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1. Let I :=[0,1] € R denote the compact unit interval, consider the equiv-
alence relation on I x I generated by (z,0) ~ (z,1), € I, and (0,y) ~ (1,y),
ye€l,and let p: I x I — X := (I x I)/~ denote the canonical projection onto
the quotient space. Show that the map

f:IxI—8"xSt flz,y) = (627rix’627riy)7

factorizes to a homeomorphism, X = S' x S'. More precisely, show that there
exists a (unique) continuous map f: X — S 1'% 81 such that fop = f, and prove
that f is a homeomorphism. Here S! := {2 € C : |z| = 1} denotes the unit circle.

2. Let R > r > 0 and consider the following subspace (surface) in R?,

T := {(ac,y,z) eR’: (Va2 +y? - R)2 + 22 :7"2}.

Construct a homeomorphism 7' = St x S1.

3. For n € Ny let S" := {z € R™™! : ||z|| = 1} denote the unit sphere. On
S™ x [—1,1] consider the equivalence relation generated by (z,1) ~ (y,1) und
(x,—1) ~ (y,—1), z,y € S™. Show that the quotient space (S x [—1,1])/~ is
homeomorphic to S"*1. Provide drawings for n = 0 and n = 1.

4. Let (X, z0) and (Y, yo) be two pointed spaces such that m (Y, y9) = 0. Show
that the canonical projection, p: X XY — X, p(z,y) := x, and the inclusion,
t: X - X xY, ux) := (z,9), induce mutually inverse group isomorphisms,
Dyt T (X xY, (aso,yo)) — m (X, zo) and ¢, m (X, 20) — 7T1<X xY, (xo,yo)), ie.
P © b = i, (x,20) AN Ly © Pic = 1y (X Y, (20,90))

5. Suppose g, h: I — X are two paths from xy := ¢(0) = h(0) to z; := g(1) =
h(1). Show that the isomorphisms

Byr m(X, ;) > m(X,20)  and  By: m(X,21) = (X, 20)
coincide if and only if [gh] is contained in the center of 71 (X, z).

6. A subset X C R" is called star shaped, if there exists z € X with the
following property: x € X, t € [0,1] = (1 —t)x +tz € X, i.e. the affine segment
connecting x with z is entirely contained in X, for every x € X. Any such z

is called a center of X. Show that star shaped subsets are simply connected.
Conclude that the C\ (—o0, 0] is simply connected.

'Further problems will be posted at: http://www.mat.univie.ac.at/~stefan/AT13.html
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7. Let P € S™, and show:
(i) If Q € S™ and Q # P, then S™\ {P, Q} is homeomorphic to "~ x R.
(ii) The closed upper hemisphere, H := {x € S™ : (x, P) > 0}, is homeo-
morphic to the closed unit disk, D™ := {x € R™: ||z|| < 1}.
8. Let SOp := {U € My a(R) : U'U = I, det(U) = 1} denote the group
of orthogonal (2 x 2)-matrices with determinant 1, equipped with the topology
induced from Mayyo(R) = R%. Show that

f: S = S0,, flx,y) = (—yx i) ,

is a homeomorphism, S! = SO,. Conclude that m,(SO,) = Z, and provide an
explicit loop in SOq, which represents a generator of m1(SOs).

9. Let SUy := {U € Muy2(C) : U*U = I, det(U) = 1} denote the group of
unitary (2 x 2)-matrices with determinant 1, equipped with the topology induced
from Myyo(C) = C*. Consider the sphere S® = {(z,w) € C*: |z|* + |w|* = 1} as
a subspace of C?, and show that

f: 5% = SU,, f(z,w) = (EUZ 5)) ,
is a homeomorphism, S? = SU,. Conclude that SU, is simply connected.

10. Let A C R™ be an affine subspace of codimension k := n — dim(A).
Show that R™ \ A is simply connected, provided k& > 3. Furthermore, in the
case k = 2, show that m(R" \ A) = Z, and exhibit an explicit loop in R™ \ A,
which represents a generator of 7 (R™\ A). Hint: Construct a homeomorphism

R™\ A= (RF\ {0}) x Rdm(A),

11. Show that every continuous map f: I? — I? has at least one fixed point,
where I? := I x I. Hint: Construct a homeomorphism I? & D? where D? :=
{z € R?: ||z|| < 1} denotes the closed unit disk.

12. Show: CS"~ 1 = Dn,
13. Show: D"/S"1 >~ gn,

14. Let X, Yj, Y5 be topological spaces, and let p;: Y; X Yo — Y; denote the
canonical projections, ¢ = 1,2. Show that the two maps, (p;).: [X,Y] x Y3] —
(X, Y], i = 1,2, determine a map,

(X, Y1 % Vo] = [X,Yi] x [X, Y3,
which is a bijection.

15. Show that a continuous map, f: X — Y, is a homotopy equivalence if
and only if there are continuous maps ¢g: ¥ — X and h: Y — X, such that
go f~idx and foh ~idy.
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16. Put Z := {0} U{2 : n € N} C R, and consider the subspace
X :=(ZxI)uU(Ix{0}) CR%.
Moreover, let P := (0,0) € X, @ :=(0,1) € X and A :=1 x {0} C X. Show:
(i) A is a deformation retract of X.
(ii) {P} is a deformation retract of X.
(iii) X is contractible.
(iv) The inclusion {@Q} — X is a homotopy equivalence.
(v) {@Q} is not a deformation retract of X.
Hint for (v): Suppose conversely, H: X x I — X is a retracting deformation onto
{Q}, i.e. Hy=1idx, Hi(z) = Q for all x € X, and H,(Q) = Q for all t € I. Show
that for every neighborhood U of ) there exists a neighborhood V' von ) such

that H(V x I) C U. Conclude that each point in V' can be connected with @ by
a path in U. Choosing U sufficiently small, this leads to a contradiction.

17. Show that a continuous map, f: S' — S!, is a homotopy equivalence if
and only if deg(f) = 1.

18. Prove the following generalization of Proposition 1.4.4: Suppose n € N
and put ¢ := e?™/? € S ie. (" = 1. Moreover, let f: S* — S* be a continuous
map such that f(¢z) = f(2), for all z € S*. Then deg(f) =0 mod n.

19. Prove the following generalization of Theorem 1.4.8: Suppose n € N and
put ¢ :=e?™/m ¢ St ie. (" = 1. Moroever, let f: S' — S' be a continuous map
such that f(Cz) = (f(z), for all z € S*. Then deg(f) =1 mod n. In particular,
f is not nullhomotopic, provided n > 2. Hint: Replace the antipodal map A in
the proof of Theorem 1.4.8 by the rotation R: S' — S, R(z) := (z.

20. Let G, be groups, a € A. Show that the canonical homomorphism,

@ G = <a§,4 Ga) ab’

acA
is an isomorphism. Here G := G/|G, G] denotes the Abelization of G.

21 (Hamilton’s quaternions). Let H denote the set of all complex (2 x 2)-
matrices of the form ( % ¢), z,w € C. Show that, with respect to ordinary matrix
addition and multiplication, H satisfies all axioms of a field, except commutativity

of multiplication (H is a division ring/skew field). Put
Li=(59), i=(0%), i=(0%0), k:=(1§).
Show that {1,1,j,k} is a basis of the real vector space underlying H. Check that
i?=j=k*>= -1, and
ij=%, jk=i ki=j ji=-k, kj=-i ik=—j.
We use the algebra homomorphisms C — H, z +— (§2), and R — H, a — (29),

to regard R and C as subalgebras of H, respectively. For z € H, the conjugate
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quaternion is defined by z := x* where z* denotes the conjugate transposed
of the matrix z. For instance, 1 = 1, i = —i, j = —j and k = —k. Show
T=ux,r+y =7+7y and Ty = yzx for alle z,y € H, and ax = az for all
a € R and x € H. Furthermore, show that z = z iff x € R C H. The real
part of x € H is defined by Re(z) := (z + Z)/2 = tr(x)/2 € R. In particular,
Re(1) = 1 and Re(i) = Re(j) = Re(k) = 0. Show Re(xy) = Re(yzx) for all
xz,y € H. Show that (z,y) := Re(zy) defines in Euclidean inner product on
H such that {1,1i,j,k} becomes an orthonormal basis. Verify (xy,z) = (y,zz),
(yx, z) = (y, 2z) and (Z,y) = (z,y), for all x,y, z, € H. Show that the associated
norm, |z|* := (xr,z) = 2T = Zx, is multiplicative, |ry| = |z||y|. Conclude that
multiplication in H restricts to a group structure on S® = {x € H : |z| = 1}.
Observe that this group coincides with SUs.

22. We consider H" := H x --- x H as a left H-modul, i.e. for A € H and
(x1,...,2,) € H" we put A(z1,...,2,) := (Az1,...,Ax,). Show that x ~ y &
J\ € H : Az = y defines an equivalence relation on H"*! \ {0}. Show that the
quotient space HP™ := (H"™*\ {0})/~ is a compact Hausdorff space. Construct

a continuous map ¢: S4~! — HP" ! such that
HP" = HP" ' U, D"

Conclude that HP™ is simply connected. Moreover, observe that HP' 22 S*. Hint:
Proceed as in the complex case.

23. Consider S® := {r € H : |x| = 1} and
[:=1"={reH:z2=—2}={r€H:Re(z) =0} 2R

see Problem 21. Show that for x € S3 and y € T the expression \,(y) := zyz
defines an R-linear map A,: I — I. Show that )\, is an isometry, i.e. [\.(y)| = |y|
for all z € S? and y € I. Conclude that we obtain a continuous map A: S* — SOs.
Show that A is a surjective homomorphism of groups with kernel ker(\) = {£1}.
Show that \ factorizes to a homeomorphism, RP? 22 SOg. Hint for the surjectivity
of \: For £1 # x € S3 the isometry ), is a rotation by the angle 2 arccos(Re(x))
around the axis spanned by x — Z. To see this verify:

(i) The points on the subspace spanned by x — Z are fixed points of A,.
(ii) f y € T and (y,xz — z) = 0, then (x,y) = 0, hence yz = zy and thus
200, (1), ) = 2(2(Re(x))? — 1)y
(iii) Use the relation arccos(2t? — 1) = 2arccos(t), 0 < ¢ < 1, to show that
the angle between A, (y) and y is 2 arccos(Re(x)).

Finally, recall that every element of SO3 can be written as a product of rotations.
Alternatively, one can observe that the differential of the map \: S? — SOs
at the identity is invertible and use the implicit function theorem to conclde that
the image of A contains a neighborhood of the identity in SO3. Since A is a
homomorphism and since SOj3 is connected, this implies that A is onto.
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24. Determine the fundamental group of X := (S' x S1)/({1} x S1).

25. Let M, and M, be two connected topological n-manifolds.? Choose open
subsets U; C M;, homeomorphlsms ¢i: Ui — R" and put M; = M, \90_1(3")
i =1,2. Consider A := p;(S" 1) C M, and the map ¢ : A — My, ¢ == @7lops.
Show that the connected sum, MM, := M1 Uy Mg, is a topological n-manifold.
Moreover, show that ﬂl(MlﬁMg) = (M) * 7T1(M2) provided n > 3.

26. Let L1, ..., L, be mutually different lines through the origin in R®. De-
termine 7 (R*\ (L1 U--- U L,)).

27 (Geometric realization of simplicial complexes). An (abstract) simplicial
complex, A, is a set of finite subsets of some set S, i.e. A C 27, with the following
property: if 0 € A and 7 C o, then 7 € A. If 0 € A has precisely k+ 1 elements,
then o is said to be of dimension k and is called k-simplex of A. 0-simplices
are also called vertices of A, the set of all vertices will be denoted by V(A). A
simplicial complex is called finite if A is finite, equivalently, V' (A) is finite.

A simplicial map, f: A" — A, between two simplicial complexes, A’ and A, is
amap f: V(A') — V(A) such that f(o) € A for all 0 € A’. Convince yourself,
that the composition of simplicial maps is again a simplicial map, and so is the
identical map, ida. A simplicial map f: A" — A is called isomorphism, if there
exists a simplicial map g: A — A’ such that fog=ida and go f = ida/.

A subset A’ C A of a simplicial complex A is called a subcomplex if A’ is a
simplicial complex itself. In this case the natural inclusion V(A’) — V(A) is a
simplicial map A" — A. Let Sk;(A) C A denote the k-skeleton of A, i.e. set of
all simplices of dimension at most k. Observe that Ski(A) is subcomplex of A.

The geometric realization, |Al, of a finite simplicial complex A with vertices
V :=V(A), is the compact topological space

Al={X\:V=R|A>0,>,c Av) =1, supp(A) € A} CRY =R,
where n denotes the cardinality of V. Show that
A= o)
cEA

where (o) denotes the convex hull of the unit vectors in RV corresponding to o C
V. The geometric realization of a simplicial map, f: A" — A, is the continuous
map [f|: [A] = [A] where |f[(X)(v) := >~ ()=, A'(¢). Show that this is indeed
well defined and continuous. Moreover, verify

|[fogl=|flolgl and lida | = ida

for any other simplicial map ¢g: A” — A’. Conclude that the geometric realization
of a simplicial isomorphism is a homeomorphism.

2Recall that a topological n-manifold is a paracompact Hausdorff space which is locally
homeomorphic to R”.
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28.

(i) Let A™ denote the abstract simplicial complex consisting of all subsets
of {0,...,n} and show |A"| = D".
(ii) Let A™ = Sk,_;(A") denote the abstract simplicial complex consisting

of all subsets of {0,...,n} which have at most n elements, and show
|An| = gn-L,

(iii) Describe an abstract simplicial complex A with geometric realization
|A] = St x St

29. Let A be a finite abstract simplicial complex. Show that the geometric
realization of its k-skeleton can be obtained from the geometric realization of the
(k — 1)-skeleton by attaching simplicies |A¥| along maps defined on |A*|. More
precisely, show that

| Ski(A)] 2 | Sk—1 ()] U, || [AY)

for an appropriate continuous map ¢: | ||A*| — | Sky_1(A)|. Conclude that the
inclusion Sko(A) — A induces an isomorphism

7T1(| SkQ(A)|,I’0) = 7T1(|A|,ZL‘0).

30. A simplicial complex A is called connected if its geometric realization, |A],
is (path)connected. Show that A is connected if and only if the following holds
true: for any two vertices x,y of A there exist vertices x = g, x1,...,T, = ¥y
such that {z;_1,z;} is a simplex of A, for all i = 1,...,n. Hint: Show that A is
connected iff its 1-skeleton Ski(A) is connected.

31 (Trees). A tree is a simply connected simplicial complex of dimension at
most one.® Suppose T is a tree in a 1-dimensional simplicial complex A, i.e. T
is a subcomplex of A. Show that the natural quotient map |A| — |A|/|T] is
a homotopy equivalence. Conclude that a 1-dimensional simplicial complex is a
tree iff its is contractible.

32 (Maximal trees). Observe that every simplicial complex A contains a max-
imal (with respect to inclusion of subcomplexes) tree. Assuming A to be con-
nected, show that a tree in A is maximal iff it contains all vertices of A.

33 (Fundamental group of 1-dimensional simplicial complexes). Let A be a
connected 1-dimensional simplicial complex, suppose T' is a maximal tree in A,
and let eq, ..., e, denote the 1-simplices of A which are not contained in 7. Show
that the fundamental group of A is free of rank k& with generators corresponding
to ey, ..., e,. Moreover, show that y(A) = 1 — k where the Euler characteristics
X(A) is defined as the number of 0-simplices minus the number of 1-simplices of

A. Conclude that a connected 1-dimensional simplicial complex is a tree if and
only if x(A) = 1.

3A simplicial complex is called simply connected if its geometric realization is simply
connected.
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34 (Fundamental group of general simplicial complexes). Let A be a con-
nected simplicial complex, and suppose 1" is a maximal tree in A. Let ey,..., e
denote the 1-simplices of A which are not contained in 7', and fix an orienta-
tion for each e;. Moreover, let oy,...,0; denote all 2-simplices of A. For every
Jj € {1,...,1} define an element r; in the free group F({ey,...,ex}) by follow-
ing the three edges (i.e. 1-simplices) of o; consecutively (starting at any vertex,
proceeding according to either orientation), writing down e; or e; ! for each edge
which happens to be among the ey, . .. e, and disregarding the others (i.e. those
edges which are in 7). More precisely, we write ¢; if the orientations match and
e; ' if they don’t. Show that:

MDD 2 {er, ek |1, ).
Hint: Use the van Kampen theorem, Problem 29 and Problem 33.

35. Use the previous problem to compute the fundamental groups of the 2-
dimensional torus and the Kleinian bottle.

36. Supposen,p € Nyn > 2, q,...,q, € Z are such that p and ¢; are coprime,
i=1,...,n,and let L := L(p;q,...,qn) denote the associated lense space. Show
that [L, K] = 0, where K denotes the Kleinian bottle. In other words, show
that any two continuous maps L — K are homotopic. Hint: Show that every
homomorphism 7 (L) — 7 (K) is trivial, and use the covering R? — K.

37 (Nielsen—Schreier theorem). Show that every subgroup of a free group is
free. Proceed as follows:

A 1-dimensional CW complex is topological space X which is homeomorphic
to space obtained by attaching any number of 1-cells to a discrete space, i.e.

X=X,U,| |D'
AEA
where X is a discrete space, A is an index set, D! = [~1,1] denotes the 1-
dimensional disk, ¢: | |,., S® = Xp is a (continuous) map, and S° = 9D' =
{—1,1} denotes the 0-dimensional sphere. Both, X, and A, may be infinite.
Thus, a 1-dimensional CW complex is the same thing as a graph.

(i) Show that 1-dimensional CW complexes are locally contractible, whence
locally path connected and semi locally simply connected.

(ii) Show that every covering of a 1-dimensional CW complex is a 1-dimen-
sional CW complex.

(iii) Show that any compact subset of X intersects only finitely many of the
attached disks.

(iv) Show that the fundamental group of a connected 1-dimensional CW
complex is free. Hint: Use the lemma of Zorn and (iii) to show that
there exists a subset A’ C A such that T := X, U, | |,.p/ D! is simply
connected (maximal tree); observe that X/T" = \/, xS 1. and show

that the canonical projection, X — X/T, is a homotopy equivalence.
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Given a subgroup G of a free group F, construct a connected 1-dimensional CW
complex X such that 7 (X) = F', consider a covering X — X with characteristic
subgroup G, and recall that m (X) = G.

38. Determine all 2 and 3-sheated connected coverings of S* Vv S'. Which of
these coverings are normal? Hint: Determine all conjugacy classes of subgroups
in Z x 7. of index 2 and 3.

39 (Orientation bundle). Let p: E — X be a real vector bundle of rank k.*
The orientation bundle of F is a 2-fold covering, O — X, which can be described
in either of the following ways:

(i) Op = |,cx OF,, where Op, denotes the set (with two elements) of
orientations of the vector space F,. The topology is defined using vec-
tor bundle charts E|y = U x R* and declaring the induced bijections,
Oglv = ey Or, 2 U x Oge, to be homeomorphisms.

(ii) Op = P/~, where P denotes the frame bundle® of E, and two frames
over x € X are considered equivalent iff they define the same orientation
of the vector space F,.

(ili) O = (A*E \ 0)/R*, where A*E \ 0 denotes the k-fold exterior pro-
dukt® with the zero section removed, and the group R* acts by scalar
multiplication on (the fibers of) A*E.

Show that these definition actually describe the same, i.e. canonically isomorphic,
2-fold coverings of X. Moreover, show that the following are equivalent:

(iv) One can choose orientations of each fiber £, which depend continuously
on x € X, in the sense of (i).
(v) The covering O — X is trivializable.
(vi) The line bundle” A*E is trivializable.
(vii) E admits a vector bundle atlas whose transition functions take values
in SL(RF).
(viii) E admits a vector bundle atlas whose transition functions take values
in GL (R¥).

4Recall that a real vector bundle of rank k is a continuous map p: F — X together with
the structure of a k-dimensional real vector space on each fiber E, := p~1(x), x € X, which
is locally trivial in the following sense: Every point in X admits a neighborhood U such that
there exists a fiberwise linear homeomorphism ¢: E|y :=p~1(U) — U x R", i.e. pry op = ply
and ¢, : E; — {£} x R" =R" is a linear isomorphism, for all x € U.

Sp.= {(el,...,ek) eEx---xFE ’ Jr e X :eq,...,ex is a basis ofEI} with the topology
induced from E X --- x E.

6AIE = ||,cx AYE; is a vector bundle over X obtained by replacing each fiber E, with its
g-fold exterior product. The topology on AE can be described by using vector bundle charts
E|ly =2 U x R* and declaring the induced fiber wise linear bijections, AE|y = | | ., A1E, =
U x ARF = U x R(4) to be vector bundle charts for AYE.

"i.e. vector bundle of rank 1.

zeU



If these equivalent conditions are satisfied, then the vector bundle E is called
orientable. Any trivialization O = X x{%1} of the orientation bundle (covering)
is called an orientation of E. How many orientations, does an orientable vector
bundle possess? Provide conditions on X which ensure that every vector bundle
over X is orientable.

40. Let M be a smooth manifold of dimension n. The covering M = Ory
of M is called the orientation covering of M, cf. the last problem. Show that the
following are equivalent:

(i) M admits an oriented atlas, i.e. an atlas with orientation preserving
transition functions.
(ii) TM admits a vector bundle atlas whose transition functions take values
in GL4 (R™).
(iii) 7'M admits a vector bundle atlas whose transition functions take values
in SL(R™).
(iv) The line bundle A"T'M is trvializeable.
(v) The orientation covering M — M is trivializeable.
Conclude that every simply connected manifold is orientable. More generally, if

M is connected and its fundamental group does not admit a subgroup of index
two, then M is orientable.

41. Let M — M be the orientation covering of a smooth n-manifold M. Show
that M is orientable. Is the non-trivial deck transformation, M — M orientation
preserving or reversing?

42 (Algebraic Morse inequalities). Let C, be a finitely generated chain com-
plex. Show that

(=D)F Y (=1),(C) < (=1)* Y (1) rank(C,)

q<k q<k

for all k. Here b,(C') := rank(H,(C)) denotes the ¢-th Betti number of C,.. What
do we get for k — 00?

43. For an endomorphism of a finitely generated abelian group, ¢: A — A,
define its trace by

id
tr(y) = trg(A ®z Q PR Ay Q).
Show that this trace has the following properties:

(i) tr(p) € Z.
i) tr(ida) = rank(A).
g rggo + 1) = tr(p) + tr(¢), for any two endomorphisms ¢, 9: A — A.

tr 1) = tr(y o p), for any two endomorphisms p,9: A — A.
9
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(v) tr(p) + tr(p) = tr(y), for every commutative diagram
0 A B C 0
ol
0 A B C 0

of finitely generated abelian groups with exact rows.

For an endomorphism of a finitely generated graded abelian group, ¢: A, — A,,
define its graded (super) trace as str(y) := > (=1)7tr(p,: Ay — Ay). Spell out
and prove analoguous properties of this graded trace.

44. Suppose p: C, — C, is a chain map on a finitely generated chain complex,
and let ¢,: H.(C) — H.(C) denote the induced homomorphism in homology.
Show that

str(p: Cy = C.) = str(p.: Ho(C) — H.(O)).
Hint: Apply the graded version of Problem 43(v) t

0—= B, Z, H,(C) —

and

where (XB), := B,—1. What do we get for p =id¢,?
45 (Nine Lemma). Consider a commutative diagram of abelian groups

0 0 0

0 A B C 0




with exact rows. Show that if two of the three columns are exact, then so is the

third.

46 (Simplicial homology). Let A be a finite abstract simplicial complex. Let
Sq(A) denote the (finite) set of g-simplices of A and let C,(A) = Z[S,(A)]
denote the free abelian group generated by S,(A). For each ¢, fix an ordering of
the vertices of each g-simplex o € S,(A), i.e. vf,...,v] shall be all vertices of
o. For 7 € S, 1(A) with 7 C o we put (o, 7) := 1if v,...,v]_; followed by
the one missing vertex of o coincides with the ordering of the vertices v, ..., v7
up to an even permutation, and (o, 7) := —1 otherwise.® Suppose p € S, 5(A)
and o € S,(A) such that p C 0. Show that there exist precisely two simplices
7 € S,-1 such that p C 7 C 0. Denoting these two simplicies by 7" and 7",
respectively, show that

e(o,7)e(r’, p) + (o, 7")e(", p) = 0.
Define a homomorphism 0: Cy(A) — C,—1(A) on basis elements o € S,(A) by
o = Z e(o,T)T.
T€Sq-1(A),7C0o
Show that 9> = 0 and define simplicial homology of A as the homology of this
(simplicial) complex, H,(A) := H,(C.(A),0). Conclude that

> (=1)frank Hy(A) =) “(=1)7S,(A).

q q

One can show that H,(|A[) = H,(A) and thus x(|A]) = >_ (—1)745,(A).

47. Compute the simplicial homology of the simplicial complexes A" and A”
in Problem 28. Hint: Consider the chain homotopy h: Cy(A") — Cyr1(A™)
defined on generators o € S,(A") by

Moy= S elpo)p

pESy+1(A™),0Cp

and show that Oh + hd = (n+ 1)id on C,(A"), for all ¢ > 1.

48. Choose an abstract simplicial complex A such that |A| = RP? and com-
pute H,(A).

49 (Finite dimensional Hodge decomposition). Let

9 Og+1
...<_‘/q_1<_‘/;1<_‘/q+1<_...

be a complex of finite dimensional real/complex vector spaces, i.e. each Vj is
finite dimensional and 0,0,41 = 0. Suppose each V, is equipped with a Euk-
lidean/Hermitian inner product, and let 0;: Vg1 — V, denote the adjoint of

8Note that these signs e(o,7) only depend on the orientation of the simplices o and 7
spezified by the ordering of their vertices.
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0yt Vg = V,1. Moreover, put A, := q+18;+1 + @;‘8,1. Show that we have an
orthogonal decomposition

Vy = img(9;) @ge“Aq) ® img(‘%ﬂl-

ker(0q)

Conclude that each homology class in H, (V') := ker(0,)/img(0,+1) has a unique
(harmonic) representative in ker(A,), that is, H, (V) = ker(A,).
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