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Commuting graphs of semigroups

Let S be a finite non-commutative semigroup.

The commuting graph of S, denoted G(S), is the simple graph such
that:

e S\ Z(S) is the set of vertices, where

Z(S)={xeS:xy=yxforall y € S}.

e {x,y} is an edge if and only if x # y and xy = yx.
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0-Rees matrix semigroup over a group

Let G be a group, / and A be index sets, and P be a regular A x | matrix
with entries from G°.

Let py; be the (A, i)-th entry of P.
A 0-Rees matrix semigroup over a group, denoted My[G; I, A; P], is
the set (/ x G x A) U {0} with the multiplication

(ia XPNj Y, ,U) if P)j 7é 07

i7X’)\ .7 ) — .
( YUy, 1) {0 £ oy = 0,

0(i,x,\) = (i,x,A)0 = 00 = 0.
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Zeros are important

Lemma

Let P and Q be regular A x | matrices with entries from G°. If for all
i€l and A € A\ we have py; = 0 if and only if g\; = 0, then the graphs
G(Mo[G; I, A; P]) and G(Mo|G; I, N\; Q]) are isomorphic.

Example

Let e,g,h € G.
e 0 O x 0 0
0 g h ANNNANS 0 x x
e 0 ¢ x 0 x
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Reordering columns and rows implies isomorphism

Lemma

Let Q be the matrix obtained from P by reordering the columns and rows
of P. Then the graphs G(My[G; I, N\; P]) and G(Mo|[G; I, \; Q]) are
isomorphic.

Example

o
X

o
X

o
X
o
X
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|/| = |A| = 1: characterization of G(My[G; I, A; P])

o Mo[G;I,A;P] ~ G°.

@ Suppose that G is non-abelian. Then the graphs G(My[G; I, A; P])
and G(G) are isomorphic.
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[/| > 1 or |A] > 1, P has no zeros: connectedness

o Z(My[G;I,A; P]) = {0}.

e My[G; I, A; 1] is non-commutative.

Theorem (P., 2024)
e G(Mo[G;I,A; P]) is not connected.

@ The connected components of G(My[G; I, \; P]) are the graphs
induced by {i} x G x {\}, iel, Xe .

@ Let C be a connected component of G(My[G; I,A\; P]). Then

C~ K‘G| if G is abelian,
| Kiz(6)|VG(G) if G is non-abelian.
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[/| > 1 or |A] > 1, P has zeros: 0-closure method

Example
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[/| > 1 or |A] > 1, P has zeros: 0-closure method
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[/| > 1 or |A] > 1, P has zeros: 0-closure method

Example
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[/| > 1 or |A] > 1, P has zeros: 0-closure method

Example
0 x 0 0 x O 0
00 x| ™ Jo o x| ™ o
0 O x 0 0 X
0 x 0
x 0 0

o O X

o X ©
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[/| > 1 or |A] > 1, P has zeros: 0-closure method

Example
0 x O 0 x O 0 x 0
00 x| M Jo o x| ™ |0 o x
0 O x 0 0 x 0 0
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[/| > 1 or |A] > 1, P has zeros: 0-closure method

Example
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[/| > 1 or |A] > 1, P has zeros: 0-closure method

——
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o X O
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0 x 0

x 0 0

*
ool
M=

*

S
T

C(\, i) = (# submatrices constructed) — 1 =2
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[/| > 1 or |A] > 1, P has zeros: connectedness

Theorem (P., 2024)
The following conditions are equivalent:
e G(My[G;I,A; P]) is connected.

@ Forall i € I and \ € N\ the O-closure starting at (A, i) is P.

e Forsome i €| and A € N\ the O-closure starting at (X, i) is P.
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|dentifying connected components of G(M,[G; I, A\; P))

Example

1 2 3 4 5
1[x x x 0 x]
2|10 X x X X
3|x 0 x x x
4|1x 0 x 0 x
5|x x 0 x 0
6| x x x x 0
7 [x X X X X]
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|dentifying connected components of G(M,[G; I, A\; P))

Example (cont.)

2 4 1 3 5
1| x 0 [ x x X
30 X | X X X
s 4110 0 | x x x
2| X x |0 x X
5| x X |x 0 0
6| x X | x x 0
7| x X | X X X
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Example (cont.)
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|dentifying connected components of G(M,[G; I, A\; P))

Example (cont.)
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|dentifying connected components of G(M,[G; I, A; P])

Example (cont.)

2 4 1 3 5
1i/'x 0 | x| x X
3]0 X | x| x X The subgraph induced by
4|0 0 | x| x x {2,4} x G x {1,3,4} isa
AN
2 x x |0] x x connected component of
5l x x| x| 0 0 G(Mo[G; 1, A; P]).
6] x x [ x| x 0
T X X | X | X X|
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|dentifying connected components of G(M,[G; I, A; P])

Example (cont.)

2

XX XX [ X o
XX XX X [X =
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|dentifying connected components of G(M,[G; I, A; P])

Example (cont.)

2

The subgraph induced by
({1} x G x {1,3,4})
U({2,4} x G x {2}) isa
connected component of
G(Mo[G; I, A; P)).

XX XX [ X o
XX XX X [X =

~No N B W=
XX X[IX|[©O o X
XX Ol X |[X X X W
X[l olX|X X X @&
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|dentifying connected components of G(M,[G; I, A; P])

Example (cont.)

2 4 1 3 5
1| X 0 X X X
31 0 X X X X
4]0 0 X X X
2| X X 0 X X
5(Ix| X X 0 0
6| X X X X 0
7_- X | X | X X |
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|dentifying connected components of G(M,[G; I, A; P])

Example (cont.)

2 4 1 3 5
1| X 0 X X X
3]0 X X X X )

The subgraph induced by

41 0 0 X X X .
N 0 W is a connected
s\s = 0 o component of G(Mo[G; I, A; P]).
6| X X X X 0
7 _- X | X | X X |
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[/| > 1 or |A] > 1, P has zeros: diameter

Let H = (V, E) be a simple graph.

e The diameter of H, denoted diam(H), corresponds to the maximum
distance between vertices of H, that is,

max{d(u,v) : u,v € V}.
@ The diameter of H is finite if and only if H is connected.

Theorem (P., 2024)
Suppose that G(My[G; I, A; P]) is connected. Then

diam(G(Mp[G; I,\; P])) = max{{(\,i):i€l, A€ Nand pyj=0}.

] 17/31



[/| > 1 or |A] > 1, P has no zeros: clique number

Let H = (V, E) be a simple graph.

e A clique is a subset K C V such that {u, v} € E, for all distinct
uveK.

@ The clique number of H, denoted w(H), is the largest integer r such
that H has a clique K such that |K|=r.

Theorem (P., 2024)

|G| if G is abelian,

w(G(Mo[G; I,A; P])) = {w(g(c)) +|Z(G)| if G is non-abelian.
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[/| > 1 or |A| > 1, P has zeros: clique number

Theorem (P., 2024)
@ Suppose that G is abelian. If

is a submatrix of P and

0 0 0 E] [8 8]

are not submatrices of P, then

o o X
o X O

w(G(Mo[G; I, A; P])) = 3]G|.




[/| > 1 or |A| > 1, P has zeros: clique number

Theorem (cont.) (P., 2024)
@ Suppose that G is abelian. If

is a submatrix of P and

oo g

are not submatrices of P, then

w(G(Mo[G; I, A; P])) = 2|G].




[/| > 1 or |A| > 1, P has zeros: clique number

Theorem (cont.) (P., 2024)

@ For the remaining cases, we have

w(G(Mo[G; I,A; P])) = |G| - max{nm : Opxpm is a submatrix of P}.




[/| > 1 or [A] > 1, P has no zeros: chromatic number

Let H = (V, E) be a simple graph.

@ The chromatic number of H, denoted x(H), is the minimum
number of colours necessary to colour the vertices of H in such a way
that no adjacent vertices have the same colour.

Theorem (P., 2024)

|G| if G is abelian,

X(G(Mo[G: 1, A\; P])) = {X(g(g)) +1|Z(G)| if G is non-abelian.
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[/| > 1 or |A] > 1, P has zeros: chromatic number

Theorem (P., 2025)
e Suppose that G(My[G; I, \; P]) is connected. Then

~0}|.

X(G(Mo[G; 1A P])) < |G- |{(i,A) € I x A: py
e Suppose that G(Mo[G; I, \; P]) is not connected. Then
X(Q(Mo[G; I, A; 'D])) [ A X XXX
< |G| -max{2,z,...,2z,}, bk
><.'.'..>< X'.'."X
where for each i € {1,...,n} S IR
><......>< .. x A
zi=[{(i,A) €l xN:py=0 s

and py; is an entry of Ai}|.
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[/| > 1 or |A] > 1, P has no zeros: girth

Let H = (V, E) be a simple graph.

@ The girth of H, denoted girth(H), is the length of a shortest cycle
contained in H.

Theorem (P., 2024)
G(Mo|G; I,A; P]) has cycles if and only if |G| > 3, in which case

girth(G(Mo[G; I,A; P])) = 3.
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[/| > 1 or |A] > 1, P has zeros: girth

Theorem (P., 2024)
e Suppose that |G| > 3. Then

girth(G(Mo[G; I, A; P])) = 3.

e Suppose that |G| = 2. Then G(My[G; I, A; P]) contains cycles if and
only if P contains more than one zero entry, in which case

girth(G(Mo[G; I, A; P])) = 3.
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[/| > 1 or |A] > 1, P has zeros: girth

Theorem (cont.) (P., 2024)

@ Suppose that |G| = 1. Then G(My[G; I, \; P]) contains cycles if and
only if at least one of the following matrices is a submatrix of P.

girth(G(Mo[G; I, A; P])) =

o0 [8] {o
0 0

girth(G(Mol[G; I, A; P])) =

0 0 x x
x x 0 0

X X © o ~—




[/| > 1 or |A] > 1, P has no zeros: knit degree

Let S be a finite non-commutative semigroup.

@ A path a; —ap — -+ — ax in G(S) is called a left path if a; # ax and
aira; = aga;, forall i € {1,... k}.

@ Suppose G(S) has a left path. The knit degree of S, denoted kd(S),
is the length of a shortest left path in G(S).

Theorem (P., 2024)
G(Mop[G; I, A; P]) contains no left paths. J
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[/| > 1 or |A] > 1, P has zeros: knit degree

Theorem (P., 2024)

G(Mo[G; I, A\; P]) contains left paths if and only if at least one of the
following conditions is satisfied:

° |G| > 1.

@ At least one of the following matrices is a submatrix of P.
0
0 0 M

kd(Mo[G; I,A; P]) = 1.

In this case,
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Completely 0-simple semigroups

Theorem (Rees—Suschkewitsch Theorem)

A semigroup S is completely 0-simple if and only if there exist a group G,

index sets | and N\, and a regular \ x | matrix P with entries from G° such
that S ~ My|[G; I, A; P].
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Commuting graph of completely 0-simple semigroups

Theorem (P., 2024)

@ For each n € N, there is a completely 0-simple semigroup S such that

w(G(S)) = n.
@ For each n € N, there is a completely 0-simple semigroup S such that
x(6(5)) =n.

@ For each n € N such that n > 2, there is a completely 0-simple
semigroup S such that diam(G(S)) = n.

@ Let S be a finite non-commutative completely 0-simple semigroup. If
G(S) contains cycles, then girth(G(S)) € {3,4}.

@ Let S be a finite non-commutative completely 0-simple semigroup. If
G(S) contains left paths, then kd(S) = 1.
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Thank youl!



