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The classical Littlewood identities

Theorem (Schur, Littlewood)
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— Proofs by Robinson-Schensted-Knuth correspondence



Semistandard Young tableaux

Schur functions s, are generating functions of semistandard Young
tableaux (SSYT) of shape A = (A1 > --- > A, = 0):
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Combinatorial interpretation of the Littlewood
identity

Schur functions s (X1y...,Xn):
generating function of semistan-
dard Young tableaux of shape A

generating function of symmet-
ric matrices A = (aij)i<ij<n
with non- negatlve integer entries
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Robinson-Schensted-Knuth correspondence

pairs (P, Q) of SSYT of the RSK matrices with non-negative
same shape integer entries
Symmetry of RSK:

(P,Q) &5 A = (Q,P) &5 AT,

RSK on symmetric matrices A implies the Littlewood identity:
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Gelfand-Tsetlin patterns

Semistandard Young tableau Gelfand-Tsetlin pattern
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Down-arrowed monotone triangles

Definition

A down-arrowed monotone triangle (DAMT) is a Gelfand-Tsetlin
pattern with strict increase along rows where each entry, except for
those in the bottom row, is decorated with either ,/, | or ™\ subject to
the following rule:

If an entry is equal to one of the entries in the row below, then those
entries have to be connected by a slanted arrow (, or \).



Modified Robbins Polynomials

Definition
The (modified) Robbins polynomial R} (x1, ..., Xn; U, v, W) is the
generating function of DAMTs with bottom row k with weight
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Main result I

We establish a Littlewood identity for Robbins polynomials:

Theorem (Fischer, H. 2025)

Let n be a positive integer. Then
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where Pf denotes the Pfaffian of an upper triangular array and

Xeven (M) equals 1 if n is even and 0 otherwise.



Pfaffians

» Consider all (2n — 1)!! partitions of {1,2,...,2n} into pairs.

» They can be written as {(i1,j1),..., (in,jn)} wWith iy <--- <in
and i, < ji forall 1 <k <n.

> For a triangular array A = (ai,;)1<i<j<2n, the Pfaffian Pf(A) is
defined as
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where we sum over all pairings in consideration.

» If we complete A to the uniquely determined skew-symmetric
matrix M with A being its upper triangular part, then it is well
known that

Pf(A)? = det(M).



Alternating sign matrices

3 0010 00 1 0
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Definition
An alternating sign matrix is a square matrix with entries {—1, 0, +1}

such that
» entries in rows and columns sum to 1 and

> nonzero entries along rows and columns alternate.



Six-vertex model

Alternating sign matrices are in correspondence with six-vertex
model configurations with domain wall boundary conditions:
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Diagonally symmetric alternating sign matrices

Diagonally symmetric alternating sign matrices (DSASMs)
correspond to six-vertex model configurations on a triangular grid:
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The generating function of all such six-vertex model configurations of
size n, denoted by 6V<;(1), is called the partition function
Zpsasm(X1y -« vy Xn).



Main result I1

We relate the Littlewood identity for Robbins polynomial to the
partition function of diagonally symmetric alternating sign matrices:

Theorem (Fischer, H. 2025)

Let n be a positive integer. Then
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Main result 111

We provide an explicit expression for the coefficient of the highest
term in the polynomial expansion of Zpgasm(X1, ..., Xn):

Theorem (Fischer, H. 2025)
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where (1t )f(u,v) denotes the coefficient of uvJ in the expansion of
fu,v).



Littlewood identity for Robbins polynomials



Main result I

Theorem (Fischer, H. 2025)

Let n be a positive integer. Then
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where Pf denotes the Pfaffian of an upper triangular array and
Xeven () equals 1 if n is even and 0 otherwise.



Antisymmetriser formula for Robbins polynomials

Theorem (Fischer, Schreier-Aigner 2021)

The Robbins polynomial Rf (x1, ..., Xn;u, v, W) are given by
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Reformulation of the Littlewood identity

Using the antisymmetriser, we obtain
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Thus the Littlewood identity reads as
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Symmetric functions

Robbins polynomials are connected to other symmetric functions:
> Schur polynomials
» symmetric Grothendieck polynomials
» Hall-Littlewood polynomials

> fully inhomogeneous spin Hall-Littlewood symmetric rational
functions

We can recover Schur polynomials from Robbins polynomials:

Proposition
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Fully inhomogeneous spin Hall-Littlewood symmetric
rational functions
Borodin and Petrov (2018) introduced fully inhomogeneous spin

Hall-Littlewood symmetric rational functions Fj(u1,...,uy ) in the
context of higher spin six vertex model:
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depending on a parameters q and inhomogeneities &, and s.

After setting &, = 1 and s, = t~'/2 and some suitable variable

transformations, we obtain
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where K is the reverse sequence of A.



Related Littlewood-type identities

» Littlewood-identities for Hall-Littlewood polynomials by

Macdonald
> Refinement by Betea, Wheeler, Zinn-Justin (2015):
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— These identities are of different type than ours!



Combinatorial interpretation of the
right-hand side of the Littlewood identity



Main result I1

Theorem (Fischer, H. 2025)

Let n be a positive integer. Then
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Diagonally symmetric alternating sign matrices

» Alternating sign matrices were introduced in the early 1980s by
Robbins and Rumsey.

» The ASM enumeration formula was first established by
Zeilberger in 1996.

> There are eight different symmetry classes of ASMs that are
induced by the symmetry group of the square. The enumeration
of these symmetry classes was initiated by Stanley.

> In 5% cases, a product formula has been established (Behrend,
Fischer, Konvalinka, Kuperberg, Razumov, Stroganov, Okada,
Zeilberger).

» DSASMs are the first and only of the remaining symmetry
classes for which an enumeration formula is known (Behrend,
Fischer, Koutschan 2023):
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Six-vertex model configurations I

12 3 4 We assign weights to all vertices:
} A 4 4 > Top vertices and right boundary vertices
¢ 1 have weight 1.

» Bulk vertices at position (i, j) with local
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Six-vertex model configurations II

> The weight of a six-vertex model configuration is the product of
the weights of all vertices.

> The sum of these weights over all six-vertex model
configurations in 6V<(n) is the partition function of DSASMs of
order n, denoted by Zpgasm(X1,...,%Xn).

Theorem (Fischer, H. 2025)

The partition function Zpgasm (X1, ..., %n) of DSASMs of order n is
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— follows from Behrend, Fischer, Koutschan (2023)



Coefficient of the highest term in the
polynomial expansion of Zpsasm (X1, ..., Xn)



Coefficient of the highest term

The partition function Zpgasm(x1,...,%n) is a symmetric polynomial
inxi,...,Xxn. What can we say about its Schur expansion?
— Work in progress

Theorem (Fischer, H. 2025)
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Open problem

Problem
Find a bijective proof of the following identity:
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