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93rd Séminaire Lotharingien de Combinatoire
Pocinho, March 24, 2025



Motivation

• Stanley introduced the notion of differential posets, as a generalization
of Young’s lattice of integer partitions.

• Young’s lattice Y and the Young–Fibonacci lattice YF are the extreme
examples of differential posets.

• Young’s lattice Y is associated with

– symmetric groups,

– ring of symmetric functions,

– character rings of symmetric groups.

Question Are there similar algebraic structures associated with the
Young–Fibonacci lattice YF?



Plan

1. Differential posets

2. Properties of character table of symmetric groups

3. Young–Fibonacci algebras and YF-analogue of the ring of symmetric
functions

4. YF-character tables
5. YF-character rings

Notations
Let (P,≤) be a partially ordered set (poset for short).

• Let x, y ∈ P . We say that x is covered by y, denoted by x ⋖ y, if
x < y and there is no z ∈ P such that x < z < y.

• For x ∈ P , we put

C+(x) = {y ∈ P : x⋖ y}, C−(x) = {y ∈ P : y ⋖ x}.



Differential posets

Definition (Stanley) A poset P is called differential if it satisfies the
following three conditions:
(1) P is a graded poset with #Pn < ∞ for n = 0, 1, 2, . . . , and has

the minimum element 0̂.
(2) If x 6= y in P , then #

(
C+(x) ∩ C+(y)

)
= #

(
C−(x) ∩ C−(y)

)
.

(3) If x ∈ P , then #C+(x) = 1 + #C−(x).

Let P be a graded poset satisfying Condition (1) above. Let CP
be the complex vector space with a basis P and define linear maps
U,D : CP → CP by

Ux =
∑

y∈C+(x)

y, Dx =
∑

z∈C−(x)
z.

Proposition (Stanley)

P is differential⇐⇒ DU − UD = I.



Young’s lattice Y
We define a partital ordering ≥ on the set Y of all partitions by

λ ≥ µ⇐⇒ λi ≥ µi (i = 1, 2, . . . )⇐⇒ D(λ) ⊃ D(µ).

The resulting poset Y, called Young’s lattice, is a differential poset.
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Young–Fibonacci lattice YF
The Young–Fibonacci lattice is the set YF of all finite words of 1 and

2, with the partial order given by the following covering relations:

C−(1v) = {v}, C−(2v) = C+(v).

Then YF is a differential poset.
Remark #YFn is the nth Fibonacci number.

11111 2111 1211 1121 221 122 212 1112

1111 211 121 22 112

111 21 12

11 2

1

∅



Representation theory of symmetric groups

Let Sn be the symmetric group of n letters {1, 2, . . . , n}. It is classi-
cally known that

• The irreducible representations ofSn over C are indexed by partitions
of n:

Irr(Sn)←→ Yn, [Sλ]←→ λ,

where Irr(Sn) is the set of isomorphism classes of irrducible repsen-
tations of Sn, and Yn is the set of partitions of n.

• dimSλ = fλ = number of standard tableaux of shape λ.

• The restriction of Sλ to the subgroupSn−1 = {σ ∈ Sn : σ(n) = n}
is decomposed as

ResSn
Sn−1

Sλ ∼=
⊕
µ⋖λ

Sµ.



Ring of symmetric functions

Let R(Sn) be the Grothendieck group of representations of Sn:

R(Sn) =
⊕
λ∈Yn

Z[Sλ].

The direct sum of the Grothendieck groups

R(S•) =
⊕
n≥0

R(Sn)

has a structure of commutative, associative, graded ring with respect to

[V ] ◦ [W ] =
[
Ind

Sm+n
Sm×Sn

(V ⊠W )
]
,

where V and W are representations of Sm and Sn respectively. More-
over, the graded ring R(S•) is isomorphic to the ring Λ of symmetric
functions via the correspondence [Sλ] 7→ sλ (Schur function).

R(S•) ∼= Λ, [Sλ]←→ sλ.



Character table of symmetric groups

The character table
(
χλα

)
α,λ∈Yn

is the transition matrix between Schur

functions {sλ}λ∈Yn
and power-sum functions {pα}α∈Yn

:

pα =
∑
λ∈Yn

χλαsλ.

If we define U and D : Λ→ Λ by

Usλ =
∑
µ⋗λ

sµ, Dsλ =
∑
ν⋖λ

sν,

and m1(α) denotes the multiplicity of 1 in a partition α, then

Upα = pα∪(1), Dpα = m1(α)pα\(1).

Moreover, we have

〈sλ, sµ〉 = δλ,µ, 〈pα, pβ〉 = δα,βzα,

where zα =
∏

i≥1 i
mimi! for α = 1m12m2 · · · .



Properties of character table of symmetric groups

Proposition We have∑
α∈Yn

1

zα
χλαχ

µ
α = δλ,µ,

∑
λ∈Yn

χλαχ
λ
β = δα,βzα,

and
n!

zα
∈ N,

∑
α∈Yn

n!

zα
= n!,

where N is the set of nonnegative integers.

Proposition

gνλ,µ =
∑
α∈Yn

1

zα
χλαχ

µ
αχ

ν
α ∈ N,

and the degree n part Λn has a structure of fusion algebra at alge-
braic level with structure constants gνλ,µ with respect to Schur functions

{sλ}λ∈Yn
.



Fusion algebra at algebraic level (1/2)

Definition (Bannai) Let A be an commutative associative algebra over
C with basis a1, . . . , ar and structure constants Ak

i,j defined by

aiaj =
r∑

k=1

Ak
i,jak.

We call A a fusion algebra at algebraic level if the following four condi-
tions are satisfied:
(a) Ak

i,j ∈ R;
(b) There exists an involutive bijection [r] 3 i 7→ î ∈ [r] such that

Ak̂
î,̂j

= Ak
i,j, Ak̂

i,j = Aî
k,j;

(c) a1 is the identity element of A;
(d) There exists a linear representation ∆ : A → C such that ∆(ai)

are positive real number for all i ∈ [r].



Fusion algebra at algebraic level (2/2)

A fusion algebra A is called strictly integral if

Ak
i,j ∈ N, ∆(ai) ∈ N.

Let A = 〈a1, . . . , ar〉 and B = 〈b1, . . . , bs〉 be two fusion algebras.
An algebra homomorphism F : A → B is called a homomorphism of
fusion algebras if

• If F (aj) =
∑s

i=1Fi,jbi, then Fi,j ∈ R and F
î,̂j

= Fi,j;

• ∆B ◦ F = ∆A.

We say that F is integral if A and B are strictly integral and Fi,j ∈ N
for all i and j.



Character rings of finite groups

For a finite group G, let RC(G) be the (complexified) Grothendieck
group of finite-dimensional representations of G. Then RC(G) is a
strictly integral fusion algebra with respect to

• the product given by [V ] ∗ [W ] = [V ⊗C W ];

• the basis consisting of the classes of irreducible representations of G;

• the homomorphism ∆ given by ∆([V ]) = dimV .

The structure constants are given by

A
[U ]
[V ],[W ]

=
1

#G

∑
g∈G

χV (g)χW (g)χU (g
−1).

Moreover, if H is a subgroup of G, then the restriction map

Res : RC(G)→ RC(H), [V ] 7→
[
ResGH V

]
is an integral homomorphism of fusion algebras.



Young–Fibonacci algebra

Theorem (Okada) Let Fn be the associative algebra over C defined by
the following presentation:

generators : E1, E2, . . . , En−1,
relations : E2

i = xiEi (i = 1, . . . , n− 1),
Ei+1EiEi+1 = Ei+1 (i = 1, . . . , n− 2),
EiEj = EjEi (if |i− j| ≥ 2).

where x = (x1, x2, . . . ) are complex parameters. If the parameters x are
generic, then we have
(1) The algebra Fn is a semisimple algebra of dimension n!, and its

irreducible representations are indexed by words in YFn:
Irr(Fn) ←→ YFn
[Vv] ←→ v

(2) For the inclusion Fn−1 = 〈E1, . . . , En−2〉 ⊂ Fn, we have
ResFnFn−1 Vv

∼=
⊕
u⋖v

Vu.



Direct sum of Grothendieck groups for YF-algebras
Let R(Fn) be the Grothendieck group of representations of Fn:

R(Fn) =
⊕

v∈YFn
Z[Vv].

Then the direct sum of the Grothendieck groups

R(F•) =
⊕
n≥0

R(Fn)

has a structure of associative graded ring with respect to

[Vu] ◦ [Vv] =
[
Ind
Fm+n
Fm⊗F ′n

(Vu ⊠ V ′v)
]
,

where Vu and Vv are irreducible representations of Fm and Fn respec-
tively, and V ′v is the corresponding irreducible representation of F ′n =
〈Em+1, . . . , Em+n−1〉.



YF-analogue of Schur functions

Let R = Z〈X,Y 〉 be the noncommutative polynomial ring in two
variables X and Y , which is equipped with a graded ring structure R =⊕

n≥0Rn given by degX = 1 and deg Y = 2.
We define YF-Schur functions sv ∈ R inductively as follows:

s∅ = 1, s1v = svX −
(∑
z⋖v

sz

)
Y , s2v = svY .

Then {sv : v ∈ YF} is a Z-basis of Z〈X,Y 〉,
Theorem (Okada) The correspondence [Vv] 7→ sv (v ∈ YF) gives a
graded ring isomorphism φ : R(F•)→ R = Z〈X,Y 〉:

R(F•) ∼= Z〈X,Y 〉
[Vv] 7−→ sv

Note that φ([V1]) = X and φ([V2]) = Y .



YF-analogue of power-sum functions

We define YF-power-sum functions pv ∈ R inductively as follows:

p∅ = 1, p1v = pvX, p2v = pv(X
2 − (m(v) + 2)Y ),

where m(v) is the number of 1’s at the head of v.

Proposition We have

Upv = p1v, Dp1v = m(1v)pv, Dp2v = 0,

where U , D : R→ R are linear maps defined by

Usv =
∑
w⋗v

sw, Dsv =
∑
u⋖v

su.

Proposition If we define a bilinear form 〈 , 〉 on R by 〈sλ, sµ〉 =
δλ,µ, then we have

〈pα, pβ〉 = δα,βzα,

where
zα = m1!(m2 + 2)m2! · · · (mr+1 + 2)mr+1!

for α = 1m121m22 · · · 21mr+1.



YF-analogue of the character table

We define a “YF-character table” Xn =
(
χvα

)
α,v∈YFn by

pα =
∑

v∈YFn
χvαsv.

Example If n = 5, then



221 212 2111 122 1211 1121 1112 11111

221 1 −1 −1 0 0 −1 1 1
212 0 1 −1 −1 1 0 −1 1
2111 −2 −1 −1 3 3 2 1 1
122 0 0 0 1 −1 0 −1 1
1211 0 0 0 −1 −1 2 1 1
1121 −1 1 1 0 0 −1 1 1
1112 0 −2 2 −1 1 0 −1 1
11111 8 4 4 3 3 2 1 1


Note that this “character table” does not come from any finite groups.



Properties of YF-character table
Proposition The YF-character table Xn satisfies the orthogonality
relations: ∑

α∈YFn

1

zα
χvαχ

w
α = δv,w,

∑
v∈YFn

χvαχ
v
β = δα,βzα.

Moreover we have
n!

zα
∈ Z,

∑
α∈YFn

n!

zα
= n!.

Remark We define F (σ) ∈ YFn (σ ∈ Sn) inductively as follows. Let
F (e) = ∅ for e ∈ S0, F (e) = 1 for e ∈ S1, and

F (σ1σ2 . . . σn) =

{
F (σ2 . . . σn)1 if σ1 < σ2,

F (σ3 . . . σn)2 if σ1 > σ2.

Then we have

#{σ ∈ Sn : F (σ) = α} = n!

zα
(α ∈ YFn).



YF-fusion ring (YF-analogue of the character ring)

Using the YF-charcter table, we define YF-Kronecker coefficients gwu,v
by

gwu,v =
∑

α∈YFn

1

zα
χuαχ

v
αχ

w
α .

Theorem (Okada) The degree n part Rn of RC = C〈X,Y 〉 admits a
structure of strictly integral fusion algebra with product

su ∗ sv =
∑

w∈YFn
gwu,vsw.

In particular, YF-Kronecker coefficients gwu,v are nonnegative integers.
Moreover,

D : Rn→ Rn−1, sv 7→
∑
u⋖v

su

is a surjective integral homomorphism of fusion algebras.



Reflection-extension of fusion algebras

Theorem (Okada) Let A = 〈a1, . . . , ar〉 and B = 〈b1, . . . , bs〉 be
fusion algebras, and F : A → B be a surjective homomorphism of
fusion algebras. Then the direct sum

C = A⊕ B
admits a structure of fusion algebra with product defined by

(a, 0) · (a′, 0) = (aa′, 0), (a, 0) · (0, b) = (0, F (a)b),

(0, b) · (0, b′) = (F ∗(bb′), (FF ∗ − I)(bb′)),

where F ∗ : B → A is the linear map given by F ∗(bi) =
∑r

j=1Fi,jaj
with F (aj) =

∑s
i=1Fi,jbi. Moreover, the map

G : C → A, G(a, b) = a + F ∗(b)

is a surjective homomorphism of fusion algebras.


