damage Evolution 443

as k → ∞.
Therefore, putting together inequality (5.16) for z̃ = z̃k , and the convergence

properties (5.17), (5.18), (5.19), and (5.20), we get (4.1).
Let us now consider a general μ̂ ∈ Y (�; R). If supp(μ̂) � � × (−∞, 1],

then μt � μ̂. Therefore, D(μt , μ̂) = ∞ and (E3) is proved, so let us assume that
supp(μ̂) ⊆ � × (−∞, 1]. We define μ̃ ∈ Y (�; [0, 1]), by setting:

∫
�×R

f (x, θ) dμ̃(x, θ) :=
∫

�×(0,1]
f (x, θ) dμ̂(x, θ)+

∫
�×(−∞,0]

f (x, 0) dμ̂(x, θ),

for every bounded Borel function f : �×R → R. It can be seen immediately that if
μt � μ̂, then μt � μ̃. Indeed, let α ∈ [0, 1], then μ̃x (α, 1] = μ̂x (α, 1] � μx

t (α, 1],
and, if α < 0, μ̃x (α, 1] = μ̃x [0, 1] = 1 = μx

t [0, 1] = μx
t (α, 1], for almost every

x ∈ �.
We claim that

〈W, (μ̃x ⊗ δe(ṽ)(x))x∈�〉 −
∫

�×R

θ dμ̃(x, θ)

� 〈W, (μ̂x ⊗ δe(ṽ)(x))x∈�〉 −
∫

�×R

θ dμ̂(x, θ).

Indeed, we have

∫
�×R

θ dμ̃(x, θ) =
∫

�×(0,1]
θ dμ̂(x, θ) +

∫
�×(−∞,0]

0 dμ̂(x, θ)

�
∫

�×(0,1]
θ dμ̂(x, θ) +

∫
�×(−∞,0]

θ dμ̂(x, θ) =
∫

�×R

θ dμ̂(x, θ).

On the other hand, thanks to (W.5) we have

∫
�×R

W (θ, e(ṽ)(x)) dμ̃(x, θ)

=
∫

�×(0,1]
W (θ, e(ṽ)(x)) dμ̂(x, θ) +

∫
�×(−∞,0]

W (0, e(ṽ)(x)) dμ̂(x, θ)

=
∫

�×(0,1]
W (θ, e(ṽ)(x)) dμ̂(x, θ) +

∫
�×(−∞,0]

W (θ, e(ṽ)(x)) dμ̂(x, θ)

=
∫

�×R

W (θ, e(ṽ)(x)) dμ̂(x, θ).

The claim is hence proved, and we have that

〈W, (μ̃x ⊗ δe(ṽ)(x))x∈�〉 + D(μt , μ̃) � 〈W, (μ̂x ⊗ δe(ṽ)(x))x∈� + D(μt , μ̂)〉.

We have checked that the global stability for the internal variable (E3) holds for
μ̃ ∈ Y (�; R) as well.
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5.7. Upper Energy Estimate

First of all we observe that, thanks to the irreversibility property (E1) and
Theorem 2, we have, for every t ∈ [0, T ],

Diss(ν; 0, t) =
∫

�×R

ρ(z0(x) − θ) dπ1(νt )(x, θ).

Since zτn (s) � zτn (t) almost everywhere in �, whenever s � t , we have

Diss(zτn ; 0, t) =
∫

�×R

ρ(z0(x) − θ) dδzτn (t)(x, θ).

We have that δzτ
nt

k
(t) ⇀ π1(νt ) weakly*, and hence we get Diss(zτnt

k
; 0, t) →

Diss(ν; 0, t) as k → ∞. Let us fix t ∈ [0, T ]. We have

〈W, νt 〉 + Diss(ν; 0, t) � lim inf
k

[W(zτnt
k
(t), e(vτnt

k
(t))) + Diss(zτnt

k
; 0, t)

]
.

By using estimate (5.9), we deduce that

〈W, νt 〉 + Diss(ν; 0, t)

� lim inf
k

[
W(z0, e(v0)) +

∫ τnt
k
(t)

0
〈στnt

k
(s), e(ϕ̇(s))〉 ds + ρnt

k

]

� W(z0, e(v0)) + lim sup
n

∫ τn(t)

0
〈σn(s), e(ϕ̇(s))〉 ds + lim sup

n
ρn,

where

ρn :=
∫ τn(t)

0

[ ∫
�

(∂W

∂ε
(zτn (s), e(vτn (s) − ϕτn (s) + ϕ(s)))

− ∂W

∂ε
(zτn (s), e(vτn (s)))

)
:e(ϕ̇(s)) dx

]
ds.

Since supt,n ‖στn (t)‖2 is finite thanks to estimate (5.11), by Fatou’s Lemma we
get

lim sup
n

∫ τn(t)

0
〈σn(s), e(ϕ̇(s))〉 ds �

∫ T

0
lim sup

n
1[0,τn(t)]〈σn(s), e(ϕ̇(s))〉 ds

=
∫ t

0
〈σ(s),e(ϕ̇(s))〉 ds.

Finally we apply the following lemma with X = �, H = ∂W
∂ε

, q = 2, �n =
(zτn (s), e(vτn (s))), �n := (0, e(ϕτn (s) − ϕ(s))), and � = e(ϕ̇(s)).
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Lemma 4. [10, Lemma 4.9] Let (X,A, μ) be a finite measure space, let q > 1,
let m, n � 1, and let H : X × R

N → R
m be a Carathéodory function. Assume

that there exist a constant a � 0 and a nonnegative function b ∈ Lq ′
(X), with

q ′ = q/(q − 1), such that

|H(x, ξ)| � a|ξ |q−1 + b(x)

for every (x, ξ) ∈ X ×R
N . Let �n and �n be two sequences in Lq(X; R

N ). Assume
that �n is bounded in Lq(X; R

N ) and �n converges to 0 strongly in Lq(X; R
N ).

Then ∫
X
[H(x,�n(x) + �n(x)) − H(x,�n(x))]�(x) dμ(x) → 0

for every � ∈ Lq(X; R
m).

We obtain ∫
�

(
∂W

∂ε
(zτn (s), e(vτn (s) − ϕτn (s) + ϕ(s)))

− ∂W

∂ε
(zτn (s), e(vτn (s)))

)
:e(ϕ̇(s)) dx → 0,

as n → ∞, for almost every s ∈ [0, T ]. Moreover, we have∣∣∣∣
∫

�

(
∂W

∂ε
(zτn (s), e(vτn (s) − ϕτn (s) + ϕ(s))) − ∂W

∂ε
(zτn (s), e(vτn (s)))

)

:e(ϕ̇(s)) dx

∣∣∣∣
� c̃

(
sup
n,t

‖e(vτn (t))‖2 + sup
t

∫ t

t−τn

‖e(ϕ̇(s))‖2 ds + 1

)
‖e(ϕ̇(s))‖2

� C‖e(ϕ̇(s))‖2 ∈ L1([0, T ]),
for almost every s ∈ [0, T ]. Therefore, by Dominated Convergence we get
limn ρn = 0, and we can deduce that

〈W, νt 〉 + Diss(ν; 0, t) � W(z0, e(v0)) +
∫ t

0
〈σ(s), e(ϕ̇(s))〉 ds. (5.21)

5.8. Lower Energy Estimate

To prove the lower energy estimate, we proceed in the same way as in [12,
Subsection 7.6]. We recall the main passages for the reader’s convenience. Let us
denote π1(νt ) by μt for every t ∈ [0, T ]. Let s < t , with s ∈ [0, T ] ∩ Q and
t ∈ [0, T ]. Thanks to the minimality property satisfied by (zτn , vτn ), the fact that
zτn (s) � zτn (t) almost everywhere in �, and the triangle inequality for D, we get

W(zτn (s), e(vτn (s)))

� W(zτn (t), e(vτn (t) − ϕ(t) + ϕ(s))) + D(zτn (s), zτn (t))

+Rn(s, t), (5.22)
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where now

Rn(s, t) := W(zτn (t), e(vτn (t) + ϕτn (s) − ϕτn (t)))

−W(zτn (t), e(vτn (t) − ϕ(t) + ϕ(s))).

As in Section 5.3, it is easy to see that Rn(s, t) → 0 as n → ∞.
Since s ∈ [0, T ] ∩ Q, we have

δ(zτn (s),e(vτn (s))) ⇀ νs 2r -weakly* as n → ∞,

δ(
zτ

nt
k
(t),e(vτ

nt
k
(t))

) ⇀ νt 2r -weakly* as k → ∞, (5.23)

where nt
k is the subsequence chosen in Section 5.4, if t /∈ [0, T ] ∩ Q.

Hence, passing to the limit in inequality (5.22) we get

〈W, νs〉 � 〈W, νt 〉 + D(μs, μt ) −
∫ t

s
〈σ(τ), e(ϕ̇(τ ))〉 dτ + R(s, t), (5.24)

where

R(s, t) :=
∫ t

s

{∫
�×R×Rd×d

[
− ∂W

∂ε
(θ, ε + e(ϕ(τ) − ϕ(t))) + ∂W

∂ε
(θ, ε)

]

:e(ϕ̇(τ )) dνt (x, θ, ε)

}
dτ.

By changing the choice of the subsequence in (5.23), we obtain inequality (5.24)
for s ∈ [0, T ] and t ∈ [0, T ] ∩ Q.

Now we use a measure theoretic result (see [10], or [9, Lemma 4.12] for a
detailed proof), which allows us to approximate a Lebesgue integral by Riemann
sums. For the reader’s convenience we recall the statement of this result in the
formulation of [12].

Lemma 5. Let X be a Banach space, and let F : [0, t] → X be a Bochner inte-
grable function. Then, there exists a sequence of partitions S j := {si

j , 0 � i �
n j }, j ∈ N of the interval [0, t], with

0 = s0
j < · · · < s

n j−1
j < s

n j
j = t,

s1
j � 1/j, t − s

n j −1
j � 1/j, (5.25)

si
j − si−1

j = 1/j for i = 2, . . . , n j − 1, (5.26)

such that

lim
j

n j∑
i=1

∫ si
j

si−1
j

‖F(si
j ) − F(τ )‖ dτ = 0.



Young-Measure Quasi-Static Damage Evolution 447

We apply this Lemma to the functional defined by

F : [0, t] � τ �→ (e(ϕ̇(τ )), 〈σ(τ), e(ϕ̇(τ ))〉) ∈ L2(�; R
d) × R

in order to find a sequence of partitions S j of [0, t] satisfying requirements (5.25)
and (5.26), and such that

lim
j

n j∑
i=1

∫ si
j

si−1
j

‖e(ϕ̇(si
j ) − ϕ̇(τ ))‖2 dτ = 0, (5.27)

lim
j

n j∑
i=1

∫ si
j

si−1
j

|〈σ(si
j ), e(ϕ̇(si

j ))〉 − 〈σ(τ), e(ϕ̇(τ ))〉| dτ = 0. (5.28)

Whenever both si−1
j and si

j belong to [0, T ] \ Q, we consider t i−1
j ∈

(si−1
j , si−1

j + 1/j2) ∩ Q, so that the estimate (5.24) holds true for si−1
j , t i−1

j and

t i−1
j , si

j . Hence we get

〈W, νsi−1
j

〉 � 〈W, νsi
j
〉 + D(μsi−1

j
, μt i−1

j
) + D(μt i−1

j
, μsi

j
)

−
∫ si

j

si−1
j

〈σ(si
j ), e (ϕ̇(τ ))〉 dτ −

∫ t i−1
j

si−1
j

〈(σ (t i−1
j ) − σ(si

j )), e (ϕ̇(τ ))〉 dτ

+R(si−1
j , t i−1

j ) + R(t i−1
j , si

j ).

Summing up with respect to i and using (E0), we get

W(z0, e(v0)) − 〈W, νt 〉 − Diss(ν; 0, t)

� −
i j∑

i=1

∫ si
j

si−1
j

〈σ(si
j ), e(ϕ̇(τ ))〉 dτ −

i j∑
i=1

∫ t i−1
j

si−1
j

〈(σ (t i−1
j ) − σ(si

j )), e(ϕ̇(τ ))〉 dτ

+
i j∑

i=1

[R(si−1
j , t i−1

j ) + R(t i−1
j , si

j )].

By arguing as in [11, Lemma 7.5], we deduce that

i j∑
i=1

[R(si−1
j , t i−1

j ) + R(t i−1
j , si

j )] → 0 as j → ∞.

We now use Hölder’s inequality and the fact that supt ‖σ(t)‖2 is bounded by esti-
mate (5.11) in order to deduce that

∣∣∣∣
i j∑

i=1

∫ t i−1
j

si−1
j

〈(σ (t i−1
j ) − σ(si

j )), e(ϕ̇(τ ))〉 dτ

∣∣∣∣ → 0 as j → ∞.
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We have
∣∣∣∣

i j∑
i=1

∫ si
j

si−1
j

〈σ(si
j ), e(ϕ̇(τ ))〉 dτ −

∫ t

0
〈σ(τ), e(ϕ̇(τ ))〉 dτ

∣∣∣∣

�
∣∣∣∣

i j∑
i=1

∫ si
j

si−1
j

〈σ(si
j ), e(ϕ̇(τ ))〉 dτ −

i j∑
i=1

∫ si
j

si−1
j

〈σ(si
j ), e(ϕ̇(si

j ))〉 dτ

∣∣∣∣

+
∣∣∣∣

i j∑
i=1

∫ si
j

si−1
j

〈σ(si
j ), e(ϕ̇(si

j ))〉 dτ −
∫ t

0
〈σ(τ), e(ϕ̇(τ ))〉 dτ

∣∣∣∣. (5.29)

Using properties (5.27) and (5.28) it is now possible to show that the two last lines
of (5.29) converge to 0 as j → ∞, and hence we get

W(z0, e(v0)) +
∫ t

0
〈σ(τ), e(ϕ̇(τ ))〉 dτ � 〈W, νt 〉 + Diss(ν; 0, t),

which, together with inequality (5.21), gives (E4).

Remark 4. (Properties of the barycentre of the evolution) Let W be a convex func-
tion, ϕ ∈ AC([0, T ]; W 1,p(�; R

d)), p > 2, z0 ∈ L1(�; [0, 1]), v0 ∈ ϕ(0) +
H1

0 (�; R
d), and (νt )t∈[0,T ] be a damage quasi-static evolution. Let (zb(t), e(vb(t))

be the barycentre of νt , for every t . A natural question is whether (zb(t), e(vb(t))
can be seen as a quasi-static evolution, too. Let us focus on the stability condition.
Thanks to Jensen’s inequality, the global stability for the internal variable (E3),
satisfied by νt , gives

W(zb(t), e(vb(t))) � 〈W, νt 〉
� 〈W, (μ̃x ⊗ δe(ṽ(x)))〉 + ρ

[ ∫
�×R

θ dμt (x, θ) −
∫

�×R

θ dμ̃(x, θ)

]
,

for every μ̃ with μt � μ̃ and every ṽ ∈ ϕ(t) + H1
0 (�; R

d). In particular, let us
consider μ̃ := δ z̃ , for z̃ ∈ L1(�); we get

W(zb(t), e(vb(t))) � W(z̃, e(ṽ)) +
∫

�

ρ(zb(t) − z̃) dx,

whenever μt � δ z̃ . Since μt � δ z̃ implies zb(t) � z̃ almost everywhere in � (see
Remark 1), we get

W(zb(t), e(vb(t))) � W(z̃, e(ṽ)) + D(zb(t), z̃). (5.30)

Unfortunately, as observed in Remark 1, it may happen that z̃ � zb(t) almost every-
where in �, but μt � δ z̃ . Therefore, the minimality condition (5.30) is true, again,
only for a restricted class of competitors z̃ (specifically, for those with μt � δ z̃),
and is not the desired complete stability property.
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Appendix

In this appendix, we prove a result which has been used in the proof of Theorem 2 in
order to construct a discrete version of a Young measure coupling two other given
measures.

Theorem 5. (Matrix reconstruction) Given fixed n ∈ N, let (Ai )
n
i=1, (B j )

n
j=1 be

two vectors in [0, 1]n satisfying the following conditions:

k∑
i=1

Ai �
k∑

j=1

B j for every k � n, (6.1)

n∑
i=1

Ai =
n∑

j=1

B j . (6.2)

Then there exist a matrix (Ci j )
n
i, j=1 with entries in [0, 1] such that

n∑
i=1

Ci j = B j , (6.3)

n∑
j=1

Ci j = Ai , (6.4)

Ci j = 0 if i < j . (6.5)

The following lemma will be used to prove Theorem 5, by induction.

Lemma 6. (Iteration) Given two vectors (Ai )
n
i=1 and (B j )

n
j=1 in [0, 1]n satisfying

assumptions (6.1) and (6.2), there exists a vector (Ci1)
n
i=1 in [0, 1]n such that

C11 = A1, (6.6)

Ci1 � Ai for every i, (6.7)
n∑

i=1

Ci1 = B1, (6.8)

k∑
i=2

(Ai − Ci1) �
k∑

j=2

B j , for every 2 � k � n, (6.9)

n∑
i=2

(Ai − Ci1) =
n∑

j=2

B j . (6.10)

Proof. According to (6.6), let us recursively define

C11 := A1, Ci1 := Ai −
[

Ai −
(

B1 −
i−1∑
k=1

Ck1

)]+
, for i > 1.
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We observe that B1 − C11 = B1 − A1 � 0 by assumption (6.1), and that for i > 2

B1 −
i−1∑
k=1

Ck1

= B1 −
i−2∑
k=1

Ck1 − Ci−1,1

= B1 −
i−2∑
k=1

Ck1 −
{

Ai−1 −
[

Ai−1 −
(

B1 −
i−2∑
k=1

Ck1

)]+}

= −
[

Ai−1 −
(

B1 −
i−2∑
k=1

Ck1

)]
+

[
Ai−1 −

(
B1 −

i−2∑
k=1

Ck1

)]+

= 0 ∨
{

−
[

Ai−1 −
(

B1 −
i−2∑
k=1

Ck1

)]}
� 0.

In particular, we have Ai − (B1 − ∑i−2
k=1 Ck1) � Ai and 0 � Ci1 = Ai − [Ai −

(B1 −∑i−2
k=1 Ck1)]+ � Ai � 1. Hence, Ci1 ∈ [0, 1] for every i , and condition (6.7)

holds true.
Now, we show that there exists i such that Ci1 = B1 − ∑i−1

k=1 Ck1. By contra-
diction, let us suppose that for every i = 1, . . . , n we have Ci1 = Ai and hence
Ai < B1 − ∑i−1

k=1 Ck1. In particular, thanks to assumption (6.2), we have

An < B1 −
n−1∑
k=1

Ck1 = B1 −
n−1∑
k=1

Ak = B1 −
n∑

k=1

Bk + An = −
n∑

k=2

Bk + An,

which is a contradiction since B j � 0 for every j . Hence, there exists ī such

that Aī1 = B1 − ∑ī−1
k=1 Ck1. This implies that Ci1 = 0 for every i > ī and that∑n

i=1 Ci1 = ∑ī
i=1 Ci1 = ∑ī−1

i=1 Ci1 + B1 − ∑ī−1
i=1 Ci1 = B1, so condition (6.8) is

satisfied.
Using C11 = A1 and (6.8), we obtain condition (6.10). Indeed, we have

n∑
i=2

(Ai − Ci1) =
n∑

i=1

Ai −
n∑

i=1

Ci1 =
n∑

i=1

Ai − B1 =
n∑

j=1

B j − B1 =
n∑

j=2

B j .

It remains only to show inequality (6.9). We prove it by induction on k. For k = 2,
we have A2−C21 = [A2−(B1−A1)]+ = [A1+A2−B1]+ = 0∨[A1+A2−B1] �
0 ∨ B2 = B2, thanks to assumption (6.1). Let us now assume that inequality (6.9)
holds for k − 1. Thanks to condition (6.7) and assumption (6.1), we have

k∑
i=2

(Ai − Ci1) =
k−1∑
i=2

(Ai − Ci1) + Ak − Ck1
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=
k−1∑
i=2

(Ai − Ci1) +
[

Ak −
(

B1 −
k−1∑
i=1

Ci1

)]+

=
k−1∑
i=2

(Ai − Ci1) +
[
0 ∨

(
Ak − B1 +

k−1∑
i=1

Ci1

)]

�
k−1∑
i=2

(Ai − Ci1) ∨
( k∑

i=1

Ai − B1

)
�

k−1∑
i=2

(Ai − Ci1) ∨
k∑

j=2

B j ;

the inductive hypothesis implies that
∑k−1

i=2 (Ai − Ci1) �
∑k−1

j=2 B j �
∑k

j=2 B j ,
and hence we can conclude that (6.9) holds true for every k � 2. ��
We are now able to prove Theorem 5.

Proof of Theorem 5. For j = 1 we define Ci1 as in Lemma 6. For 2 � j � n,
we repeat the construction of Lemma 6, with (Ai )

n
i=1, (B j )

n
j=1 substituted by the

vectors (Ai −∑ j−1
k=1 Cik)

n
i= j and (Bk)

n
k= j . Thanks to properties (6.9) and (6.10) we

can prove by induction that the vectors (Ai − ∑ j−1
k=1 Cik)

n
i= j and (Bk)

n
k= j satisfy

the assumption of the lemma. For i < j , we define Ci j := 0, so that condi-
tion (6.5) is satisfied. Due to identity (6.8), condition (6.3) holds true for every j .
Thanks to this construction, we have Cii = Ai − ∑i−1

k=1 Cik for every i . In partic-
ular,

∑n
j=1 Ci j = ∑i

j=1 Ci j = Cii + ∑i−1
j=1 Ci j = Ai , for every i , and therefore

property (6.4) is fulfilled. ��

References

1. Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in Sobolev and BV
spaces. Applications to PDEs and optimization. MPS/SIAM Series on Optimization, 6.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathemat-
ical Programming Society (MPS), Philadelphia, PA, 2006

2. Babadjian, J.-F.: A quasi-static evolution model for the interaction between fracture
and damage. Arch. Rational Mech. Anal. 200, 945–1002 (2011)

3. Bouchitté, G., Mielke, A., Roubícek, T.: A complete-damage problem at small
strains. ZAMP Z. Angew. Math. Phys. 60, 205–236 (2009)

4. Cagnetti, F., Toader, R.: Quasistatic crack evolution for a cohesive zone model with
different response to loading and unloading: a Young measures approach. ESAIM Con-
trol Optim. Calc. Var. 17, 1–27 (2011)

5. De Souza Neto, E.A., Peric, D., Owen, D.R.J.: A phenomenological three-dimen-
sional rate-independent continuum damage model for highly filled polymers: formula-
tion and computational aspects. J. Mech. Phys. Solids 42, 1533–1550 (1994)

6. Dal Maso, G., De Simone, A., Mora, M.G., Morini, M.: A vanishing viscosity
approach to quasi-static evolution in plasticity with softening. Arch. Rational Mech.
Anal. 189, 469–544 (2008)

7. Dal Maso, G., De Simone, A., Mora, M.G., Morini, M.: Time-dependent systems of
generalized Young measures. Netw. Heterog. Media 2, 1–36 (2007)

8. Dal Maso, G., De Simone, A., Mora, M.G., Morini, M.: Globally stable quasi-static
evolution in plasticity with softening. Netw. Heterog. Media 3, 567–614 (2008)



452 Alice Fiaschi, Dorothee Knees & Ulisse Stefanelli

9. Dal Maso, G., Francfort, G., Toader, R.: Quasi-static crack growth in finite elastic-
ity. Preprint SISSA, Trieste, 2004. http://www.sissa.it/fa/

10. Dal Maso, G., Francfort, G., Toader, R.: Quasistatic crack growth in nonlinear
elasticity. Arch. Rational Mech. Anal. 176, 165–225 (2005)

11. Fiaschi, A.: A Young measure approach to quasi-static evolution for a class of material
models with nonconvex elastic energies. ESAIM Control Optim. Calc. Var. 15, 245–278
(2009)

12. Fiaschi, A.: Rate-independent phase transitions in elastic materials: a Young-measure
approach. Netw. Heterog. Media 5, 257–298 (2010)

13. Fonseca, I., Kinderlehrer, D., Pedregal, P.: Energy functionals depending on elastic
strain and chemical composition. Calc. Var. PDEs 2, 283–313 (1994)

14. Francfort, G., Garroni, A.: A variational view of partial brittle damage evolution.
Arch. Rational Mech. Anal. 182, 125–152 (2006)

15. Frémond, M.: Non-Smooth Thermomechanics. Springer, Berlin, 2002
16. Garroni, A., Larsen, C.: Threshold-based quasi-static brittle damage evolution. Arch.

Rational Mech. Anal. 194, 585–609 (2009)
17. Giaquinta, M., Giusti, E.: Quasi-minima. Ann. Inst. H. Poincaré (Analyse non line-

aire) 1, 79–107 (1984)
18. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, River Edge,

2003
19. Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences

in Sobolev spaces. J. Geom. Anal. 4, 59–90 (1994)
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