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1. Let I := [0, 1] ⊆ R denote the compact unit interval, consider the equiv-
alence relation on I × I generated by (x, 0) ∼ (x, 1), x ∈ I, and (0, y) ∼ (1, y),
y ∈ I, and let p : I × I → X := (I × I)/∼ denote the canonical projection onto
the quotient space. Show that the map

f : I × I → S1 × S1, f(x, y) :=
(
e2πix, e2πiy

)
,

factorizes to a homeomorphism, X ∼= S1 × S1. More precisely, show that there
exists a (unique) continuous map f̄ : X → S1×S1 such that f̄ ◦p = f , and prove
that f̄ is a homeomorphism. Here S1 := {z ∈ C : |z| = 1} denotes the unit circle.

2. Let R > r > 0 and consider the following subspace (surface) in R3,

T :=
{

(x, y, z) ∈ R3 :
(√

x2 + y2 −R
)2

+ z2 = r2
}
.

Construct a homeomorphism T ∼= S1 × S1.

3. For n ∈ N0 let Sn := {x ∈ Rn+1 : ‖x‖ = 1} denote the unit sphere. On
Sn × [−1, 1] consider the equivalence relation generated by (x, 1) ∼ (y, 1) und
(x,−1) ∼ (y,−1), x, y ∈ Sn. Show that the quotient space (Sn × [−1, 1])/∼ is
homeomorphic to Sn+1. Provide drawings for n = 0 and n = 1.

4. Let (X, x0) and (Y, y0) be two pointed spaces such that π1(Y, y0) = 0. Show
that the canonical projection, p : X × Y → X, p(x, y) := x, and the inclusion,
ι : X → X × Y , ι(x) := (x, y0), induce mutually inverse group isomorphisms,
p∗ : π1

(
X × Y, (x0, y0)

)
→ π1(X, x0) and ι∗ : π1(X, x0)→ π1

(
X × Y, (x0, y0)

)
, i.e.

p∗ ◦ ι∗ = idπ1(X,x0) and ι∗ ◦ p∗ = idπ1(X×Y,(x0,y0)).

5. Suppose g, h : I → X are two paths from x0 := g(0) = h(0) to x1 := g(1) =
h(1). Show that the isomorphisms

βg : π1(X, x1)
∼=−→ π1(X, x0) and βh : π1(X, x1)

∼=−→ π1(X, x0)

coincide if and only if [gh̄] is contained in the center of π1(X, x0).

6. A subset X ⊆ Rn is called star shaped, if there exists z ∈ X with the
following property: x ∈ X, t ∈ [0, 1]⇒ (1− t)x+ tz ∈ X, i.e. the affine segment
connecting x with z is entirely contained in X, for every x ∈ X. Any such z
is called a center of X. Show that star shaped subsets are simply connected.
Conclude that the C \ (−∞, 0] is simply connected.

1Further problems will be posted at: http://www.mat.univie.ac.at/~stefan/AT13.html
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7. Let P ∈ Sn, and show:

(i) If Q ∈ Sn and Q 6= P , then Sn \ {P,Q} is homeomorphic to Sn−1 × R.
(ii) The closed upper hemisphere, H := {x ∈ Sn : 〈x, P 〉 ≥ 0}, is homeo-

morphic to the closed unit disk, Dn := {x ∈ Rn : ‖x‖ ≤ 1}.

8. Let SO2 := {U ∈ M2×2(R) : U tU = I, det(U) = 1} denote the group
of orthogonal (2 × 2)-matrices with determinant 1, equipped with the topology
induced from M2×2(R) = R4. Show that

f : S1 → SO2, f(x, y) :=

(
y x
−x y

)
,

is a homeomorphism, S1 ∼= SO2. Conclude that π1(SO2) ∼= Z, and provide an
explicit loop in SO2, which represents a generator of π1(SO2).

9. Let SU2 := {U ∈ M2×2(C) : U∗U = I, det(U) = 1} denote the group of
unitary (2×2)-matrices with determinant 1, equipped with the topology induced
fromM2×2(C) = C4. Consider the sphere S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1} as
a subspace of C2, and show that

f : S3 → SU2, f(z, w) :=

(
w̄ z
−z̄ w

)
,

is a homeomorphism, S3 ∼= SU2. Conclude that SU2 is simply connected.

10. Let A ⊆ Rn be an affine subspace of codimension k := n − dim(A).
Show that Rn \ A is simply connected, provided k ≥ 3. Furthermore, in the
case k = 2, show that π1(Rn \ A) ∼= Z, and exhibit an explicit loop in Rn \ A,
which represents a generator of π1(Rn \ A). Hint: Construct a homeomorphism
Rn \ A ∼= (Rk \ {0})× Rdim(A).

11. Show that every continuous map f : I2 → I2 has at least one fixed point,
where I2 := I × I. Hint: Construct a homeomorphism I2 ∼= D2, where D2 :=
{x ∈ R2 : ‖x‖ ≤ 1} denotes the closed unit disk.

12. Show: CSn−1 ∼= Dn.

13. Show: Dn/Sn−1 ∼= Sn.

14. Let X, Y1, Y2 be topological spaces, and let pi : Y1 × Y2 → Yi denote the
canonical projections, i = 1, 2. Show that the two maps, (pi)∗ : [X, Y1 × Y2] →
[X, Yi], i = 1, 2, determine a map,

[X, Y1 × Y2]
∼=−→ [X, Y1]× [X, Y2],

which is a bijection.

15. Show that a continuous map, f : X → Y , is a homotopy equivalence if
and only if there are continuous maps g : Y → X and h : Y → X, such that
g ◦ f ' idX and f ◦ h ' idY .
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16. Put Z := {0} ∪ { 1
n

: n ∈ N} ⊆ R, and consider the subspace

X :=
(
Z × I

)
∪
(
I × {0}

)
⊆ R2.

Moreover, let P := (0, 0) ∈ X, Q := (0, 1) ∈ X and A := I × {0} ⊆ X. Show:

(i) A is a deformation retract of X.
(ii) {P} is a deformation retract of X.
(iii) X is contractible.
(iv) The inclusion {Q} → X is a homotopy equivalence.
(v) {Q} is not a deformation retract of X.

Hint for (v): Suppose conversely, H : X×I → X is a retracting deformation onto
{Q}, i.e. H0 = idX , H1(x) = Q for all x ∈ X, and Ht(Q) = Q for all t ∈ I. Show
that for every neighborhood U of Q there exists a neighborhood V von Q such
that H(V × I) ⊆ U . Conclude that each point in V can be connected with Q by
a path in U . Choosing U sufficiently small, this leads to a contradiction.

17. Show that a continuous map, f : S1 → S1, is a homotopy equivalence if
and only if deg(f) = ±1.

18. Prove the following generalization of Proposition I.4.4: Suppose n ∈ N
and put ζ := e2πi/n ∈ S1, i.e. ζn = 1. Moreover, let f : S1 → S1 be a continuous
map such that f(ζz) = f(z), for all z ∈ S1. Then deg(f) ≡ 0 mod n.

19. Prove the following generalization of Theorem I.4.8: Suppose n ∈ N and
put ζ := e2πi/n ∈ S1, i.e. ζn = 1. Moroever, let f : S1 → S1 be a continuous map
such that f(ζz) = ζf(z), for all z ∈ S1. Then deg(f) ≡ 1 mod n. In particular,
f is not nullhomotopic, provided n ≥ 2. Hint: Replace the antipodal map A in
the proof of Theorem I.4.8 by the rotation R : S1 → S1, R(z) := ζz.

20. Let Gα be groups, α ∈ A. Show that the canonical homomorphism,⊕
α∈A

Gab
α

∼=−→
(
∗

α∈A
Gα

)ab

,

is an isomorphism. Here Gab := G/[G,G] denotes the Abelization of G.

21 (Hamilton’s quaternions). Let H denote the set of all complex (2 × 2)-
matrices of the form ( z w

−w̄ z̄ ), z, w ∈ C. Show that, with respect to ordinary matrix
addition and multiplication, H satisfies all axioms of a field, except commutativity
of multiplication (H is a division ring/skew field). Put

1 := ( 1 0
0 1 ) , i :=

(
i 0
0 −i
)
, j := ( 0 1

−1 0 ) , k := ( 0 i
i 0 ) .

Show that {1, i, j,k} is a basis of the real vector space underlying H. Check that
i2 = j2 = k2 = −1, and

ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.
We use the algebra homomorphisms C→ H, z 7→ ( z 0

0 z̄ ), and R→ H, a 7→ ( a 0
0 a ),

to regard R and C as subalgebras of H, respectively. For x ∈ H, the conjugate
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quaternion is defined by x̄ := x∗ where x∗ denotes the conjugate transposed
of the matrix x. For instance, 1̄ = 1, ī = −i, j̄ = −j and k̄ = −k. Show
¯̄x = x, x+ y = x̄ + ȳ and xy = ȳx̄ for alle x, y ∈ H, and ax = ax̄ for all
a ∈ R and x ∈ H. Furthermore, show that x̄ = x iff x ∈ R ⊆ H. The real
part of x ∈ H is defined by Re(x) := (x + x̄)/2 = tr(x)/2 ∈ R. In particular,
Re(1) = 1 and Re(i) = Re(j) = Re(k) = 0. Show Re(xy) = Re(yx) for all
x, y ∈ H. Show that 〈x, y〉 := Re(xȳ) defines in Euclidean inner product on
H such that {1, i, j,k} becomes an orthonormal basis. Verify 〈xy, z〉 = 〈y, x̄z〉,
〈yx, z〉 = 〈y, zx̄〉 and 〈x̄, ȳ〉 = 〈x, y〉, for all x, y, z,∈ H. Show that the associated
norm, |x|2 := 〈x, x〉 = xx̄ = x̄x, is multiplicative, |xy| = |x||y|. Conclude that
multiplication in H restricts to a group structure on S3 = {x ∈ H : |x| = 1}.
Observe that this group coincides with SU2.

22. We consider Hn := H × · · · × H as a left H-modul, i.e. for λ ∈ H and
(x1, . . . , xn) ∈ Hn we put λ(x1, . . . , xn) := (λx1, . . . , λxn). Show that x ∼ y ⇔
∃λ ∈ H : λx = y defines an equivalence relation on Hn+1 \ {0}. Show that the
quotient space HPn :=

(
Hn+1 \ {0}

)
/∼ is a compact Hausdorff space. Construct

a continuous map ϕ : S4n−1 → HPn−1 such that

HPn ∼= HPn−1 ∪ϕ D4n.

Conclude that HPn is simply connected. Moreover, observe that HP1 ∼= S4. Hint:
Proceed as in the complex case.

23. Consider S3 := {x ∈ H : |x| = 1} and

I := 1⊥ = {x ∈ H : x̄ = −x} = {x ∈ H : Re(x) = 0} ∼= R3,

see Problem 21. Show that for x ∈ S3 and y ∈ I the expression λx(y) := xyx̄
defines an R-linear map λx : I→ I. Show that λx is an isometry, i.e. |λx(y)| = |y|
for all x ∈ S3 and y ∈ I. Conclude that we obtain a continuous map λ : S3 → SO3.
Show that λ is a surjective homomorphism of groups with kernel ker(λ) = {±1}.
Show that λ factorizes to a homeomorphism, RP3 ∼= SO3. Hint for the surjectivity
of λ: For ±1 6= x ∈ S3 the isometry λx is a rotation by the angle 2 arccos(Re(x))
around the axis spanned by x− x̄. To see this verify:

(i) The points on the subspace spanned by x− x̄ are fixed points of λx.
(ii) If y ∈ I and 〈y, x − x̄〉 = 0, then 〈x, y〉 = 0, hence yx̄ = xy and thus

2〈λx(y), y〉 = 2
(
2(Re(x))2 − 1

)
|y|2.

(iii) Use the relation arccos(2t2 − 1) = 2 arccos(t), 0 ≤ t ≤ 1, to show that
the angle between λx(y) and y is 2 arccos(Re(x)).

Finally, recall that every element of SO3 can be written as a product of rotations.
Alternatively, one can observe that the differential of the map λ : S3 → SO3

at the identity is invertible and use the implicit function theorem to conclde that
the image of λ contains a neighborhood of the identity in SO3. Since λ is a
homomorphism and since SO3 is connected, this implies that λ is onto.
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24. Determine the fundamental group of X := (S1 × S1)/({1} × S1).

25. Let M1 and M2 be two connected topological n-manifolds.2 Choose open
subsets Ui ⊆ Mi, homeomorphisms ϕi : Ui → Rn and put Ṁi := Mi \ ϕ−1

i (Bn),

i = 1, 2. Consider A := ϕ−1
2 (Sn−1) ⊆ Ṁ2 and the map ϕ : A→ Ṁ1, ϕ := ϕ−1

1 ◦ϕ2.
Show that the connected sum, M1]M2 := Ṁ1 ∪ϕ Ṁ2, is a topological n-manifold.
Moreover, show that π1(M1]M2) ∼= π1(M1) ∗ π1(M2), provided n ≥ 3.

26. Let L1, . . . , Ln be mutually different lines through the origin in R3. De-
termine π1

(
R3 \ (L1 ∪ · · · ∪ Ln)

)
.

27 (Geometric realization of simplicial complexes). An (abstract) simplicial
complex, ∆, is a set of finite subsets of some set S, i.e. ∆ ⊆ 2S, with the following
property: if σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆. If σ ∈ ∆ has precisely k+ 1 elements,
then σ is said to be of dimension k and is called k-simplex of ∆. 0-simplices
are also called vertices of ∆, the set of all vertices will be denoted by V (∆). A
simplicial complex is called finite if ∆ is finite, equivalently, V (∆) is finite.

A simplicial map, f : ∆′ → ∆, between two simplicial complexes, ∆′ and ∆, is
a map f : V (∆′) → V (∆) such that f(σ) ∈ ∆ for all σ ∈ ∆′. Convince yourself,
that the composition of simplicial maps is again a simplicial map, and so is the
identical map, id∆. A simplicial map f : ∆′ → ∆ is called isomorphism, if there
exists a simplicial map g : ∆→ ∆′ such that f ◦ g = id∆ and g ◦ f = id∆′ .

A subset ∆′ ⊆ ∆ of a simplicial complex ∆ is called a subcomplex if ∆′ is a
simplicial complex itself. In this case the natural inclusion V (∆′) → V (∆) is a
simplicial map ∆′ → ∆. Let Skk(∆) ⊆ ∆ denote the k-skeleton of ∆, i.e. set of
all simplices of dimension at most k. Observe that Skk(∆) is subcomplex of ∆.

The geometric realization, |∆|, of a finite simplicial complex ∆ with vertices
V := V (∆), is the compact topological space

|∆| :=
{
λ : V → R

∣∣ λ ≥ 0,
∑

v∈V λ(v) = 1, supp(λ) ∈ ∆
}
⊆ RV ∼= Rn,

where n denotes the cardinality of V . Show that

|∆| =
⋃
σ∈∆

〈σ〉

where 〈σ〉 denotes the convex hull of the unit vectors in RV corresponding to σ ⊆
V . The geometric realization of a simplicial map, f : ∆′ → ∆, is the continuous
map |f | : |∆′| → |∆| where |f |(λ′)(v) :=

∑
f(v′)=v λ

′(v′). Show that this is indeed
well defined and continuous. Moreover, verify

|f ◦ g| = |f | ◦ |g| and | id∆ | = id|∆|

for any other simplicial map g : ∆′′ → ∆′. Conclude that the geometric realization
of a simplicial isomorphism is a homeomorphism.

2Recall that a topological n-manifold is a paracompact Hausdorff space which is locally
homeomorphic to Rn.
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28.

(i) Let ∆n denote the abstract simplicial complex consisting of all subsets
of {0, . . . , n} and show |∆n| ∼= Dn.

(ii) Let ∆̇n = Skn−1(∆n) denote the abstract simplicial complex consisting
of all subsets of {0, . . . , n} which have at most n elements, and show
|∆̇n| ∼= Sn−1.

(iii) Describe an abstract simplicial complex ∆ with geometric realization
|∆| ∼= S1 × S1.

29. Let ∆ be a finite abstract simplicial complex. Show that the geometric
realization of its k-skeleton can be obtained from the geometric realization of the
(k − 1)-skeleton by attaching simplicies |∆k| along maps defined on |∆̇k|. More
precisely, show that

| Skk(∆)| ∼= | Skk−1(∆)| ∪ϕ
⊔
|∆k|

for an appropriate continuous map ϕ :
⊔
|∆̇k| → | Skk−1(∆)|. Conclude that the

inclusion Sk2(∆)→ ∆ induces an isomorphism

π1

(
| Sk2(∆)|, x0

) ∼= π1

(
|∆|, x0

)
.

30. A simplicial complex ∆ is called connected if its geometric realization, |∆|,
is (path)connected. Show that ∆ is connected if and only if the following holds
true: for any two vertices x, y of ∆ there exist vertices x = x0, x1, . . . , xn = y
such that {xi−1, xi} is a simplex of ∆, for all i = 1, . . . , n. Hint: Show that ∆ is
connected iff its 1-skeleton Sk1(∆) is connected.

31 (Trees). A tree is a simply connected simplicial complex of dimension at
most one.3 Suppose T is a tree in a 1-dimensional simplicial complex ∆, i.e. T
is a subcomplex of ∆. Show that the natural quotient map |∆| → |∆|/|T | is
a homotopy equivalence. Conclude that a 1-dimensional simplicial complex is a
tree iff its is contractible.

32 (Maximal trees). Observe that every simplicial complex ∆ contains a max-
imal (with respect to inclusion of subcomplexes) tree. Assuming ∆ to be con-
nected, show that a tree in ∆ is maximal iff it contains all vertices of ∆.

33 (Fundamental group of 1-dimensional simplicial complexes). Let ∆ be a
connected 1-dimensional simplicial complex, suppose T is a maximal tree in ∆,
and let e1, . . . , ek denote the 1-simplices of ∆ which are not contained in T . Show
that the fundamental group of ∆ is free of rank k with generators corresponding
to e1, . . . , ek. Moreover, show that χ(∆) = 1− k where the Euler characteristics
χ(∆) is defined as the number of 0-simplices minus the number of 1-simplices of
∆. Conclude that a connected 1-dimensional simplicial complex is a tree if and
only if χ(∆) = 1.

3A simplicial complex is called simply connected if its geometric realization is simply
connected.
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34 (Fundamental group of general simplicial complexes). Let ∆ be a con-
nected simplicial complex, and suppose T is a maximal tree in ∆. Let e1, . . . , ek
denote the 1-simplices of ∆ which are not contained in T , and fix an orienta-
tion for each ei. Moreover, let σ1, . . . , σl denote all 2-simplices of ∆. For every
j ∈ {1, . . . , l} define an element rj in the free group F ({e1, . . . , ek}) by follow-
ing the three edges (i.e. 1-simplices) of σj consecutively (starting at any vertex,
proceeding according to either orientation), writing down ei or e−1

i for each edge
which happens to be among the e1, . . . , ek, and disregarding the others (i.e. those
edges which are in T ). More precisely, we write ei if the orientations match and
e−1
i if they don’t. Show that:

π1(|∆|) ∼= 〈e1, . . . , ek | r1, . . . , rl〉.
Hint: Use the van Kampen theorem, Problem 29 and Problem 33.

35. Use the previous problem to compute the fundamental groups of the 2-
dimensional torus and the Kleinian bottle.

36. Suppose n, p ∈ N, n ≥ 2, q1, . . . , qn ∈ Z are such that p and qi are coprime,
i = 1, . . . , n, and let L := L(p; q1, . . . , qn) denote the associated lense space. Show
that [L,K] = 0, where K denotes the Kleinian bottle. In other words, show
that any two continuous maps L → K are homotopic. Hint: Show that every
homomorphism π1(L)→ π1(K) is trivial, and use the covering R2 → K.

37 (Nielsen–Schreier theorem). Show that every subgroup of a free group is
free. Proceed as follows:

A 1-dimensional CW complex is topological space X which is homeomorphic
to space obtained by attaching any number of 1-cells to a discrete space, i.e.

X ∼= X0 ∪ϕ
⊔
λ∈Λ

D1

where X0 is a discrete space, Λ is an index set, D1 = [−1, 1] denotes the 1-
dimensional disk, ϕ :

⊔
λ∈Λ S

0 → X0 is a (continuous) map, and S0 = ∂D1 =
{−1, 1} denotes the 0-dimensional sphere. Both, X0 and Λ, may be infinite.
Thus, a 1-dimensional CW complex is the same thing as a graph.

(i) Show that 1-dimensional CW complexes are locally contractible, whence
locally path connected and semi locally simply connected.

(ii) Show that every covering of a 1-dimensional CW complex is a 1-dimen-
sional CW complex.

(iii) Show that any compact subset of X intersects only finitely many of the
attached disks.

(iv) Show that the fundamental group of a connected 1-dimensional CW
complex is free. Hint: Use the lemma of Zorn and (iii) to show that
there exists a subset Λ′ ⊆ Λ such that T := X0 ∪ϕ

⊔
λ∈Λ′ D

1 is simply
connected (maximal tree); observe that X/T ∼=

∨
λ∈Λ\Λ′ S

1; and show

that the canonical projection, X → X/T , is a homotopy equivalence.
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Given a subgroup G of a free group F , construct a connected 1-dimensional CW
complex X such that π1(X) ∼= F , consider a covering X̃ → X with characteristic
subgroup G, and recall that π1(X̃) ∼= G.

38. Determine all 2 and 3-sheated connected coverings of S1 ∨ S1. Which of
these coverings are normal? Hint: Determine all conjugacy classes of subgroups
in Z ∗ Z of index 2 and 3.

39 (Orientation bundle). Let p : E → X be a real vector bundle of rank k.4

The orientation bundle of E is a 2-fold covering, OE → X, which can be described
in either of the following ways:

(i) OE =
⊔
x∈X OEx , where OEx denotes the set (with two elements) of

orientations of the vector space Ex. The topology is defined using vec-
tor bundle charts E|U ∼= U × Rk and declaring the induced bijections,
OE|U =

⊔
x∈U OEx

∼= U ×ORk , to be homeomorphisms.
(ii) OE = P/∼, where P denotes the frame bundle5 of E, and two frames

over x ∈ X are considered equivalent iff they define the same orientation
of the vector space Ex.

(iii) OE = (ΛkE \ 0)/R+, where ΛkE \ 0 denotes the k-fold exterior pro-
dukt6 with the zero section removed, and the group R+ acts by scalar
multiplication on (the fibers of) ΛkE.

Show that these definition actually describe the same, i.e. canonically isomorphic,
2-fold coverings of X. Moreover, show that the following are equivalent:

(iv) One can choose orientations of each fiber Ex which depend continuously
on x ∈ X, in the sense of (i).

(v) The covering OE → X is trivializable.
(vi) The line bundle7 ΛkE is trivializable.

(vii) E admits a vector bundle atlas whose transition functions take values
in SL(Rk).

(viii) E admits a vector bundle atlas whose transition functions take values
in GL+(Rk).

4Recall that a real vector bundle of rank k is a continuous map p : E → X together with
the structure of a k-dimensional real vector space on each fiber Ex := p−1(x), x ∈ X, which
is locally trivial in the following sense: Every point in X admits a neighborhood U such that
there exists a fiberwise linear homeomorphism ϕ : E|U := p−1(U)→ U × Rn, i.e. pr1 ◦ϕ = p|U
and ϕx : Ex → {x} × Rn = Rn is a linear isomorphism, for all x ∈ U .

5P :=
{

(e1, . . . , ek) ∈ E × · · · ×E
∣∣ ∃x ∈ X : e1, . . . , ek is a basis of Ex

}
with the topology

induced from E × · · · × E.
6ΛqE :=

⊔
x∈X ΛqEx is a vector bundle over X obtained by replacing each fiber Ex with its

q-fold exterior product. The topology on ΛqE can be described by using vector bundle charts
E|U ∼= U × Rk and declaring the induced fiber wise linear bijections, ΛqE|U =

⊔
x∈U ΛqEx

∼=
U × ΛqRk = U × R(k

q) to be vector bundle charts for ΛqE.
7i.e. vector bundle of rank 1.
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If these equivalent conditions are satisfied, then the vector bundle E is called
orientable. Any trivializationOE ∼= X×{±1} of the orientation bundle (covering)
is called an orientation of E. How many orientations, does an orientable vector
bundle possess? Provide conditions on X which ensure that every vector bundle
over X is orientable.

40. Let M be a smooth manifold of dimension n. The covering M̃ := OTM
of M is called the orientation covering of M , cf. the last problem. Show that the
following are equivalent:

(i) M admits an oriented atlas, i.e. an atlas with orientation preserving
transition functions.

(ii) TM admits a vector bundle atlas whose transition functions take values
in GL+(Rn).

(iii) TM admits a vector bundle atlas whose transition functions take values
in SL(Rn).

(iv) The line bundle ΛnTM is trvializeable.
(v) The orientation covering M̃ →M is trivializeable.

Conclude that every simply connected manifold is orientable. More generally, if
M is connected and its fundamental group does not admit a subgroup of index
two, then M is orientable.

41. Let M̃ →M be the orientation covering of a smooth n-manifold M . Show
that M̃ is orientable. Is the non-trivial deck transformation, M̃ → M̃ , orientation
preserving or reversing?

42 (Algebraic Morse inequalities). Let C∗ be a finitely generated chain com-
plex. Show that

(−1)k
∑
q≤k

(−1)qbq(C) ≤ (−1)k
∑
q≤k

(−1)q rank(Cq)

for all k. Here bq(C) := rank(Hq(C)) denotes the q-th Betti number of C∗. What
do we get for k →∞?

43. For an endomorphism of a finitely generated abelian group, ϕ : A → A,
define its trace by

tr(ϕ) := trQ
(
A⊗Z Q

ϕ⊗idQ−−−→ A⊗Z Q
)
.

Show that this trace has the following properties:

(i) tr(ϕ) ∈ Z.
(ii) tr(idA) = rank(A).

(iii) tr(ϕ+ ψ) = tr(ϕ) + tr(ψ), for any two endomorphisms ϕ, ψ : A→ A.
(iv) tr(ϕ ◦ ψ) = tr(ψ ◦ ϕ), for any two endomorphisms ϕ, ψ : A→ A.
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(v) tr(ϕ) + tr(ρ) = tr(ψ), for every commutative diagram

0 // A //

ϕ

��

B //

ψ

��

C //

ρ

��

0

0 // A // B // C // 0

of finitely generated abelian groups with exact rows.

For an endomorphism of a finitely generated graded abelian group, ϕ : A∗ → A∗,
define its graded (super) trace as str(ϕ) :=

∑
q(−1)q tr(ϕq : Aq → Aq). Spell out

and prove analoguous properties of this graded trace.

44. Suppose ϕ : C∗ → C∗ is a chain map on a finitely generated chain complex,
and let ϕ∗ : H∗(C) → H∗(C) denote the induced homomorphism in homology.
Show that

str
(
ϕ : C∗ → C∗

)
= str

(
ϕ∗ : H∗(C)→ H∗(C)

)
.

Hint: Apply the graded version of Problem 43(v) to

0 // B∗ //

ϕ|B∗
��

Z∗ //

ϕ|Z∗
��

H∗(C) //

ϕ∗
��

0

0 // B∗ // Z∗ // H∗(C) // 0

and

0 // Z∗ //

ϕ|Z∗
��

C∗
∂ //

ϕ

��

(ΣB)∗ //

Σϕ

��

0

0 // Z∗ // C∗
∂ // (ΣB)∗ // 0

where (ΣB)q := Bq−1. What do we get for ϕ = idC∗?

45 (Nine Lemma). Consider a commutative diagram of abelian groups

0 0 0

0 // A //

OO

B //

OO

C //

OO

0

0 // D //

OO

E //

OO

F //

OO

0

0 // G //

OO

H //

OO

I //

OO

0

0

OO

0

OO

0

OO
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with exact rows. Show that if two of the three columns are exact, then so is the
third.

46 (Simplicial homology). Let ∆ be a finite abstract simplicial complex. Let
Sq(∆) denote the (finite) set of q-simplices of ∆ and let Cq(∆) := Z[Sq(∆)]
denote the free abelian group generated by Sq(∆). For each q, fix an ordering of
the vertices of each q-simplex σ ∈ Sq(∆), i.e. vσ0 , . . . , v

σ
q shall be all vertices of

σ. For τ ∈ Sq−1(∆) with τ ⊆ σ we put ε(σ, τ) := 1 if vτ0 , . . . , v
τ
q−1 followed by

the one missing vertex of σ coincides with the ordering of the vertices vσ0 , . . . , v
σ
q

up to an even permutation, and ε(σ, τ) := −1 otherwise.8 Suppose ρ ∈ Sq−2(∆)
and σ ∈ Sq(∆) such that ρ ⊆ σ. Show that there exist precisely two simplices
τ ∈ Sq−1 such that ρ ⊆ τ ⊆ σ. Denoting these two simplicies by τ ′ and τ ′′,
respectively, show that

ε(σ, τ ′)ε(τ ′, ρ) + ε(σ, τ ′′)ε(τ ′′, ρ) = 0.

Define a homomorphism ∂ : Cq(∆)→ Cq−1(∆) on basis elements σ ∈ Sq(∆) by

∂σ :=
∑

τ∈Sq−1(∆), τ⊆σ

ε(σ, τ)τ.

Show that ∂2 = 0 and define simplicial homology of ∆ as the homology of this
(simplicial) complex, Hq(∆) := Hq(C∗(∆), ∂). Conclude that∑

q

(−1)q rankHq(∆) =
∑
q

(−1)q]Sq(∆).

One can show that Hq(|∆|) = Hq(∆) and thus χ(|∆|) =
∑

q(−1)q]Sq(∆).

47. Compute the simplicial homology of the simplicial complexes ∆n and ∆̇n

in Problem 28. Hint: Consider the chain homotopy h : Cq(∆
n) → Cq+1(∆n)

defined on generators σ ∈ Sq(∆n) by

h(σ) :=
∑

ρ∈Sq+1(∆n), σ⊆ρ

ε(ρ, σ)ρ

and show that ∂h+ h∂ = (n+ 1) id on Cq(∆
n), for all q ≥ 1.

48. Choose an abstract simplicial complex ∆ such that |∆| ∼= RP2 and com-
pute H∗(∆).

49 (Finite dimensional Hodge decomposition). Let

· · · ← Vq−1
∂q←− Vq

∂q+1←−− Vq+1 ← · · ·
be a complex of finite dimensional real/complex vector spaces, i.e. each Vq is
finite dimensional and ∂q∂q+1 = 0. Suppose each Vq is equipped with a Euk-
lidean/Hermitian inner product, and let ∂∗q : Vq−1 → Vq denote the adjoint of

8Note that these signs ε(σ, τ) only depend on the orientation of the simplices σ and τ
spezified by the ordering of their vertices.
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∂q : Vq → Vq−1. Moreover, put ∆q := ∂q+1∂
∗
q+1 + ∂∗q∂q. Show that we have an

orthogonal decomposition

Vq = img(∂∗q )⊕ ker(∆q)⊕ img(∂q+1)︸ ︷︷ ︸
ker(∂q)

.

Conclude that each homology class in Hq(V ) := ker(∂q)/ img(∂q+1) has a unique
(harmonic) representative in ker(∆q), that is, Hq(V ) = ker(∆q).
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