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Quasisymmetric polynomials

Fix n > 1, and define Pol,, == Q[x1, ..., x,].

Definition. Let f € Pol,,.. Then f is quasisymmetric if for all ay, ..., ax > 0, for all iy, ...

such that iy < ... <k, Coeff of x{* - - - x;* = Coeff of x;"* - - - xi*.

Forn =2, f = x2xo.
Forn = 3,f = x{xa + x2X3 + X5xX3.

Motivation(s)
e Introduced in Stanley’s thesis (1970), explicitly identified by Gessel (1984).
They are the natural setting for certain generating functions for posets.
e Terminal object in a certain category of Hopf algebras.

e Relation to symmetric polynomials: create bases that refine symmetric bases,
expand (quasi)symmetric polynomials in these bases,...
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Motivation(s)

e Introduced in Stanley’s thesis (1970), explicitly identified by Gessel (1984).
They are the natural setting for certain generating functions for posets.
e Terminal object in a certain category of Hopf algebras.

e Relation to symmetric polynomials: create bases that refine symmetric bases,
expand (quasi)symmetric polynomials in these bases,...

Today: a new approach via operators
and its consequences

.



Trimming operators

We define operators that “detect quasisymmetry”.

Definition. For f € Pol,, and i < n, define
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This is an algebra morphism Pol,, — Pol,,_;.
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Definition. For f € Pol,, and i < n, define
Ri(f(X1, e Xn)) = F(X1, v s Xi=1, 0, Xi, Xir 15 o, Xn—1)

This is an algebra morphism Pol,, — Pol,,_;.

Lemma. f € QSym,, if and only if R1(f) = Ro(f) = - - - = Ry (f).
This characterization is related to (Hivert, 2000).

Corollary. QSym,, is a subalgebra of Pol,.

We now define the main “trimming” operators T;.

Definition. For f € Pol, andi < n,

R, —R:
T,' — —’+§<i !

We get f € QSym, ifandonlyif T1f =Tof =--- =T, _1f=0.



Trimming operators

Explicitly,

Ti(f) =

f(Xl, eee s Xj—1, X, O, Xit1y ... ’Xn—l) — f(Xl, eee s Xj—1, O, Xis Xit1y ..

’Xn—l)

T (X1X2)

\
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(0 ifab> 0ora=b =0
x{7t  ifa>0andb=0

| —x; ' ifb>0anda=0.
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Explicitly,
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Ti(f) = L L 1 1) — flx 1 +1 1)
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Let Pol := Q[xq, X2, ..., ] = lim Pol,, and consider T; : Pol — Pol.

The T, satisfy the relations of the Thompson monoid

T,‘Tj = TjT,‘+1 ifi > j.



Trimming operators

Explicitly,
F(X15 eee s Xie1s Xis 0, Xise 1y oo s Xne1 ) — F(XT5 ee s Xie15 0, X, Xict 15 oo s Xp—
Ti(f) = L L 1 1) — flx 1 +1 1)
Xi
(0 ifab > 0ora=b=0
T1(6x5) =<{x¢™1  ifa>0andb=0
\—x’{ 1 ifb>0anda=0.

Let Pol := Q[xq, X2, ..., ] = lim Pol,, and consider T; : Pol — Pol.

The T, satisfy the relations of the Thompson monoid
T,‘Tj = TjT,‘+1 ifi > j.

To study the combinatorics, associate to T; the elementary diagram



Equivalence classes are certain forests

We can illustrate T4T2 = T5T5 as
3456 7
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Equivalence classes are certain forests

We can illustrate T4 T, = T>T5 as
1 2 3 45 6 7 3456 7

/GO =/ M-

1234567 89 10

T
Ts
The equivalence class of T3
T10
T
T11

/8 9 10111213141516

can be represented by 2 7

1 3 4 5 6 8 9 10

1 23 45 6 7 8 9 1011121314 1516



Combinatorics

Definition. An indexed forest F is a sequence of plane binary trees, eventually trivial.
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Let For be the set of indexed forests.

e LTer(F)isthe set of left leaves i of a terminal node of F.
Example LTer(F) = {2,4,7,11} above

e F -iisgiven by adding a terminal node with left leaf |.

e F/iisthe reverse of the above, only defined if i € LTer(F).



3

1.2:1=1-1-3.
2

F

\\1

Example

1 2 3 4

1 2 3 4

XmM

XA




Combinatorics

Definition. An indexed forest F is a sequence of plane binary trees, eventually trivial.

7

o 6 é?i:}\x 8 9 10
X— H—H—H— ---mmmmmmmmm -

5
p a3
(7./8 9 10/11/12 13 14 15 16

|
% ll
1 1

Let For be the set of indexed forests.

e LTer(F)isthe set of left leaves i of a terminal node of F.
Example LTer(F) = {2,4,7,11} above

e F -iisgiven by adding a terminal node with left leaf |.

e F/iisthe reverse of the above, only defined if i € LTer(F).



Combinatorics
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Let For be the set of indexed forests.

e LTer(F)isthe set of left leaves i of a terminal node of F.
Example LTer(F) = {2,4,7,11} above

e F -iisgiven by adding a terminal node with left leaf |.

e F/iisthe reverse of the above, only defined if i € LTer(F).

Proposition. Define F - G = the forest H obtained by identifying the leaves of F with
the roots of G. Then For ~ Thompson monoid.

= We can define T¢ = T;, - - - T;, by taking any decomposition F = iy - - - i.



Forest polynomials

Definition-Theorem|[N.-Spink-Tewari '24] The forest polynomials *}3r for F € For are the
unique family of homogeneous polynomials such that Y3y = 1 and

Besi ifi € LTer(F)

0 otherwise.

Ti(Br) = {
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Proof. Uniqueness by induction on |F|. For existence, we can give a direct

combinatorial definition in terms of certain colorings of F, and check that it works... -
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Proof. Uniqueness by induction on |F|. For existence, we can give a direct
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By iteration one gets:

Corollary. (Duality) For F, G € For, we have
1 ifG=F

Constant term of T¢(*Bs) = .
0 otherwise.



Forest polynomials

Definition-Theorem|[N.-Spink-Tewari '24] The forest polynomials *}3r for F € For are the
unique family of homogeneous polynomials such that Y3y = 1 and

‘BF/,- ifi € LTer(F)
0 otherwise.

Ti(Br) = {

Proof. Uniqueness by induction on |F|. For existence, we can give a direct

combinatorial definition in terms of certain colorings of F, and check that it works... -

By iteration one gets:

Corollary. (Duality) For F, G € For, we have

1 fG=F

Constant term of T¢(*Bs) = .
0 otherwise.

Explicit construction of ‘P: Let ¢r(v) = label of the leaf at the end of its left branch of v € IN(F), an

internal node. Then
Pe= > || %o

f:IN(F)—Z~o vEIN(F)

where the sum is over all f whose values are weakly increasing down left edges, strictly increasing
down right edges, and such that f(v) < ¢¢(v) for all v.



Back to Example

Some polynomials 3¢
X$Xo + X3X3
1 2 3 4
y \1
| 2
AA " A 7
)&

1 2 3 4

N 7
AN «

—t
N
w2

- %
N X
w X
=



What do we get ?

— Nice bases of various spaces:
e ‘I3 is quasisymmetric in x4, ..., X, if and only F has a unique terminal node ati = n.

Proposition. If so, 3¢ is a fundamental quasisymmetric polynomial Fo,(x1, ..., X,).
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Proposition. If so, 3¢ is a fundamental quasisymmetric polynomial Fo,(x1, ..., X,).

e (Pr)F is an integral basis of Pol.
More precisely, they form a basis of Pol,, if F € For has all terminal nodes < n.

e Let QSym, " C Pol, be the ideal generated by the f € QSym,, with f(0) = 0.

Proposition. The 3¢ for F € For,, project to a basis of the coinvariant space

Poln/QSymn+. \

This means that all nontrivial leaves are in

{1,...,n}.

e By their combinatorial definition, the *J3r have positive coefficients.

— Positivity results

e The structure constants PePs = >_,, di-Ph are positive.
This can be proved combinatorially.

(Key: Leibniz rule T;(fg) = Ti(f)Rix1(8) + Ri(f) Ti(g).)



Schubert polynomials
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Schubert polynomials

The Schubert polynomials &, form a basis in Z[x1, X2, ...], indexed by permutations.

Ex (w € S3)

_ 2
_1 G213 = X1 G301 = X7Xo
S = , G231 = X1X2
G132 = X1 + X2 G312 = X]

Origin: &,, encodes the (Chow/cohomology) class of the Schubert subvariety X,,
(inside the full flag variety). (Lascoux-Schiitzenberger)

Soo = lim, S, = { Permutations w of {1, 2, ...} such that w(i) = i for i large enough}.

d_s
Define the divided difference 0: = | > on Pol.
Xi — Xi+1

Definition-Theorem. The Schubert polynomials &, for w € S, are the unique family
of homogenous polynomials in Pol such that G;4 = 1 and

5G, — Ows, Ifi€ D.es(w),
0 otherwise.



Positivity of Schubert polynomials

A direct check shows:

Now for f € Pol with f(0)

= Z i+1(f) — Ri(f)) + Ru(f)

8”

:le f)‘|‘R1(f ZXIRG ‘|‘R1
i=1

Choose f = G,, withw # id



Positivity of Schubert polynomials

A direct check shows:

Now for f € Pol with f(0) = 0,

f (Rix1(f) — Ri(f)) + Ra(f)

i=1

8H'|\”/]8

= Ti(f) + Ru(f) = ZX,RG ) + R1(f)

1=

Choose f = G,, withw # id

e This is a new recurrence.
e Probably the simplest proof that S,, has positive coefficients.

e Can be interpreted combinatorially on pipe dreams.



