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Today: a new approach via operators
and its consequences
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This characterization is related to (Hivert, 2000).

Definition. For f ∈ Poln and i < n, define

Lemma. f ∈ QSymn if and only if R1(f) = R2(f) = · · · = Rn(f).

Definition. For f ∈ Poln and i < n,

Ri(f(x1, ... , xn)) := f(x1, ... , xi−1, 0, xi, xi+1, ... , xn−1)

We define operators that “detect quasisymmetry”.

This is an algebra morphism Poln → Poln−1.

Corollary. QSymn is a subalgebra of Poln.

We now define the main “trimming” operators Ti.

We get f ∈ QSymn if and only if T1f = T2f = · · · = Tn−1f = 0.

Ti =
Ri+1−Ri

xi
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1 2

1 2

i

i i+ 1

To study the combinatorics, associate to Ti the elementary diagram



Equivalence classes are certain forests
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• LTer(F) is the set of left leaves i of a terminal node of F.
Example LTer(F) = {2, 4, 7, 11} above
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• F=i is the reverse of the above, only defined if i ∈ LTer(F).
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Combinatorics

Definition. An indexed forest F is a sequence of plane binary trees, eventually trivial.

Let For be the set of indexed forests.
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Proposition. Define F · G = the forest H obtained by identifying the leaves of F with
the roots of G. Then For ≃ Thompson monoid.

• LTer(F) is the set of left leaves i of a terminal node of F.
Example LTer(F) = {2, 4, 7, 11} above

• F · i is given by adding a terminal node with left leaf i.
• F=i is the reverse of the above, only defined if i ∈ LTer(F).

F

⇒We can define TF = Ti1 · · · Tik by taking any decomposition F = i1 · · · ik.
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0 otherwise.
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unique family of homogeneous polynomials such thatP∅ = 1 and

Ti(PF) =

(
PF=i if i ∈ LTer(F)
0 otherwise.

Proof. Uniqueness by induction on |F|. For existence, we can give a direct
combinatorial definition in terms of certain colorings of F, and check that it works...

By iteration one gets:

Constant term of TF(PG) =

(
1 if G = F
0 otherwise.

Corollary. (Duality) For F,G ∈ For, we have

Explicit construction ofPF: Let ffiF(v) = label of the leaf at the end of its left branch of v ∈ IN(F), an
internal node. Then

PF :=
X

f:IN(F)→Z>0

Y
v∈IN(F)

xf(v)

where the sum is over all f whose values are weakly increasing down left edges, strictly increasing
down right edges, and such that f(v) ≤ ffiF(v) for all v.



Back to Example

x21x2 + x21x3

x21 x1x2
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Some polynomialsPF



What do we get ?

• PF is quasisymmetric in x1, ... , xn if and only F has a unique terminal node at i = n.

Proposition. If so,PF is a fundamental quasisymmetric polynomial F¸(x1, ... , xn).

→ Nice bases of various spaces:
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• (PF)F is an integral basis of Pol.
More precisely, they form a basis of Poln if F ∈ For has all terminal nodes≤ n.

• PF is quasisymmetric in x1, ... , xn if and only F has a unique terminal node at i = n.

• Let QSymn
+ ⊂ Poln be the ideal generated by the f ∈ QSymn with f(0) = 0.

→ Positivity results
• By their combinatorial definition, thePF have positive coefficients.

• The structure constantsPFPG =
P

H d
H
FGPH are positive.

This can be proved combinatorially.

Proposition. If so,PF is a fundamental quasisymmetric polynomial F¸(x1, ... , xn).

(Key: Leibniz rule Ti(fg) = Ti(f)Ri+1(g) + Ri(f)Ti(g).)

Proposition. ThePF for F ∈ Forn project to a basis of the coinvariant space
Poln=QSymn

+.
This means that all nontrivial leaves are in
{1, ... , n}.

→ Nice bases of various spaces:
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S∞ = limn Sn = { Permutations w of {1, 2, ...} such that w(i) = i for i large enough}.

Definition-Theorem. The Schubert polynomialsSw for w ∈ S∞, are the unique family
of homogenous polynomials in Pol such thatSid = 1 and

@iSw =

(
Swsi if i ∈ Des(w),
0 otherwise.

Define the divided difference @i =
id− si
xi − xi+1

on Pol.



Positivity of Schubert polynomials

A direct check shows:

Ti = Ri@i

Now for f ∈ Pol with f(0) = 0,

Choose f = Sw with w ̸= id

f =
∞X
i=1

(Ri+1(f)− Ri(f)) + R1(f)

=
∞X
i=1

xiTi(f) + R1(f) =
∞X
i=1

xiRi@i(f) + R1(f)

Sw =
X

i∈Des(w)

xiRi(Swsi) + R1(Sw).



Positivity of Schubert polynomials

A direct check shows:

Ti = Ri@i

Now for f ∈ Pol with f(0) = 0,

Choose f = Sw with w ̸= id

f =
∞X
i=1

(Ri+1(f)− Ri(f)) + R1(f)

=
∞X
i=1

xiTi(f) + R1(f) =
∞X
i=1

xiRi@i(f) + R1(f)

Sw =
X

i∈Des(w)

xiRi(Swsi) + R1(Sw).

• This is a new recurrence.

• Probably the simplest proof thatSw has positive coefficients.

• Can be interpreted combinatorially on pipe dreams.


