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Abstract. The celebrated Brezis–Ekeland principle [C. R. Acad. Sci. Paris Ser. A-B, 282
(1976), pp. Ai, A1197–A1198, Aii, and A971–A974] characterizes trajectories of nonautonomous
gradient flows of convex functionals as solutions to suitable minimization problems. This note extends
this characterization to doubly nonlinear evolution equations driven by convex potentials. The
characterization is exploited in order to establish approximation results for gradient flows, doubly
nonlinear equations, and rate-independent evolutions.
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1. Introduction. Let H denote a Hilbert space and T > 0 be some final refer-
ence time. Moreover, let φ : H → (−∞,∞] be convex, proper, and lower semicon-
tinuous, f ∈ L2(0, T ;H), and u0 ∈ D(φ) := {v ∈ H : φ(v) �= ∞}. The variational
principle formulated by Brezis and Ekeland [17, 18] and Nayroles [77, 78] (see also [9,
sect. 3.4]) characterizes solutions u ∈ H1(0, T ;H) of the gradient flow

(1.1) u′ + ∂φ(u) � f a.e. in (0, T ), u(0) = u0

(where the prime stands for time differentiation and ∂φ is the subdifferential of φ
in the sense of convex analysis; see below) as a global minimizer of the functional
J : H1(0, T ;H) → [0,∞] defined as

(1.2) J(u) :=

∫ T

0

(
φ(u) + φ∗(f − u′) − (f, u)

)
+

1

2
|u(T )|2 − 1

2
|u(0)|2 + |u(0) − u0|2.

Here (·, ·) is the scalar product in H, | · | is the corresponding norm, and we have
denoted by φ∗ the conjugate of φ, i.e., φ∗(w) := sup{(w, u) − φ(u), u ∈ H} for all
w ∈ H. Let us stress that φ(u) + φ∗(w) ≥ (w, u) for all u,w ∈ H and that the
equality holds iff w ∈ ∂φ(u). In particular, one readily checks that J(v) ≥ 0 for
all v ∈ H1(0, T ;H) and that J(u) = minJ = 0 iff u solves the gradient flow (1.1).
Namely, the unique solution to (1.1) and the unique minimizer of J coincide, and we
have the following.

Theorem 1.1 (Brezis and Ekeland [17, 18]). u solves (1.1) iff J(u) = 0.
The aim of this note is to extend the latter characterization result to the more

general situation of doubly nonlinear equations. In particular, let a second convex,
proper, and lower semicontinuous functional ψ : H → (−∞,∞] be given. We are
interested in solving for u ∈ W 1,p(0, T ;H), p ∈ [1,∞], the equation

(1.3) ∂ψ(u′) + ∂φ(u) � f a.e. in (0, T ), u(0) = u0,

where now f ∈ Lq(0, T ;H), with 1/p + 1/q = 1 (usual convention: 1/∞ = 0).
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1616 ULISSE STEFANELLI

The latter equation arises in a variety of different applicative contexts. In particu-
lar, inclusion (1.3) may represent a generalized balance relation in thermomechanics.
The reader is referred to Moreau [74, 75] and Germain [30] for some justification
and to Colli and Visintin [23] and Colli [22] for existence results for functionals ψ
of p-growth for 1 < p < ∞ (see also Barbu [12], Arai [3], and Senba [95] among
others). The linear-growth case p = 1 is strictly related with the modeling of rate-
independent evolution and has been considered in connection with elasto-plasticity
[25, 26, 58, 59, 60, 61], damage [68], brittle fractures [27], delamination [56], ferroelec-
tricity [73], shape-memory alloys [67, 71, 72], and vortex pinning in superconductors
[94]; see Mielke [62] for a comprehensive survey of mathematical results.

We shall make precise problem (1.3) by introducing an auxiliary function. Namely,
we consider (u, v) ∈ W 1,p(0, T ;H) × Lq(0, T ;H) such that

v ∈ ∂ψ(u′) a.e. in (0, T ),(1.4)

v + ∂φ(u) � f a.e. in (0, T ),(1.5)

u(0) = u0.(1.6)

The above relations have a clear mechanical interpretation. By letting u represent the
displacement of a body from its reference configuration, φ can be interpreted as the
corresponding energy, and ψ stands for the related dissipation potential. In particular,
relation (1.5) expresses the balance among the system of conservative forces ∂φ(u),
the dissipative (viscous) force v, and the external load f . On the other hand, relation
(1.4) consists of a multivalued constitutive relation for the dissipative forces.

Let now the functional I : W 1,p(0, T ;H) × Lq(0, T ;H) → [0,∞] be defined as

I(u, v) :=

(∫ T

0

(
ψ(u′) + ψ∗(v) − (f, u′)

)
+ φ(u(T )) − φ(u0)

)+

+

∫ T

0

(
φ(u) + φ∗(f − v) − (f − v, u)

)
+ |u(0) − u0|2.(1.7)

Note that, exactly as for J , no derivatives of the potentials appear in the definition
of I, making its formulation suited for nonsmooth situations.

The key point of this note is to check that solutions of (1.4)–(1.6) are precisely
the (possibly nonunique) minimizers of the nonnegative functional I. In particular,
we prove the following.

Theorem 1.2. (u, v) solves (1.4)–(1.6) iff I(u, v) = 0.
Let us explicitly remark that Theorem 1.2 implies the Brezis–Ekeland character-

ization of Theorem 1.1; namely, the present analysis extends the former. In order to
prove this fact, some care has to be used since in the quadratic case ψ(·) = | · |2/2
the functionals I(u, u′) and J(u) do not coincide. Precisely, we shall define K :
H1(0, T ;H) → [0,∞] by

(1.8) K(u) := I(u, u′) =

(∫ T

0

(
|u′|2 − (f, u′)

)
+ φ(u(T )) − φ(u0)

)+

+ J(u).

Theorem 1.1 will follow from Theorem 1.2 once we check that K and J have the same
minimizer. This is exactly the point of the following.

Lemma 1.3. K(u) = 0 iff J(u) = 0.
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Indeed, by letting J(u) = 0 we shall prove that K(u) = 0 (the converse implication
being obvious). Since u is a solution to (1.1) by Theorem 1.1, the chain rule [16, Lem.
3.3, p. 73] yields

φ(u(T )) − φ(u0) =

∫ T

0

d

dt
φ(u) =

∫ T

0

(f − u′, u′).

Hence, the positive part in (1.8) is 0, and K(u) = J(u) = 0.
The functional J is convex and lower semicontinuous with respect to the weak

topology of H1(0, T ;H). Hence, one is tempted to exploit the Brezis–Ekeland char-
acterization of Theorem 1.1 in order to obtain solutions to the gradient flow (1.1) by
applying the direct method to J . This strategy is, however, much more involved than
the classical maximal-monotone operator techniques (see Brezis [16]). The difficulty
arises from the fact that one is not just asked to minimize J but also to prove that
the minimum is 0 (the difficulty of proving the existence of a minimizer for J without
using the equation was already pointed out in [18, Rem. 1]). Incidentally, note that J
may fail to be coercive with respect to the weak topology of H1(0, T ;H) unless φ∗ has
at least a quadratic growth and hence φ is quadratically bounded (take φ∗(·) = | · |,
f = 0, u0 = 0, and un to be any W 1,1(0, T ;H)-bounded sequence with |un| ≤ 1
and u′

n unbounded in L2(0, T ;H)). On the other hand, K is clearly convex, lower
semicontinuous, and coercive with respect to the weak topology of H1(0, T ;H).

Conditional existence results for the gradient flow (1.1) by means of the direct
method were first obtained by Rios [85, 88] (see also [86, 87]). Later on, Auch-
muty [10] proved that in the controlled-growth case the minimum problem can be
reformulated as a saddle point problem for which the minimax value 0 is achieved
(see also [8]). Again in the controlled-growth case and by assuming φ to be contin-
uously differentiable, Roub́ıček [90] directly checked that the optimality conditions
imply (1.1) (see also the recent monograph [91, sect. 8.10]). Finally, the full extent of
maximal-monotone methods has been recovered via the Brezis–Ekeland approach by
Ghoussoub and Tzou [39]. In the latter paper, the authors eventually overcome the
controlled-growth assumption and recast the problem within the far-reaching theory of
(anti)self-dual Lagrangians by Ghoussoub [35, 34, 31, 32, 33, 37, 41, 40] (see also the
monograph [36]). We mention some further results by Ghoussoub and McCann [38]
for quadratic perturbations of convex functionals and the analysis of the long-time
dynamics of autonomous gradient flows by Lemaire [51].

Our main focus here is, however, not on existence but rather on the application
of the characterization result of Theorem 1.2 to the analysis of general approximation
issues. Since solutions and minimizers of the respective functionals coincide, a quite
natural idea in order to frame an abstract approach to limiting procedures is that of
considering the corresponding approximating minimum problems via Γ-convergence
[43, 24]. We shall apply this perspective and generalize some known approximation
results for both gradient flows (section 6) and doubly nonlinear equations (section 7).
Moreover, we obtain a new proof of a convergence result by Mielke, Roub́ıček, and
Stefanelli [69] for the case of rate-independent problems in section 8.

The key step in the direction of approximations is a suitable Γ-lim inf tool settled
in the frame of Young measures with values in separable and reflexive Banach spaces
(see subsection 4.2). Let us mention that this perspective has already been considered
by Pedregal [81, 82] and Michaille and Valadier [57] in the frame of Sobolev spaces.
Here, moving from some recent version in weak topologies of the fundamental result
by Balder [11, Thm. 1], we deduce a useful tool in order to pass to lower limits in
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1618 ULISSE STEFANELLI

sequences of integral functionals whose integrands fulfill a suitable Γ-lim inf inequality.
As a by-product, we obtain some generalization of former results by Salvadori [92,
Thm. 3.1].

By applying the above-mentioned approximation results, we show in subsection
7.1 the existence of solutions for a class of doubly nonlinear equations by passing to the
limit via Theorem 1.2 within a suitable class of regularized problems. In particular,
we recover by means of a variational technique a former existence result by Colli and
Visintin [23, Thm. 2.1].

Let us mention that some refined version of the functional I and Theorem 1.2 is
discussed in [103] for the specific situation of linearized elastoplasticity with hardening.
In particular, the (classical) well-posedness theory and the (more recent) convergence
for time and space discretizations [47] is there recovered by means of a variational
technique.

Let us close this introduction by observing that, besides the Brezis–Ekeland prin-
ciple, a variety of global variational principles for dissipative evolutions have already
been proposed. We mention Biot’s work on irreversible thermodynamics [15] and
Gurtin’s principle for viscoelasticity and elastodynamics [44, 45, 46] among many
others (see also the survey in Hlaváček [48]). We shall not attempt to give here a
comprehensive report on the literature but rather concentrate on the specific case of
doubly nonlinear evolutions. In this concern, the reader is referred to Visintin [105],
where generalized solutions are obtained as minimal elements of a certain partial-order
relation on the trajectories, and Mielke and Ortiz [63] (see also [70]), where solutions
in the rate-independent case are recovered as suitable limits of relaxed global mini-
mization problems.

Remark 1.4. The formulation in (1.2) is not the original one but is rather some
modification due to Rockafellar (see again [18]) also considered in Ghoussoub and
Tzou [39].

2. Characterization. The Brezis–Ekeland characterization of Theorem 1.1
makes no essential use of the Hilbert-space structure. Hence, let us move from the
very beginning to the reflexive Banach-space framework and start by enlisting our
assumptions:

(A1) p ∈ [1,∞], 1/p+1/q = 1, and H is a real reflexive Banach space with norm
| · |. We shall use the symbol (·, ·) for the duality pairing between H∗ (dual)
and H.

(A2) φ, ψ : H → (−∞,∞] are proper, convex, and lower semicontinuous.
(A3) f ∈ Lq(0, T ;H∗) and u0 ∈ D(φ) := {v ∈ H : φ(v) �= ∞}.
The subdifferentials occurring in the formulation of the Cauchy problem (1.4)–

(1.6) are now acting from H to H∗ being defined as

w ∈ ∂φ(z) iff z ∈ D(φ) and (w, x− z) ≤ φ(x) − φ(z) ∀x ∈ H

and analogously for ∂ψ. Notations have been chosen in such a way that the definition
of the functional I in (1.7) still makes sense in the above Banach-space setting. For
the sake of clarity, we shall restate here our main result.

Theorem 2.1. Under assumptions (A1)–(A3), the pair (u, v) solves (1.4)–(1.6)
iff I(u, v) = 0.

The proof of Theorem 2.1 relies on a suitable Banach version of the chain rule
[16, Lem. 3.3, p. 73]. We state it here for the sake of completeness and provide a
direct proof.
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Proposition 2.2 (chain rule). Under assumption (A1), let φ : H → (−∞,∞] be
proper, convex, and lower semicontinuous, u ∈ W 1,p(0, T ;H), and w ∈ Lq(0, T ;H∗)
be such that w ∈ ∂φ(u) almost everywhere in (0, T ). Then t 
→ φ(u(t)) is absolutely
continuous and

φ(u(t)) − φ(u(s)) =

∫ t

s

(z, u′) ∀0 ≤ s ≤ t ≤ T,

for all z ∈ Lq(0, T ;H∗), with z ∈ ∂φ(u) almost everywhere in (0, T ).
Proof. Let us assume from the very beginning that both H and H∗ are strictly

convex (H can be equivalently renormed in such a way that this holds [5, 6]). We let
wε := ∂φε(u) for ε > 0, where φε is the Yosida approximation of φ (see [13, Prop. 1.1,
p. 42] for definition and properties). Since φε is Gâteaux differentiable [13, Thm. 2.2,
p. 57] we have

(2.1) φε(u(t)) − φε(u(s)) =

∫ t

s

(wε, u
′) ∀0 ≤ s ≤ t ≤ T.

Moreover, one has |wε|∗ ≤ |w◦|∗ ≤ |w|∗ almost everywhere in (0, T ), where | · |∗
is the norm of H∗ and w◦ := (∂φ(u))◦ is the element of minimal norm in ∂φ(u).
Hence, for all t ∈ (0, T ) such that |wε(t)|∗ ≤ |w◦(t)|∗ ≤ |w(t)|∗, one can extract a
not relabeled (and a priori depending on t) weakly convergent subsequence wε(t). On
the other hand, by using [13, Prop. 1.1, p. 42] we have wε(t) → w◦(t) weakly in H∗.
In particular, the whole sequence wε(t) converges, and we have wε → w◦ weakly in
H∗ pointwise almost everywhere in (0, T ). By exploiting the convergence of Yosida
approximations and the dominated convergence theorem and by passing to the limit
as ε → 0 in (2.1), we prove that t 
→ φ(u(t)) is absolutely continuous on [0, T ].

Let now t ∈ (0, T ) be a point, where t 
→ φ(u(t)) is differentiable and u(t) ∈
D(∂φ) := {v ∈ H : ∂φ(v) �= ∅}, and let z ∈ ∂φ(u(t)). Then

(z, x− u(t)) ≤ φ(x) − φ(u(t)) ∀x ∈ H.

By choosing x = u(t±h) for h > 0 and passing to the limit as h → 0 we readily check
that

d

dt
φ(u(t)) = (z, u′(t)),

and the assertion follows.
Proof of Theorem 2.1. Let (u, v) ∈ W 1,p(0, T ;H)×Lq(0, T ;H∗) solve (1.4)–(1.6).

In particular, we have

φ(u) + φ∗(f − v) = (f − v, u), ψ(u′) + ψ∗(v) = (v, u′) a.e. in (0, T )

so that I(u, v) < ∞. Moreover, owing to Proposition 2.2, the map t 
→ φ(u(t)) is
absolutely continuous and

(2.2) φ(u(T )) − φ(u0) =

∫ T

0

d

dt
φ(u) =

∫ T

0

(f − v, u′).

Hence, since u(0) = u0,

I(u, v) =

(∫ T

0

(
ψ(u′) + ψ∗(v) − (v, u′)

))+

= 0.
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On the other hand, let (u, v) ∈ W 1,p(0, T ;H)×Lq(0, T ;H∗) be such that I(u, v) = 0.
The functional I results from the sum of three nonnegative contributions, namely,
the positive-part term, the integral term, and the term taking into account the initial
datum. As I(u, v) = 0, one has that all three terms must be 0. In particular, u(0) =
u0, and relation (1.5) holds. By using Proposition 2.2 and the already established
(1.5) we have ∫ T

0

(
ψ(u′) + ψ∗(v) − (v, u′)

)
=

∫ T

0

(
ψ(u′) + ψ∗(v) − (f, u′)

)
+ φ(u(T )) − φ(u0) ≤ 0,

where the last inequality follows from the fact that the positive-part term in I(u, v) is
0. Finally, as ψ(u′) +ψ∗(v) ≥ (v, u′) almost everywhere in (0, T ), relation (1.4) holds
as well.

Let us remark that the reflexive Banach frame of assumption (A1) includes the
original Hilbert-space setting of Theorem 1.1. In particular, the Brezis–Ekeland char-
acterization follows from Theorem 2.1 via Lemma 1.3.

Before going on, we shall comment that the alternative (and somehow more nat-
ural) choice Ĩ : W 1,p(0, T ;H) × Lq(0, T ;H) → [0,∞] given by

Ĩ(u, v) :=

∫ T

0

(
ψ(u′) + ψ∗(v) − (v, u′)

)
+

∫ T

0

(
φ(u) + φ∗(f − v) − (f − v, u)

)
+ |u(0) − u0|2

would lead to the same characterization of Theorem 2.1. On the other hand, the
presence of the term (v, u′) prevents the functional Ĩ from being lower semicontinuous
with respect to the natural topologies related to the doubly nonlinear problem (1.3)
(see below), making the functional Ĩ not interesting.

In the specific case of a Hilbert space H and a quadratic potential φ(·) = | · |2/2,
relation (1.3) takes the form

(2.3) ∂ψ(u′) + u � f a.e. in (0, T ), u(0) = u0.

By letting the functional Q : W 1,p(0, T ;H) → [0,∞] be defined as

Q(u) :=

∫ T

0

(
ψ(u′) + ψ∗(f − u) − (f, u′)

)
+

1

2
|u(T )|2 − 1

2
|u(0)|2 + |u(0) − u0|2,

one easily checks via Fenchel’s duality that u ∈ W 1,p(0, T ;H) solves (2.3) iff Q(u) =
minQ = 0. On the other hand, in the same spirit of (1.8), one could consider
R : W 1,p(0, T ;H) → [0,∞] as R(u) := I(u, f − u), and the analogue of Lemma 1.3
holds.

The case of a quadratic potential φ bears some relevance with respect to appli-
cations (see section 8 and [103]). Hence, we shall explicitly consider the functional Q
in the following.

3. Some extension. As already mentioned in the introduction, Theorem 2.1
is valid in some more general frames. In particular, we shall consider the doubly
nonlinear relation

(3.1) ∂ψ(u′(t)) + ∂ϕ(t, u(t)) � 0 for a.e. t ∈ (0, T ), u(0) = u0,
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where the time dependence is now included in ϕ and the second subdifferential is
referred to the variable u only.

Letting X be a separable metric space, we denote by B(X) its Borel σ-algebra,
by L the σ-algebra of the Lebesgue measurable subsets of (0, T ), and by L ⊗ B(X)
the respective product σ-algebra. A L ⊗ B(X)-measurable function g : (0, T ) ×X →
(−∞,∞] is said to be a normal integrand if

u 
→ g(t, u) is lower semicontinuous for a.e. t ∈ (0, T ).

The assumptions read as follows:
(A4) ψ : H → (−∞,∞] is convex, proper, and lower semicontinuous,

ϕ : [0, T ] ×H → (−∞,∞] is such that:
u 
→ ϕ(t, u) is proper and convex for a.e. t ∈ (0, T ),
for all separable subspaces X ⊂ H, the restriction of ϕ to [0, T ] × X is a
normal integrand,
there exists π : W 1,p(0, T ;H) → L1(0, T ) such that, for u ∈ W 1,p(0, T ;H)
and w ∈ Lq(0, T ;H∗), with w(t) ∈ ∂ϕ(t, u(t)) for a.e. t ∈ (0, T ), the map-
ping t 
→ ϕ(t, u(t)) is absolutely continuous and satisfies

ϕ(t, u(t)) − ϕ(s, u(s)) =

∫ t

s

(w, u′) +

∫ t

s

π(u) ∀0 ≤ s ≤ t ≤ T.(3.2)

(A5) u0 ∈ D(ϕ(0, ·)) := {v ∈ H : ϕ(0, v) �= ∞}.
Assumption (A4) implies via Pettis’ theorem that t 
→ ϕ(t, u(t)) is measurable

for all measurable t 
→ u(t).
As for the generalized chain rule stated in (A4), let us mention that π represents

a power of external actions since, at least formally, π = ∂tϕ (see also section 8 below).
The chain rule (3.2) frequently holds in practice. In particular, it holds in the smooth
case and if ϕ is a smooth perturbation of a convex function. The reader is referred to
[64, Prop. 2.6] for a result in the nonperturbative case.

We will consider solutions (u, v) ∈ W 1,p(0, T ;H) × Lq(0, T ;H∗) of the Cauchy
problem (see (1.4)–(1.6))

v ∈ ∂ψ(u′) a.e. in (0, T ),(3.3)

−v(t) ∈ ∂ϕ(t, u(t)) for a.e. t ∈ (0, T ),(3.4)

u(0) = u0.(3.5)

Hence, let us define the functional I acting on W 1,p(0, T ;H) × Lq(0, T ;H∗) as

I(u, v) :=

(∫ T

0

(
ψ(u′) + ψ∗(v) − π(u)

)
+ ϕ(T, u(T )) − ϕ(0, u0)

)+

+

∫ T

0

(
ϕ(·, u) + ϕ∗(·,−v) + (v, u)

)
+ |u(0) − u0|2,

where the duality ϕ∗ is taken with respect to the variable u only. The formulation of
Theorem 1.2 in this setting reads as follows.

Theorem 3.1. Under assumptions (A1) and (A4)–(A5), the pair (u, v) solves
(3.3)–(3.5) iff I(u, v) = 0.

Sketch of the proof. This argument follows along the same lines as that of Theorem
1.2. All solutions to (3.3)–(3.5) are easily proved to be minimizers of I by means of
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the chain rule (3.2). On the other hand, let (u, v) ∈ W 1,p(0, T ;H) × Lq(0, T ;H∗) be
such that I(u, v) = 0. Then one has u(0) = u0 and −v(t) ∈ ∂ϕ(t, u(t)) for almost
every t ∈ (0, T ). Again by (3.2) one gets∫ T

0

(
ψ(u′) + ψ∗(v) − (v, u′)

)
=

∫ T

0

(
ψ(u′) + ψ∗(v) − π(u)

)
+ ϕ(T, u(T )) − ϕ(0, u0) ≤ 0,

and the assertion follows.
Remark 3.2. Let us stress that the present situation of (3.1) is not directly

extending (1.3) as some extra time regularity is here exploited. As a matter of fact,
the case ϕ(t, u) = φ(u) − (f(t), u) is included in the frame of (A4) for the smooth
choice f ∈ W 1,q(0, T ;H∗) only.

Remark 3.3. We shall mention that the generalized situation of the equation

(3.6) ∂ψ(u(t), u′(t)) + ∂φ(t, u(t)) � 0 for a.e. t ∈ (0, T ), u(0) = u0,

where the functional ψ : H ×H → (−∞,∞] is convex in its second occurrence and
subdifferentials are taken with respect to second variables, has recently attracted a
good deal of attention. In particular (3.6) arises in connection with quasi-variational
problems and has been considered in Aso, Frémond, and Kenmochi [4], Mielke [62],
and Mielke, Rossi, and Savaré [66, 65]. The formulation of the above characterization
result in Theorem 3.1 could be easily tailored to the case of (3.6) as well as to even
more general situations (the nonlocal situations of [97, 98, 99, 100, 49], for instance)
with no particular intricacy.

Before closing this section, let us explicitly mention that the choice H Hilbert
space, p = 2, and ψ(·) = | · |2/2 in relation (3.1) give rise to the generalized gradient
flow

(3.7) u′(t) + ∂ϕ(t, u(t)) � 0 a.e. in (0, T ), u(0) = u0,

whose consideration has to be traced back to Peralba [83, 84]. We shall consider (3.7)
from the point of view of approximation in section 6 below. Let us explicitly observe
there that the extension of the functional K to the latter time-dependent situation is
K : H1(0, T ;H) → [0,∞] defined by

K(u) := I(u, u′) =

(∫ T

0

(
|u′|2 − π(u)

)
+ ϕ(T, u(T )) − ϕ(0, u0)

)+

+

∫ T

0

(
ϕ(·, u) + φ∗(·,−u′)

)
+

1

2
|u(T )|2 − 1

2
|u(0)|2 + |u(0) − u0|2.

4. Applications to approximation. We now apply the characterization re-
sults of Theorems 2.1 and 3.1 to the approximation of solutions of the gradient flows
(1.1) and (3.7) and of the doubly nonlinear equations (1.3) and (3.1). As already
mentioned in the introduction, we shall make here use of the notion of Γ-convergence.
The reader is referred to the monographs by Attouch [7] and Dal Maso [24] for some
comprehensive discussion of this topic as well as to subsection 4.1 for a (minimal)
selection of results to be used later.

Our aim will be to present suitable assumptions for the corresponding approxi-
mating functionals to be Γ-converging (or rather Mosco-converging; see below). More
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precisely, since Theorems 2.1 and 3.1 directly quantify the value of the minima to be 0,
what is actually needed for passing to limits are Γ-lim inf inequalities only. In subsec-
tion 4.2 we shall prepare a tool in order to deal with these kinds of problems in a quite
general fashion. In particular, we will provide a Γ-lim inf result by exploiting the the-
ory of Young measures for weak topologies in separable (and reflexive) Banach spaces.
The application of the latter to the current convex situation is discussed in subsec-
tion 4.3 along with some relation with the former analysis by Salvadori [92]. Then in
section 5 we systematically apply the Γ-lim inf tool to the functionals introduced in
sections 1 and 3 and obtain the corresponding Γ-lim inf inequalities. Convergence re-
sults will then follow by simply checking the uniform coercivity of the approximating
functionals with respect to suitable topologies. In the case of the gradient flows (1.1)
and (3.7), we will show in section 6 that a natural choice is that of the weak topology
in H1(0, T ;H) (note that K is lower semicontinuous and coercive with respect to the
latter). This leads us to generalize some known convergence results (see [7, sect. 3.9.2,
p. 386]).

In the case of the doubly nonlinear equations (1.3) and (3.1) for p ∈ (1,∞), we
will provide in section 7 some conditions implying uniform coercivity with respect to
the topology

(4.1) T (p) = (weak-W 1,p(0, T ;H) + strong-Lp(0, T ;H)) × weak-Lq(0, T ;H∗)

(recall that I is lower semicontinuous with respect to T (p)). Hence, under suitable
nondegeneracy and growth-type assumptions (see (7.1)–(7.2)), section 7 leads to some
generalization of former convergence results by Aizicovici and Yan [1].

The situation p = 1 is much more delicate, and we shall deal with it in the
specific yet relevant case of rate-independent problems in section 8. By focusing on
the functional frame of the recent well-posedness theory by Mielke and Rossi [64], we
shall provide a new proof of a convergence result by Mielke, Roub́ıček, and Stefanelli
[69], although in a simplified setting. Finally, the special case of (2.3) is discussed.

4.1. Preliminaries on Mosco convergence. Recall that H is a real reflexive
Banach space. By letting φn, φ : H → (−∞,∞] be convex, proper, and lower semi-
continuous, we say that the sequence φn is uniformly proper iff there exists a bounded
sequence un such that un ∈ D(φn). Moreover, we say that φn → φ in the Mosco
sense [7, 76] iff, for all u ∈ H,

φ(u) ≤ lim inf
n→∞

φn(un) ∀un → u weakly in H,

∃un → u strongly in H such that φ(u) = lim sup
n→∞

φn(un).

In particular, φn → φ in the Mosco sense iff φn → φ in the sense of Γ-convergence
with respect to both the weak and the strong topology in H. Let us stress that if
φn → φ in the Mosco sense, then the sequence φn is uniformly proper. One has the
following characterization.

Lemma 4.1. The following are equivalent:

(i) φn → φ in the Mosco sense in H,

(ii)

⎧⎪⎨
⎪⎩

φ(u) ≤ inf
{

lim inf
n→∞

φn(un) : un → u weakly in H
}
,

φ∗(u) ≤ inf
{

lim inf
n→∞

φ∗
n(un) : un → u weakly in H∗},

and the sequence φ∗
n is uniformly proper.
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Proof. Assumption (i) is equivalent to φ∗
n → φ∗ in the Mosco sense [7, Thm. 3.18,

p. 295]. Hence (ii) follows by the definition of Mosco convergence.
The converse implication (ii) ⇒ (i) is more involved. Let us set for convenience,

for all u ∈ H and v ∈ H∗,

φ�(u) := min
{

lim sup
n→∞

φn(un) : un → u strongly in H
}
,

φ�(v) := inf
{

lim inf
n→∞

φ∗
n(vn) : vn → v weakly in H∗},

Owing to [7, Thm. 1.13, p. 29], the minimum in the definition of φ� is always attained
in (−∞,∞]. In particular, for all u ∈ H,

∃un → u strongly in H such that φ�(u) = lim sup
n→∞

φn(un).(4.2)

The sequence φ∗
n is uniformly proper, and we can apply [7, Thm. 3.7, p. 271] in order

to deduce that φ� = (φ�)
∗. Hence, since by the second part of (ii) we have φ∗ ≤ φ�,

we obtain by duality that φ� = (φ�)
∗ ≤ φ. Finally, the first part of (ii) and (4.2) yield

(i).
Let us comment that, for the sake of establishing the following approximation re-

sults, only the implication (i) ⇒ (ii) is exploited. We stated the above characterization
in order to underline the fact that the Mosco convergence is the natural requirement
for passing to the lim inf in the sum of functionals and their respective duals (which
is precisely our situation).

4.2. A general Γ-lim inf result. We shall now discuss a technical tool which
will be at the basis of the forthcoming analysis. In particular, we present here a
Γ-lim inf result in the frame of Young measures for weak topologies. The reader
is referred to Castaing, Raynaud de Fitte, and Valadier [20] for a comprehensive
discussion of Young measures on separable Banach spaces.

Recall that, by letting X be a separable metric space, a L ⊗ B(X)-measurable
function g : (0, T ) ×X → (−∞,∞] is said to be a normal integrand if

u 
→ g(t, u) is lower semicontinuous for a.e. t ∈ (0, T ).

We denote by M(0, T ;X) the set of all L-measurable functions w : (0, T ) →
X. Following [11], a sequence wn ∈ M(0, T ;X) is said to be tight if there exists a
nonnegative normal integrand g such that

{w ∈ X : g(t, w) ≤ c} is compact for a.e. t ∈ (0, T ) and all c ≥ 0,(4.3)

and sup
n

∫ T

0

g(t, wn(t)) dt < ∞.(4.4)

In case X is a Banach space, a L⊗B(X)-measurable function h : (0, T )×X → (−∞,∞]
is called a weakly normal integrand if

(4.5) u 
→ h(t, u) is weakly lower semicontinuous for a.e. t ∈ (0, T ),

and a sequence un ∈ M(0, T ;X) is said to be weakly tight if there exists a nonnegative
weakly normal integrand h such that

lim
|u|→∞

h(t, u) = ∞ for a.e. t ∈ (0, T ),(4.6)

and sup
n

∫ T

0

h(t, un(t)) dt < ∞.(4.7)

We prepare a result which will turn out to be useful in the proof of Theorem 4.3.
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Lemma 4.2 (weak tightness implies tightness of the norms). Let H be a separable
and reflexive Banach space and un be weakly tight. Then |un| is tight in R.

Proof. Let h : (0, T ) ×H → [0,∞] be a weakly normal integrand fulfilling (4.6)–
(4.7), and define h̃ : (0, T ) × [0,∞] → [0,∞] as

(4.8) h̃(t, r) := inf
|w|≥r

h(t, w).

We shall prove that h̃ is a normal integrand and that

{r ≥ 0 : h̃(t, r) ≤ c} is compact for a.e. t ∈ (0, T ) and all c ≥ 0,(4.9)

and sup
n

∫ T

0

h̃(t, |un(t)|) dt < ∞.(4.10)

Ad measurability: One directly checks that, given α > 0, the set M = {(t, u) ∈
(0, T )×H : h(t, u) < α} belongs to L⊗B(H) and hence N = {(t, |u|) : (t, u) ∈ M} ∈
L⊗B([0,∞)). Note that, for all Borel sets A ∈ L⊗B([0,∞)), the set ∪(t,ρ)∈A{t}×[0, ρ]
belongs to L ⊗ B([0,∞)) as well. Now we have

h̃−1
(
(−∞, α)

)
= {(t, r) : ∃(t, u) ∈ M such that |u| ≥ r} =

⋃
(t,ρ)∈N

{t} × [0, ρ].

In particular h̃−1((−∞, α)) ∈ L ⊗ B([0,∞)), and h̃ is L ⊗ B([0,∞))-measurable.
Ad lower semicontinuity: We start by noting that r 
→ h̃(t, r) is nondecreasing

for all t ∈ (0, T ). Assume by contradiction that there exists t ∈ (0, T ) such that
u 
→ h(t, u) is lower semicontinuous while r → h̃(t, r) is not, namely, that there exist
an increasing sequence 0 ≤ rn → r and δ > 0 such that, for all n ∈ N,

(4.11) h̃(t, rn) + 2δ ≤ h̃(t, r).

Let now wn ∈ H be such that |wn| ≥ rn and h̃(t, rn) + δ ≥ h(t, wn) (such wn exist by
(4.8)). Then surely |wn| ≤ r as, if this was not the case, one would have

h(t, wn)
(4.8)

≥ h̃(t, r)
(4.11)

≥ h̃(t, rn) + 2δ ≥ h(t, wn) + δ.

Hence, we can extract a not relabeled subsequence wn weakly converging to some w
in H and compute

h(t, w)
(4.5)

≤ lim inf
n→∞

h(t, wn) ≤ lim
n→∞

h̃(t, rn) + δ
(4.11)

≤ h̃(t, r) − 2δ + δ < h̃(t, r),

contradicting the very definition (4.8). Namely, r 
→ h̃(t, r) is lower semicontinuous
for almost every t ∈ (0, T ).

As a consequence, the sets {(t, r) : h̃(t, r) ≤ c} are closed intervals for almost
every t ∈ (0, T ). Moreover, they are also bounded for almost every t ∈ (0, T ) due to
(4.7), and we have proved (4.9). Finally, one easily checks that

sup
n

∫ T

0

h̃(t, |un(t)|) dt ≤ sup
n

∫ T

0

h(t, u(t)) dt
(4.7)
< ∞,

and (4.10) follows.
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A parametrized measure on X is a collection ν = {νt}t∈(0,T ) of Borel probability
measures on X such that

t 
→ νt(B) is L-measurable ∀B ∈ B(X),

and the set of all parametrized measures is denoted by Y(0, T ;X).
Theorem 4.3 (Γ-lim inf tool). Let H be a separable and reflexive Banach space

and gn, g∞ : (0, T ) ×H → (−∞,∞] be weakly normal integrands such that

g∞(t, u) ≤ inf
{

lim inf
n→∞

gn(t, un) : un → u weakly in H
}

∀u ∈ H and for a.e. t ∈ (0, T ).(4.12)

Moreover let un be weakly tight. Then there exists a subsequence k 
→ nk and a
parametrized measure ν ∈ Y(0, T ;H) such that, for a.e. t ∈ (0, T ),

(4.13) νt is concentrated on the set

∞⋂
j=1

clw

(
{unk

(t) : k ≥ j}
)
,

where clw denotes the weak closure in H, and, whenever t 
→ g−nk
(t, unk

(t)) = max
{−gnk

(t, unk
(t)), 0} are uniformly integrable, namely,

lim
|A|→0

sup
k∈N

∫
A

g−nk
(t, unk

(t)) dt = 0

(the limit being restricted to Lebesgue measurable sets A ⊂ (0, T ); |A| denotes the
Lebesgue measure), we have

∫ T

0

(∫
H

g∞(t, ξ) dνt(ξ)

)
dt ≤ lim inf

k→∞

∫ T

0

gnk
(t, unk

(t)) dt.

Proof. The statement follows directly from the fundamental theorem by Balder
[11, Thm. 1] adapted to weak topologies along the same lines of Rossi and Savaré
[89, Thm. 3.2] (see also [64, Thm. B.1]). The idea is to rephrase the dependence of
the functionals from n ∈ N := N ∪ {∞} as an extra variable. As we shall see below,
condition (4.12) ensures that the augmented integrand is still normal. The only
difficulty arises from the fact that the weak topology of H is not globally metrizable
(apart from finite-dimensional cases). By following closely the proof of [89, Thm. 3.2],
we will circumvent this fact by considering the set

V :=
{
(u, r, n) ∈ H × R ×N : |u| ≤ r

}
⊂ H × R ×N

and endowing it with the metric

d(v1, v2) := |||u1 − u2|||2 + |r1 − r2| + | arctan(n1) − arctan(n2)|
∀vi = (ui, ri, ni) ∈ V, i = 1, 2.

In the latter, we have used the convention arctan(∞) = π/2, and, given a countable
dense subset wn of the unit ball in H∗, we have (classically) defined

|||u|||2 :=

∞∑
k=0

2−k|(wk, u)|2 ∀u ∈ H.
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Hence, (V, d) is a separable and complete metric space since

vk = (uk, rk, nk) → v = (u, r, n) in V iff

uk → u weakly in H, rk → r in R, and nk → n in N

(where N is endowed with the arctan metric). Let us remark that any bounded closed
set in (V, d) is compact with respect to the latter topology. Hence, all intersections of
closed balls of H × R ×N with V are Borel subsets of V , namely,

(4.14) B ∈ B(H × R ×N) ⇒ B ∩ V ∈ B(V ),

and any Borel measure on V can be trivially extended to a Borel measure on H×R×N .
We apply Balder’s theorem [11, Thm. 1] to the family vn = (un, |un|, n) which

turns out to be tight by Lemma 4.2 as N is compact. Hence, we find a subsequence
k 
→ nk and a parametrized measure μ = {μt}t∈(0,T ) ∈ Y(0, T ;V ) such that, for
almost every t ∈ (0, T ),

μt is concentrated on the set Λ(t) :=

∞⋂
j=1

clV

(
{vnk

(t) : k ≥ j}
)
,

namely, the set of V -limit points of vnk
(t).

Let now f : (0, T ) × V → (−∞,∞] be defined by

f(t, v) := gn(t, u) ∀v = (u, r, n) ∈ V, t ∈ (0, T ).

Given any L ∈ L, B ∈ B(H), and n ∈ N , by using (4.14) one checks that(
L×B × R × {n}

)
∩
(
(0, T ) × V

)
∈ L ⊗ B(V ).

Hence, we have (
L ⊗ B(H) × R × {n}

)
∩
(
(0, T ) × V

)
⊂ L⊗ B(V ).

On the other hand, for all a ∈ R,{
(t, v) : f(t, v) ≤ a

}
=

∞⋃
n=1

((
{(t, u) : gn(t, u) ≤ a} × R × {n}

)
∩
(
(0, T ) × V

))
∈ L ⊗ B(V ),

since all elements under the union sign are in L ⊗ B(V ). Hence, the function f is
L ⊗ B(V )-measurable. Moreover, f is a normal integrand. Indeed, let vk → v in V .
Then either nk = n definitely or nk → ∞. In the first case, lower semicontinuity
follows from the weak sequential lower semicontinuity of gn, whereas in the second
case it can be deduced from (4.12).

Since t 
→ f−(t, vnk
(t)) = g−nk

(t, unk
(t)) are uniformly integrable, again by [11,

Thm. 1] we have∫ T

0

(∫
V

f(t, ζ) dμt(ζ)

)
dt ≤ lim inf

k→∞

∫ T

0

f(t, vnk
(t)) dt

= lim inf
k→∞

∫ T

0

gnk
(t, unk

(t)) dt.(4.15)
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By recalling that Λ(t) ⊂ H × R × {∞} for all t ∈ (0, T ) and letting

νt(B) := μt

(
(B × R ×N) ∩ V

)
∀B ∈ B(H),

we obtain a parametrized measure ν = {νt}t∈(0,T ) ∈ Y(0, T ;H) which fulfills (4.13)
and is such that∫ T

0

(∫
V

f(t, ζ) dμt(ζ)

)
dt =

∫ T

0

(∫
H

g∞(t, ξ) dνt(ξ)

)
dt,

which, together with (4.15), entails the result.
Let us remark that, under the frame of Theorem 4.3, whenever un → u weakly

in Lp(0, T ;H) for some p ∈ [1,∞) (weakly star for p = ∞), then

(4.16) u(t) =

∫
H

ξ dνt(ξ) for a.e. t ∈ (0, T ).

This fact was already remarked in [89, Thm. 3.2] for p ∈ (1,∞) (and hence, for p = ∞
as well). As for p = 1, one can readily choose the weakly normal integrands

g(t, u) := (w(t), u) ∀u ∈ H, a.e. t ∈ (0, T ), with w ∈ L∞(0, T ;H∗),

and exploit Theorem 4.3 with the constant sequence gn = g (or [64, Thm. B.1]) in
order to conclude.

4.3. The Γ-lim inf result for normal convex integrands. Let us now specify
the result of Theorem 4.3 in the case of normal convex integrands gn, g∞ : [0, T ]×H →
(−∞,∞].

Corollary 4.4. Let p ∈ [1,∞], H be a separable and reflexive Banach space,
and gn, g∞ : (0, T ) × H → (−∞,∞] be normal convex integrands such that (4.12)
holds. Moreover, let un → u weakly in Lp(0, T ;H) (weakly star if p = ∞). Then,
whenever t 
→ g−n (t, un(t)) are uniformly integrable, we have

(4.17)

∫ T

0

g∞(t, u(t)) dt ≤ lim inf
n→∞

∫ T

0

gn(t, un(t)) dt.

Proof. Let j 
→ nj ∈ N be an increasing sequence. As un are uniformly bounded
in Lp(0, T ;H), the family unj

is weakly tight. Hence, by applying Theorem 4.3, we
may extract a further subsequence k 
→ njk such that

lim inf
k→∞

∫ T

0

gnjk
(t, unjk

(t)) dt ≥
∫ T

0

(∫
H

g∞(t, ξ) dνt(ξ)

)
dt

≥
∫ T

0

g∞(t, u(t)) dt,(4.18)

where the last inequality follows from (4.16) and Jensen’s inequality. Namely, for
all subsequences of un there exist further subsequences such that (4.18) holds. An
easy argument ensures that indeed (4.18) holds for the whole sequence gn(·, un(·)) as
well.

Let us now comment on the uniform integrability condition of Corollary 4.4.
First of all, it is clear that the latter holds if gn are uniformly bounded below. More
generally, one can consider the case

gn(t, u) ≥ −c0|u| − γ(t) for some c0 > 0, γ ∈ L1(0, T ),

∀u ∈ H, n ∈ N, for a.e. t ∈ (0, T ).(4.19)
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In fact, whenever un converges weakly in Lp(0, T ;H) (weakly star in p = ∞), the
functions t 
→ |un(t)| are uniformly integrable [28, Thm. 4, p. 104], and (4.19) entails
the uniform integrability of t 
→ g−n (t, un(t)).

We shall explicitly remark that, in case gn are independent of time, the lower
bound (4.19) follows directly from the condition (4.12). Indeed, owing to [7, Thm.
3.7, p. 271], by letting v ∈ D(g∗∞) be fixed, there exist vn such that vn → v strongly
in H∗ and lim supn→∞ g∗n(vn) = g∗∞(v). Then (4.19) follows with the choice

c0 = sup
n

|vn|∗, γ(t) = g∗∞(v) + 1.

In particular, we have the following.
Corollary 4.5 (gn independent of time). Let p ∈ [1,∞], H be a separable

and reflexive Banach space, and gn, g∞ : H → (−∞,∞] be convex, proper, and lower
semicontinuous such that (4.12) holds. Moreover, let un → u weakly in Lp(0, T ;H)
(weakly star if p = ∞). Then we have

(4.20)

∫ T

0

g∞(u(t)) dt ≤ lim inf
n→∞

∫ T

0

gn(un(t)) dt.

Before moving on, we remark that some result in the direction of Corollary 4.4
was already contained in the convergence analysis by Salvadori [92, Thm. 3.1]. The
latter was focused on establishing conditions under which the integral functionals

Gn(u) =

⎧⎨
⎩

∫ T

0

gn(t, u(t))dt if t 
→ g+
n (t, u(t)) ∈ L1(0, T ),

∞ otherwise

would Mosco-converge to the limit functional

G∞(u) =

⎧⎨
⎩

∫ T

0

g∞(t, u(t))dt if t 
→ g+
∞(t, u(t)) ∈ L1(0, T ),

∞ otherwise

(and analogously for G∗
n and G∗

∞, which are defined from g∗n and g∗∞, respectively).
The Mosco-convergence result in [92, Thm. 3.2] was obtained under some uniform
quantitative properness of the functionals. In particular, both sequences Gn and
G∗

n are asked to be uniformly proper on Lp(0, T ;H) and Lq(0, T ;H∗), respectively.
Moreover, by letting un and vn be the corresponding bounded sequences, the existence
of two functions f, f∗ ∈ L1(0, T ) such that

|gn(t, un(t))| ≤ f(t) and |g∗n(t, vn(t))| ≤ f∗(t) for a.e. t ∈ (0, T )

is required.
The frame of Corollary 4.4 is quite weaker, since we are not assuming any control

on the domains of the functionals but rather some standard uniform integrability of
negative parts of the integrands. Hence, by exploiting the characterization of Lemma
4.1 and restricting to the case where p ∈ (1,∞), we can obtain a refined version of
[92, Thm. 3.1] as follows.

Corollary 4.6. Let p ∈ (1,∞), H be a separable and reflexive Banach space,
and gn, g∞ : (0, T ) ×H → (−∞,∞] be normal convex integrands such that gn → g∞
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in the Mosco sense. Moreover, assume that

t → g−n (t, un(t)) and t → (g∗n)−(t, vn(t)) are uniformly integrable

∀(un, vn) → (u, v) weakly in Lp(0, T ;H) × Lq(0, T ;H∗),(4.21)

Gn and G∗
n are proper on Lp(0, T ;H) and Lq(0, T ;H∗), respectively,

and either Gn or G∗
n is uniformly proper.(4.22)

Then Gn → G∞ in the Mosco sense in Lp(0, T ;H) and G∗
n → G∗

∞ in the Mosco sense
in Lq(0, T ;H∗). In particular, both sequences Gn and G∗

n are uniformly proper.
Proof. Owing to (4.21), Corollary 4.4 gives the Γ-lim inf inequalities for Gn

and G∗
n. Owing to the properness of Gn and G∗

n, we have that (Gn)∗ = G∗
n and

(G∗
n)∗ = Gn [21, Thm. VII.7, p. 200]. Since Lp(0, T ;H) is reflexive, the assertion

follows from the uniform properness in (4.22) and Lemma 4.1.
In the same spirit of Corollary 4.5, whenever gn are independent of time, both

the uniform integrability condition (4.21) and the uniform properness condition (4.22)
are straightforward.

5. Lim inf inequalities. We shall now apply this functional convergence ma-
chinery to our problems. Throughout the remainder of the paper, we will assume
that

(A6) p ∈ [1,∞], 1/p + 1/q = 1, and
H is a real, separable, and reflexive Banach space.

As for the sequences of approximating functionals we will systematically ask that

t → g−n (t, un(t)) and t → (g∗n)−(t, vn(t)) are uniformly integrable

∀(un, vn) → (u, v) weakly (star) in Lp(0, T ;H) × Lq(0, T ;H∗)(5.1)

for the choices gn = φn, ψn, ϕn and admit the limiting cases p = 1,∞ as well.
Let us start from the case of the gradient flow (1.1). Assume that we are given

data φn, fn, and un
0 as in section 1, and define the corresponding approximating

functionals Jn,Kn : H1(0, T ;H) → [0,∞] for all u ∈ H1(0, T ;H) as

Jn(u) :=

∫ T

0

(
φn(u) + φ∗

n(fn − u′) − (fn, u)
)

+
1

2
|u(T )|2 − 1

2
|u(0)|2 + |u(0) − u0

n|2,

Kn(u) :=

(∫ T

0

(
|u′|2 − (fn, u

′)
)

+ φn(u(T )) − φn(u0
n)

)+

+ Jn(u).

We have the following.
Lemma 5.1 (lim inf inequality for Kn). Assume (A6), and let H be a Hilbert

space, φn → φ in the Mosco sense, fn → f strongly in L2(0, T ;H), u0
n → u0 in H,

and φn(u0
n) → φ(u0). Then, for all u ∈ H1(0, T ;H),

K(u) ≤ inf
{

lim inf
n→∞

Kn(un) : un → u weakly in H1(0, T ;H)
}
.

Proof. By applying Corollary 4.5 we readily check that∫ T

0

(
φ(u) + φ∗(f − u′)

)
≤ lim inf

n→∞

∫ T

0

(
φn(un) + φ∗

n(fn − u′
n)
)
.
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On the other hand, owing to the strong convergence of fn we have

∫ T

0

(fn, un) →
∫ T

0

(f, u) and

∫ T

0

(fn, u
′
n) →

∫ T

0

(f, u′),

and, by the pointwise weak convergences un(T ) → u(T ) and un(0) → u(0) in H and
the Mosco convergence of φn, one obtains

φ(u(T )) ≤ lim inf
n→∞

φn(un(T )) and

1

2
|u(T )|2 − 1

2
|u(0)|2 + |u(0) − u0|2 =

1

2
|u(T )|2 +

1

2
|u(0)|2 + |u0|2 − 2(u(0), u0)

≤ lim inf
n→∞

(
1

2
|un(T )|2 +

1

2
|un(0)|2 + |u0

n|2 − 2(un(0), u0
n)

)

= lim inf
n→∞

(
1

2
|un(T )|2 − 1

2
|un(0)|2 + |un(0) − u0

n|2
)
.

Finally, the assertion follows by lower semicontinuity.
In fact, an analogous result holds for Jn as well, the convergence of the initial

energies φn(u0
n) not being needed. We prefer to state the lim inf inequality for Kn

since, as already remarked, the sublevels of Kn are uniformly bounded in H1(0, T ;H)
whereas those of Jn are not, in general.

Let us now move to the doubly nonlinear situation by fixing p ∈ [1,∞] and
recalling that 1/p + 1/q = 1. Assume that we are given φn, ψn, fn, and un

0 as in
section 2, and define the corresponding approximating functionals In : W 1,p(0, T ;H)×
Lq(0, T ;H∗) → [0,∞] for all (u, v) ∈ W 1,p(0, T ;H) × Lq(0, T ;H∗) as

In(u, v) :=

(∫ T

0

(
ψn(u′) + ψ∗

n(v) − (fn, u
′)
)

+ φn(u(T )) − φn(u0
n)

)+

+

∫ T

0

(
φn(u) + φ∗

n(fn − v) − (fn − v, u)
)

+ |u(0) − u0
n|2.

Hence, by recalling (4.1), we have the following lemma.
Lemma 5.2 (lim inf inequality for In). Assume (A6), and let φn → φ and ψn → ψ

in the Mosco sense and fulfill (5.1), fn → f strongly in Lq(0, T ;H∗), u0
n → u0 in H,

and φn(u0
n) → φ(u0). Then, for all (u, v) ∈ W 1,p(0, T ;H) × Lq(0, T ;H∗),

I(u, v) ≤ inf
{

lim inf
n→∞

In(un, vn) : (un, vn) → (u, v) in T (p)
}
.

Proof. The proof of the latter lemma follows along the very same lines as that of
Lemma 5.1 by systematically considering the p − q frame and additionally applying
once again Corollary 4.5 in order to deduce that

∫ T

0

(
ψ(u) + ψ∗(v)

)
≤ lim inf

n→∞

∫ T

0

(
ψn(un) + ψ∗

n(vn)
)
.

We shall explicitly mention that, in the separable Hilbert-space setting and in the
(quadratic) case of (2.3), namely, for φ(·) = φn(·) = |·|2/2, the above lim inf inequality
holds also in some stronger form. By introducing the approximating functionals Qn :
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W 1,p(0, T ;H) → [0,∞] as

Qn(u) :=

∫ T

0

(
ψn(u′) + ψ∗

n(fn − u) − (fn, u
′)
)

+
1

2
|u(T )|2 − 1

2
|u(0)|2 + |u(0) − u0

n|2,

we have the following.
Lemma 5.3 (lim inf inequality for Qn). Assume that H is a separable Hilbert

space, ψn → ψ in the Mosco sense and fulfill (5.1), fn → f strongly in Lq(0, T ;H),
and u0

n → u0 in H. Then, for all u ∈ W 1,p(0, T ;H),

Q(u) ≤ inf
{

lim inf
n→∞

Qn(un) : un → u weakly (star) in W 1,p(0, T ;H)
}
.(5.2)

The assertion follows via the same arguments of the proofs above, this case being
indeed simplified since φ is quadratic.

Finally, we consider the generalized situation of (3.1) by letting ψn, ϕn, πn, and
un

0 be as in section 3 and defining the functionals In : W 1,p(0, T ;H)×Lq(0, T ;H∗) →
[0,∞] for all (u, v) ∈ W 1,p(0, T ;H) × Lq(0, T ;H∗) as

In(u, v) :=

(∫ T

0

(
ψn(u′) + ψ∗

n(v) − πn(u)
)

+ ϕn(T, u(T )) − ϕn(0, u0
n)

)+

+

∫ T

0

(
ϕn(·, u) + ϕ∗

n(·,−v) + (u, v)
)

+ |u(0) − u0
n|2.

In order to establish a lim inf inequality result for In, the limiting behavior of πn has to
be prescribed. We shall directly ask that, for all (u, v) ∈ W 1,p(0, T ;H)×Lq(0, T ;H∗),

(5.3)

∫ T

0

π(u) ≥ sup

{
lim sup
n→∞

∫ T

0

πn(un) : (un, v) → (u, v) in T (p)

}
.

The latter is readily fulfilled if ϕn(t, u) = φn(u)− (fn(t), u), ϕ(t, u) = φ(u)− (f(t), u),
and fn → f strongly in W 1,p(0, T ;H∗); see Remark 3.2. We have the following.

Lemma 5.4 (lim inf inequality for In). Assume (A6), and let ϕn → ϕ and
ψn → ψ in the Mosco sense and fulfill (5.1) and (5.3), u0

n → u0 in H, and ϕn(0, u0
n) →

ϕ(0, u0). Then, for all (u, v) ∈ W 1,p(0, T ;H) × Lq(0, T ;H∗),

I(u, v) ≤ inf
{

lim inf
n→∞

In(un, vn) : (un, vn) → (u, v) in T (p)
}
.

Sketch of the proof. This proof differs from that of Lemma 5.2 for the sole use of
(5.3) instead of the strong convergence of fn.

Before closing this section, let us explicitly consider the case of the nonautonomous
gradient flow (3.7). To this aim, let the approximating functionals Kn : H1(0, T ;H) →
[0,∞] be defined as

Kn(u) :=

(∫ T

0

(
|u′|2 − πn(u)

)
+ ϕn(T, u(T )) − ϕn(0, u0

n)

)+

+

∫ T

0

(
ϕn(·, u) + ϕ∗

n(·,−u′)
)

+
1

2
|u(T )|2 − 1

2
|u(0)|2 + |u(0) − u0

n|2.
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In order to possibly obtain some stronger convergence result in this case, we shall need
some additional convergence property for πn. Namely, we ask, for all u ∈ H1(0, T ;H),
that

(5.4)

∫ T

0

π(u) ≥ sup

{
lim sup
n→∞

∫ T

0

πn(un) : un → u weakly in H1(0, T ;H)

}
.

Again, in the case where ϕn(t, u) = φn(u) − (fn(t), u), ϕ(t, u) = φ(u) − (f(t), u), the
latter is fulfilled if fn → f strongly in H1(0, T ;H∗). Hence, we have the following.

Lemma 5.5 (lim inf inequality for Kn). Assume (A6), and let ϕn → ϕ in the
Mosco sense and fulfill (5.1) and (5.4), u0

n → u0 in H, and ϕn(0, u0
n) → ϕ(0, u0).

Then, for all u ∈ H1(0, T ;H),

K(u) ≤ inf
{

lim inf
n→∞

Kn(un) : un → u weakly in H1(0, T ;H)
}
.

The proof of the latter is obtained by easily adapting the arguments of Lemmas
5.1 and 5.4. Let us stress that, in case the weaker convergence (5.3) holds, a lim inf
inequality for Kn is still available as a corollary to Lemma 5.4.

6. Approximation of gradient flows. We shall exploit Theorems 2.1 and 3.1
and Lemmas 5.1 and 5.5 in order to recover and further generalize some approximation
results for gradient flows under the separability assumption in (A6). By assuming the
above notations and recalling the uniform coercivity of Kn with respect to the weak
topology in H1(0, T ;H), we obtain a first convergence result which we state below by
omitting the easy proof.

Lemma 6.1 (convergence for gradient flows). Under the assumptions of Lemma
5.1, let un ∈ H1(0, T ;H) be such that Kn(un) → 0. Then un → u weakly in
H1(0, T ;H) and K(u) = 0.

Note in particular that the whole approximating sequence un converges since K
admits a unique minimizer u.

By reducing ourselves to the case Kn(un) = 0 (i.e., letting un be solutions to the
respective differential problems), the above lemma recovers the result by Attouch on
the approximation of gradient flows under the Mosco convergence of the functionals
[7, Thm. 3.74(2), p. 388] under the separability assumption in (A6) (here no strong
H1(0, T ;H) nor energy convergence is proved, though). Let us, however, remark that
our result turns out to be slightly more general than the former since un are a pri-
ori not required to be solutions at level n. In particular, the functions un could be
approximated solutions of the corresponding gradient flows as well. Moreover, the
functional frame is here extended from (separable) Hilbert to separable reflexive Ba-
nach spaces. One has, however, to mention that the specific case of regularization by
means of the Yosida approximation (in Hilbert spaces) was already discussed within
the existence proof by Ghoussoub and Tzou [39]. In case the convergence of the
initial energies φn(u0

n) does not hold, one is still in the position of proving a conver-
gence result by arguing on Jn if Jn(un) = 0 (or, more generally, in case of a weakly
H1(0, T ;H)-precompact sequence un such that Jn(un) → 0).

Our second convergence result concerns the generalized situation of (3.7). Again,
the following lemma is implied by the fact that, by assuming πn to be uniformly
linearly bounded, Kn are uniformly coercive with respect to the weak topology of
H1(0, T ;H).

Lemma 6.2 (convergence for generalized gradient flows). Under the assumptions
of Lemma 5.5, let πn to be uniformly linearly bounded and un ∈ H1(0, T ;H) be such
that Kn(un) → 0. Then un → u weakly in H1(0, T ;H) and K(u) = 0.
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The latter convergence result for the nonautonomous gradient flow (3.7) is to
be compared with the former results by Ortner [79, sect. 3.2] which hold in the
general metric and λ-geodesically convex setting but under more restrictive functional
convergence assumptions (see also [80]). We shall, however, stress that here the
approximating un need not be solutions to the corresponding differential problems at
level n.

Before closing this section, we shall mention the work by Mabrouk [52, 53] where
the Brezis–Ekeland principle is exploited within an approximation procedure in or-
der to establish the existence of generalized solutions to some semilinear parabolic
equation with measure data (see also the results by the same author [54, 55] for some
second order in time equations). Moreover, we mention that some identification re-
sult for nonlinear parabolic problems based on (a variational technique related to) the
Brezis–Ekeland principle has been obtained by Barbu and Kunisch [14]. Finally, the
issue of approximating nonconvex gradient flows has recently attracted some attention
(see Ambrosio, Gigli, and Savaré [2] and Sandier and Serfaty [93]).

7. Approximation of doubly nonlinear equations. Let us now move to the
situation of the doubly nonlinear relation (1.3) and fix from the very beginning and
throughout this section

p ∈ (1,∞).

For Lemma 5.2 to serve as the basis for a convergence result, one just needs to provide
coercivity for In with respect to the topology T (p) (see (4.1)). The latter holds, for
instance, in the situation of potentials ψn of p-growth and functionals φn with compact
sublevels. In particular, we let

c1|w|p − c2 ≤ ψ(w) ≤ c3(|w|p + 1) ∀w ∈ H,(7.1)

φ(w) ≥ c4‖w‖p − c5 ∀w ∈ V ⊂ H,(7.2)

where the injection of the reflexive Banach space V into H is compact, ‖ · ‖ is the
norm in V , and c1, c3, c4 > 0, c2, c5 ≥ 0 are given. In this case, it may be checked that
c6|w|q∗ − c7 ≤ ψ∗(w) for all w ∈ H∗ and with some constants c6, c7 > 0 depending on
c3 and p (| · |∗ is the norm in H∗). Hence, all sublevels of I are relatively compact
with respect the topology T (p) by means of well-known compactness results (see, e.g.,
Simon [96]). Namely, we have the following.

Lemma 7.1 (convergence for doubly nonlinear equations). Under the assumptions
of Lemma 5.2, let φn and ψn fulfill (7.1)–(7.2) uniformly with respect to n. Moreover,
let (un, vn) ∈ W 1,p(0, T ;H) × Lq(0, T ;H∗) be such that In(un, vn) → 0. Then there
exists a (not relabeled) subsequence such that (un, vn) → (u, v) in T (p) and I(u, v)
= 0.

Here the convergence of the whole sequence (un, vn) cannot be expected since the
limiting minimum problem for I need not admit a unique minimizer.

By restricting to the case of a sequence (un, vn) of solutions to the approximating
doubly nonlinear problem (i.e., imposing In(un, vn) = 0), we recover the convergence
result of Aizicovici and Yan [1, Thm. 3.1] under the extra separability assumption in
(A6). The referred result is in fact slightly stronger, since the subdifferentials ∂ψn are
replaced by general maximal monotone operators An and the growth and compactness
requirements are weaker (although quite similar). On the other hand, under assump-
tions (7.1)–(7.2), our result turns out to be more general than the former, since the
approximating (un, vn) need not be solutions to the corresponding equations. This
fact allows some possible extra freedom in the choice of the approximating sequence.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BREZIS–EKELAND FOR DOUBLY NONLINEAR EQUATIONS 1635

Finally, we are in the position of providing a convergence lemma which applies to
the generalized situation of (3.1). The following is to our knowledge the first result
in this direction.

Theorem 7.2 (convergence for generalized doubly nonlinear equations). Under
the assumptions of Lemma 5.4, let ϕn(t, ·) and ψn fulfill (7.1)–(7.2) for almost every
t ∈ (0, T ) and uniformly with respect to n. Moreover, let (un, vn) ∈ W 1,p(0, T ;H) ×
Lq(0, T ;H∗) be such that In(un, vn) → 0. Then there exists a (not relabeled) subse-
quence such that (un, vn) → (u, v) in T (p) and I(u, v) = 0.

Lemma 7.3 (convergence for case φ(·) = φn(·) = | · |2/2). Under the assumptions
of Lemma 5.3, for p ∈ (1,∞] let ψn fulfill (7.1) uniformly with respect to n. Moreover,
let un ∈ W 1,p(0, T ;H) be such that Qn(un) → 0. Then there exists a (not relabeled)
subsequence such that un → u weakly in W 1,p(0, T ;H) and Q(u) = 0.

Note that, in the frame of Lemma 7.3, if f ∈ W 1,1(0, T ;H), then the solution of
(2.3) is unique and the whole sequence un of the statement converges.

7.1. Existence for some doubly nonlinear equation via the Brezis–
Ekeland approach. We shall now apply the above-developed convergence theory
in order to possibly (re)obtain the existence of solutions of some specific doubly non-
linear equation (1.3) via the variational characterization of Theorem 3.1. For the sake
of simplicity, we reduce our attention to the Hilbert-space framework of Colli and
Visintin [23]. More specifically, we shall ask that

(7.3) H is a real Hilbert space and p = 2.

Lemma 7.4. Under assumptions (A2) and (A3) and (7.1)–(7.3), there exists a
solution (u, v) of (1.4)–(1.6).

Note that the latter stands as a weaker version of [23, Thm. 2.1] where indeed
∂ψ is replaced by a general maximal monotone operator and some weaker coercivity
assumption on φ is considered.

Proof. For all n ∈ N let

ψn(u) =
1

2n
|u|2 + ψ(u) and φn(u) = inf

v∈H

(n
2
|v − u|2 + φ(v)

)
.

Namely, φn is the Yosida approximation of φ at level 1/n. The corresponding regu-
larized problem reads now as follows:

v ∈ 1

n
u′ + ∂ψ(u′), v + ∂φn(u) = f a.e. in (0, T ), u(0) = u0,

and clearly admits a unique solution (un, vn) ∈ H1(0, T ;H)×L2(0, T ;H) since (1/n+
∂ψ)−1 ◦ ∂φn is Lipschitz continuous. Hence, by Theorem 2.1 we have that In(un, vn)
= 0.

We now aim at applying the lim inf result of Lemma 5.2. First of all, we have
ψn → ψ and φn → φ in the Mosco sense [7, Thm. 3.26, p. 305]. Second, condition
(5.1) is trivially satisfied by ψn since we are requiring (7.1). In particular, ψ ≤ ψn

and ψ∗
n ≥ −ψ(0). Moreover, owing to the fact that (φn)∗(u) = φ∗(u)+ |u|2/(2n) (see,

for instance, [42, subsect. 4.1]), we have

φn(u) = sup
v∈H

(
(v, u) − φ∗(v) − 1

2n
|v|2

)
≥ (w, u) − φ∗(w) − 1

2
|w|2

for any fixed w ∈ D(φ∗). Finally, the fact that

(φn)∗(u) ≥ φ∗(u) ≥ (u, z) − φ(z) ∀u ∈ H,

for some z ∈ D(φ) fixed, entails that condition (5.1) holds for φn as well.
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It is a standard matter to determine new constants c′1, c
′
2, and c′3 in such a way that

ψn fulfills the corresponding nondegeneracy and growth assumption (7.1) uniformly
with respect to n. In particular, we have the fact that

(7.4) u′
n and vn are bounded in L2(0, T ;H) independently of n.

Since D(φn) = H, the coercivity (7.2) cannot hold at level n. In fact one can check
that

φn(u) =
1

2n
|∂φn(u)|2 + φ(jnu) ≥ c4‖jnu‖2 − c5 ∀u ∈ H,

where jn := (1 + (1/n)∂φ)−1 is the resolvent. By recalling that jn is Lipschitz con-
tinuous, uniformly with respect to n, we have the fact that

(7.5) jnun is bounded in H1(0, T ;H) ∩ L2(0, T ;V ) independently of n.

The bounds (7.4)–(7.5) imply that (un, vn) is precompact in T (2). By extracting a
not relabeled subsequence (un, vn) → (u, v) in T (2) and applying Lemma 5.2, we get
I(u, v) = 0, and the assertion follows from Theorem 2.1.

Let us comment that the Hilbert-space frame of (7.3) is chosen as a possible first
illustration of this technique and that the Brezis–Ekeland approach applies to the
more general Banach case as well. However, in the latter case, one should consider a
time-discretized problem rather than a regularized one (this was exactly the strategy
in [22]). The development of a discrete version of the characterization of Theorem 3.1
is presented and applied to the convergence of time discretizations for (1.3) in [101].
As a by-product, the existence of solutions to the doubly nonlinear equation (1.3) in
the Banach framework is there recovered by a purely variational technique.

8. Approximation of rate-independent evolutions. Let us now focus on a
specific class of potentials ψ of growth p = 1 (see (7.1)). In particular, in addition to
(A4) we shall ask that

(8.1) ψ is positively homogeneous of degree 1,

letting the evolution problem be rate-independent (see Mielke [62]). Equivalently, ψ
is required to be the support function of a convex and closed set C ⊂ H∗ containing
0, namely,

(8.2) ψ(w) = sup{(v, w) : v ∈ C} ∀w ∈ H.

Note in particular that D(ψ) = H. In the present rate-independent situation we are
allowed to weaken the assumptions on ψ in (7.1) and ask for the upper bound only.
Owing to positive homogeneity, we take with no loss of generality

(8.3) ψ(w) ≤ c3|w| ∀w ∈ H,

which in particular says that C is contained in a ball of center 0 and radius c3. As
for ϕ, besides (A4) we require

(8.4) t 
→ ϕ(t, u) differentiable and t 
→ ∂tϕ(t, u) measurable ∀u ∈ H.

Moreover, we ask for a nonnegative function λ ∈ L1(0, T ) and a constant c8 > 0 such
that

|∂tϕ(t, u)| ≤ λ(t)(ϕ(t, u) + 1) ∀u ∈ H,(8.5)

|∂tϕ(t, u) − ∂tϕ(t, w)| ≤ c8|u− w| ∀u,w ∈ H, for a.e. t ∈ (0, T ).(8.6)
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The latter and [64, Prop. 2.6] entail that the choice π(u(t)) := ∂tϕ(t, u(t)) is admissible
and fulfills the chain rule (3.2). Finally, we ask for the uniform convexity of ϕ, namely,

∃κ > 0 such that, ∀u0, u1 ∈ H, ∀t ∈ [0, T ], ∀θ ∈ [0, 1],

ϕ(t, (1 − θ)u0 + θu1)

≤ (1 − θ)ϕ(t, u0) + θϕ(t, u1) −
κ

2
θ(1 − θ)|u0 − u1|2.(8.7)

In [64, subsect. 4.2] the authors discuss a nontrivial situation inspired by continuum
mechanics where the latter conditions (8.2)–(8.7) are met. The crucial point now
is that uniform convexity yields the Lipschitz time regularity of the solutions. In
particular, under assumptions (8.2)–(8.7), all solutions (u, v) to the doubly nonlinear
equation (3.1) fulfill [64, Thm. 3.2]

(8.8) ‖u′‖L∞(0,T ;H) ≤ c8/κ.

Lemma 8.1 (convergence for rate-independent problems). Under the assump-
tions of Lemma 5.4, let ψn fulfill (8.1) and (8.3) and ϕn fulfill (7.2) and (8.4)–(8.7)
uniformly with respect to n. Moreover, let (un, vn) ∈ W 1,1(0, T ;H) × L∞(0, T ;H∗)
be such that In(un, vn) = 0. Then there exists a (not relabeled) subsequence such that
(un, vn) → (u, v) weakly star in W 1,∞(0, T ;H) × L∞(0, T ;H∗) and I(u, v) = 0.

Proof. First of all, one has that vn ∈ C almost everywhere in (0, T ) and hence are
uniformly bounded in L∞(0, T ;H∗). Moreover, since (un, vn) are solutions to (3.1),
the Lipschitz continuity estimate (8.8) holds uniformly with respect to n. Additionally,
un are uniformly bounded in L1(0, T ;V ) due to (7.2). Hence, Lemma 5.4 yields the
result.

We shall mention that, differently from Lemmas 6.1 and 7.2, the latter result
holds for sequences of solutions only since the estimate (8.8) is crucially used in order
to obtain strong compactness in L1(0, T ;H) for un. In particular, we are not entitled
to approximate a rate-independent situation by means of rate-dependent approxima-
tions. The reader is referred instead to Efendiev and Mielke [29] and Mielke, Rossi,
and Savaré [66, 65] for some results in this direction.

The above convergence result could be alternatively obtained by applying the
abstract analysis by Mielke, Roub́ıček, and Stefanelli [69, Thm. 3.1]. In the latter,
besides the convergences of the functionals ψn → ψ and ϕn → ϕ, some extra closure
condition, indeed fulfilled in the present situation, is crucially required [69, equation
(2.11)]. Let us mention that [69] is devoted to a quite more general situation where
the state space is just a Hausdorff topological space (in particular, no convexity is
assumed on ϕn).

We specialize further the results on rate-independent evolutions by explicitly dis-
cussing the fundamental case of (2.3), i.e., the so-called play operator in a Hilbert
space H. The latter stands as the basic element for the construction of a relevant
class of hysteresis operators, namely, the so-called Prandtl–Ishlinskĭı operators. The
reader is referred to the classic monographs by Brokate and Sprekels [19], Krejč́ı [50],
and Visintin [104] for a comprehensive collection of results on these operators. In
particular, let us mention the convergence result [50, Thm. 3.12, p. 34] where the
approximation of play operators under the Hausdorff convergence of the related char-
acteristic convex sets Cn (see (8.2)) is discussed. Here we exploit instead the quite
weaker situation of Cn → C in the Mosco sense [7] (namely, the corresponding indi-
cator functions Mosco-converge).
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Comparing the case of the play operator with the above general result for rate-
independent problems, we stress that, owing to the lim inf inequality (5.2), no strong
compactness is here needed, and (7.2) can be omitted. We have the following conver-
gence result.

Lemma 8.2 (convergence for the play operator). Let H be a separable Hilbert
space and ψn → ψ in the Mosco sense and fulfill (5.1), (8.1), and (8.3) uniformly
with respect to n. Moreover, let fn → f strongly in C([0, T ];H∗), fn be uniformly
Lipschitz continuous, and u0

n → u0 in H. Finally, let un ∈ W 1,1(0, T ;H) be such that
Qn(un) = 0. Then un → u weakly star in W 1,∞(0, T ;H) and Q(u) = 0.

Proof. The Lipschitz regularity of fn entails (8.5)–(8.6). Hence, the uniform
control of (8.3) yields via (8.8) the uniform bound of un in W 1,∞(0, T ;H). The
assertion follows by extracting weakly star convergent subsequences and exploiting
Lemma 5.3. In particular, the convergence of the whole sequence is ensured by the
uniqueness of the solution of the limit problem [50, Thm. 3.1, p. 27 and Prop. 3.9,
p. 33].

The latter convergence result extends the former analysis by this author [102,
Lemma 4.4] to the more natural setting W 1,1. One has, however, to mention that
the former result was including the possibility of approximating the play operator
with non-rate-independent evolutions (such as those stemming from penalizations or
singular perturbations, for instance) while Lemma 8.2 is restricted to approximating
plays only. On the other hand, the present convergence result is slightly more precise
than the former since no strong convergence on the derivatives f ′

n is required. The
reader is referred to [103] for further results in this direction.
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[65] A. Mielke, R. Rossi, and G. Savaré, Non parametric rate-independent flows, manuscript,
2008.
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du temps, in Travaux du Séminaire d’Analyse Convexe, Vol. II, Exp. 6, U.E.R. de Math.,
Univ. Sci. Tech. Languedoc, Montpellier, 1972, p. 17.

[85] H. Rios, Étude de la question d’existence pour certains problèmes d’évolution par minimi-
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