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1. Generalized Binomial Coefficients

Two interpretations of binomial coefficients:

E(n;t) = ﬁ(l +)=>_ (Z)tk,

i=1 k>0
. n+k—1
H(n;t):H(l+t+t2+~~-)=Z< k >t".
i=1 k>0
We consider the following interpolation:

4 (b)
H(b)(n; t) = H(l CPNEEESS | o tbfl) = Z <Z> #

k>0

Note that (Z)(z) = (;) and (Z)(b) = (””;‘1) when b > k. We will write

b -0
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1. Generalized Binomial Coefficients

Example: n = 3 and b = 4. The generating function is

HOGt) = (L+t+ £ + 1)
=143t+62+1085+12t" + 1282 +10t° +6t" +35 + £,

The coefficients are

In general we have (Z)(b) = 0for (b —1)n > kand

N (b) - (b) D (b)
(o)

Remark: (Z)(b)/b” is the probability of getting a sum of k in n rolls of a fair b-sided
die with sides labeled {0, 1,...,b — 1}.



1. Generalized Binomial Coefficients

Remarks:

(b)

« The numbers (Z) occur often but they don’t have a standard name.

b
+ We roughly follow Euler’s (1778) notation: (%) :

+ Belbachir and Igueroufa (2020) compiled a historical bibliography.
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2. Symmetric Functions and g-Analogues

Recall the generating functions for elementary and complete symmetric

polynomials:
n
E(zp, ¥ Zx )= H(l +zit) = Zek(zl, S, Az
i=1 k>0
n
H(zy,...,zn;t) = H(l +zit 4 (zt)P )= th(zl, J Bz O
i=1 k>0

We consider the following interpolation:

n
HO (2, oz ) = [+ 2t + - (@) ™) = D0z, ..., za)te.
i=1

k>0

Note that h,((z) = ey and h,((b) = hywhen b > k. We will write h£°°) = Ny.
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2. Symmetric Functions and g-Analogues

We can view h,((b)(zl, ...,2,) as a generating function for lattice points in a diagonal
slice of the integer box {0, 1,...,b — 1}™

X:i={(x,..., %) €{0,1....b—1}" :x1+x2+ - + X, = k}.

Then we have

hf{b)(zl,...,z,,) = sz :Zz)l(lz)z(z"'zxn"-

xexX xeX
We can also view these lattice points as k-multisubsets of {1,2, ..., n} with
multiplicities bounded above by b:
(X0, X0, Gin). o AdGn s 125220 % ot Mk
—— N—— N——
X1 times Xo times Xp times

b=2: k-subsetsof{1,...,n},
b=o00: k-multisubsetsof {1,...,n}.



2. Symmetric Functions and g-Analogues

Example: n = 3 and k = 3 for various values of b:

030
120 021
210 s4]- 012
300 201 102 003

2
h:(,, )(21,22723) = 21273,

3 2
hg )(21,22723) = 212,73 +2§22 A7 L 2223

4 2 2 3 3 3,
hg )(21,22,23) =0+ + -+ 05+ 24+ 2+ 25,

602182, D) = Az AL A2 R DR 8 B 2



2. Symmetric Functions and g-Analogues

A natural g-analogue of (Z)(b) is given by the principal specialization of h,((b):

(b)
) .— &) n—1ly _ 0x1+1x4+3x0+ - +(n—1)xp
'_hk (l,q,‘..,q )_qu 213X2 |
|:k:| q xeX



2. Symmetric Functions and g-Analogues

Anatural g-analogue of (Z)(b) is given by the principal specialization of hf(b):
K (b)
— hz(fb)(l’ (O A q"*l) b Z q°X1+1X2+3X2+~-v+(n—1)x,,'

This generalizes the standard g-binomial coefficients in the following sense:

n Y n
— gkk=1)/2
q q
n e _|n+k-1
K = >
q q

k
Opinion: This is the reason why sometimes we multiply [}] L by q"*=1/2 and
sometimes we don’t.




2. Symmetric Functions and g-Analogues

Example: n = 3 and k = 3 for various values of b:

[](2)_qs7
9 =6 +q' +2¢" + 29" + ¢°,

9 =¢+q" +2¢" +2¢" + & +1+ ¢’ + ",



2. Symmetric Functions and g-Analogues

Remarks:

+ Like the numbers (Z) (b), the polynomials h,((b) (z1,...,2s) don’t have a standard
name or notation.

Doty and Walker (1992) used hy(n) and called them modular complete
symmetric polynomials.

Fu and Mei (2020) used h,[(bfll and called them truncated complete.

Grinberg (2022) used G(b, k) and called them Petrie symmetric functions. He
now regrets this name (personal communication).

Since the definition is simple | believe that the name should be simple. In the
paper | called them b-bounded symmetric polynomials.



2. Symmetric Functions and g-Analogues

Remarks:

+ Doty and Walker (1992) mention the following generalization of Newton’s
identities, which they attribute to Macdonald:*

AN DY p?
S0 0
h,((b)(zl,...,z,,):det 2 pgb) pgb)
P
~(k—1) p{

where

m =

ik & ) (@ B SR THE )/ @i,
I+ +2zf btm.

* They did not express it as a determinant.



2. Symmetric Functions and g-Analogues

Remarks:
« This has an interesting consequence whenz; = --- =z, = 1
n 2 1
— = (1 — p)p(N) N
<k> _Z z,\(l BAE 0y g
Ak

where the sumisover (A; > A, > --- > 0) with >, X\i = k, and

I(X) = #{i: \i # 0},
[b()\) — #{’ : bl/\'}’
my={j m; =i},

Z) = Him’m,-!.

i>1



2. Symmetric Functions and g-Analogues

Remarks:
« In arecent paper (Lattice points and g-Catalan, 2024) | proved that

m

1
[n+1]q qu

(n+1)
n
k] € Z[q]
k=t q

whenever ged(n + 1, ¢ — 1) = ged(n + 1,m) = 1, and | conjectured that the
coefficients are positive. | called these g-Catalan germs.



2. Symmetric Functions and g-Analogues

Remarks:
« In arecent paper (Lattice points and g-Catalan, 2024) | proved that

m

1
[n+1]q qu

(n+1)
n
k] € Z[q]
k=t q

whenever ged(n + 1, ¢ — 1) = ged(n + 1,m) = 1, and | conjectured that the
coefficients are positive. | called these g-Catalan germs.

+ I don’t know how this generalizesto b # n + 1.
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Our main theorem will compute

(b)
[Z] when g — roots of unity.
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Before stating the theorem, it is worthwhile to mention a very general phenomenon,
which follows from some basic Galois theory. This phenomenon is surely well
known but | have not seen it written down.



3. ABit of Galois Theory

Our main theorem will compute

(b)
[Z] when g — roots of unity.
q

Before stating the theorem, it is worthwhile to mention a very general phenomenon,
which follows from some basic Galois theory. This phenomenon is surely well
known but | have not seen it written down.

Observation
Letf(zy,...,2n) € Z[z1, . . ., 25] be symmetric polynomial in n variables and let w
be a primitive dth root of unity for some d.

(a) Ifdjnthenf(l,w,...,w" ) = f(w,...,w")isaninteger.”
(b) Ifd|(n — 1) then f(1,w,...,w" ) isan integer.
(c) Ifd|(n+ 1) thenf(w,...,w")isan integer.

* If deg(f) = kand d { k then this integer is zero.



3. ABit of Galois Theory

Proof Sketch: (1) Let w be a primitive dth root of unity and consider the field
extension Q(w)/Q. The Galois group is

Gal(Q(w)/Q) = {¢r : ged(r,d) = 1},
where ¢, : Q(w) — Q(w) is defined by ¢r(w) := W', If & € Z[w] satisfies
or(a) = aforall ged(r, d) = 1 then Galois theory tells us that « € Z.
(2) Consider the sequence w := (w, . ..,w? ). If gcd(r, d) = 1then ¢, permutes
the sequence w, hence it permutes sequences of the following four types:
(l7w7"’7w7 1)7
(w,1,...,w,1),
(l7w7 17w7 ¥ {4 7w7 1)7
(w,l,w,1,...,1 w). 0O



3. ABit of Galois Theory

Corollary
Let w be a primitive dth root of unity.

(a) If d|nthen*

(b)
|:Z:| = h,({b)(l,w, wTY) = h,((b)(w, W) EZ.

(b) Ifd|(n — 1) then [

(b)
Z] =h(1Lw,... ") ez

(c) Ifd|(n+ 1) then
y [k

B (b)
:| = h,((b)(w,...,w") €Z.

*If d 1 k then this integer is zero.

Our main theorem will compute these integers.
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Main Theorem (in three parts)
Let w be a primitive dth root of unity with gcd(b, d) = 1.

®)
(a) Ifd|nthen " m =14t + -+ () e,
k w

b b
1% (nsd ()>O
k|~ \kid) =7




4, The Main Theorem and Cyclic Sieving

Main Theorem (in three parts)
Let w be a primitive dth root of unity with gcd(b, d) = 1.

(b)
) Ifd|nthenz [Z] = (1+td+...+(td)b—1)n/d’ ey
K
b b

n ® __(n/d ®) _
k|~ \k/d =

n (b)
Z|::| :(1+t+--.+tb_l)(1+td+ +(t) )n 1)/d e,

P k
EESV((REAN
_ze: (k—0)yd) ="

b) Ifd|(n — 1) then

(b)

n
k
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Main Theorem (in three parts)
Let w be a primitive dth root of unity with gcd(b, d) = 1.

(c) Ifd|(n+ 1) then

(b) ~
Z‘*’k nl_ (1+td+...+(td)b 1)(n+1)/d -
7 k 14+t4 -4 th1 .

These coefficients are sometimes negative and are more difficult to describe. We
will give an explicit formula below in terms of the Frobenius Coin Problem.



4, The Main Theorem and Cyclic Sieving

Main Theorem (in three parts)
Let w be a primitive dth root of unity with gcd(b, d) = 1.

(c) Ifd|(n+ 1) then

> o

k

7@ @t (pyyerore
k| Lok ik 000 o =1 < A

These coefficients are sometimes negative and are more difficult to describe. We
will give an explicit formula below in terms of the Frobenius Coin Problem.

Remark: My paper also gives explicit generating functions for (a),(b),(c) when
ged(b, d) # 1, which are more complicated.



4, The Main Theorem and Cyclic Sieving

Parts (a) and (b) have a nice combinatorial interpretation, in terms of cyclic sieving
(Reiner-Stanton-White, 2004). Again, consider the set of points in a diagonal slice of
the integerbox {0,1,...,b — 1}":

X={(x,....,%) €{0,1,....b—1}":x1+x + - +x = k}.
This set is closed under permutations. Consider the following two permutations:

P (. xn) = (X2, oo Xny X1),
T (X, Xn) = (X2, .o, Xn—1, X1, Xn)-

Note that (p) = Z/nZ and (r) = Z/(n — 1)Z. Recall that we can identify X with
k-subsets and k-multisubsets of {1,...,n} whenb = 2and b = oc.
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Corollary of Main Theorem
Let w be a primitive dth root of unity with gcd(b, d) = 1.

(a) If d|nthen we have
n (b)
[k] = #{x e x: p"(x) =x}.

(b) Ifd|(n — 1) then we have

(b)
[Z] = #{xe X 20V (x) = x}.



4, The Main Theorem and Cyclic Sieving

Corollary of Main Theorem
Let w be a primitive dth root of unity with gcd(b, d) = 1.

(a) If d|nthen we have

n (b)

[k] = #{xeX: p"(x) = x}.
(b) Ifd|(n — 1) then we have

(b)
[Z] = #{xe X 20V (x) = x}.

I find the condition ged(b, d) = 1 surprising!



4, The Main Theorem and Cyclic Sieving

Remarks:

This result generalizes the prototypical examples of cyclic sieving (Theorem 1.1
in RSW) for k-subsets (when b = 2) and k-multisubsets (when b = o).

I find it surprising that it was not already known to the experts.

Our Main Theorem (a),(b) generalizes Prop 4.2 in RSW, which appears there as a
random collection of identities.

Main Theorem (c) has no analogue in RSW.

It may be interesting to look at the integers f(w, .. .,w") € Z when d|(n + 1)
for other classes of symmetric polynomials.
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Let w be a primitive dth root of unity with d|(n + 1) and gcd(b, d) = 1. Recall that

(®) d b—1\(n+1)/d
Tt n S NEhESR + (t%) C )1 < Z[t].
K] Lftte -6

The integers w* [] Lb) are not directly related to cyclic sieving.



5. The Frobenius Coin Problem

Let w be a primitive dth root of unity with d|(n + 1) and gcd(b, d) = 1. Recall that

Zwk {Zr)tk 2 (l_i_td_i_”._i_(td)b—l)(nﬁ—l)/d A
k w

Tttt + ot

(b)

The integers w*[}] ’ are not directly related to cyclic sieving.

Using the notation [n]; = 1 4 t + - - - + t"~* we can write this as

>

k

(b)
oo (b b1 (n+1)/d—1

bl

n
k




5. The Frobenius Coin Problem

Let w be a primitive dth root of unity with d|(n + 1) and gcd(b, d) = 1. Recall that

Zwk {Z}(b)tk 2 (1+ P’ | N (td)b—l)(n+1)/d A

Tttt + ot

(b)

The integers w [ ] are not directly related to cyclic sieving.

Using the notation [n]; = 1 4 t + - - - + t"~* we can write this as

>

k

(b) b
oo [[b]]td b1 (n+1)/d—1

n
k

We want to study the coefficients of the polynomial

(b
Bl € Z[t].

It turns out these coefficients are related to the Frobenius Coin Problem.
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The set of non-representable numbers is finite, called the Sylvester set:
Sb,d = {n e N: I/b,d(n) = 0}.
For example, S35 = {1,2,4,7}. Sylvester (1882) proved that

#Sb,d = (b " l)(d - l)/2 and max(Sb,d) =bd—b—d.



5. The Frobenius Coin Problem

Given integers gcd(b, d) = 1, consider the function v, 4 : N — N,

b a(n) := #{(k,€) € N> : bk 4 d¢ = n}.

The set of non-representable numbers is finite, called the Sylvester set:
Sb,d = {n e N: I/b,d(n) = 0}.
For example, S35 = {1,2,4,7}. Sylvester (1882) proved that

#Sb,d = (b " l)(d - l)/2 and max(Sb,d) =bd—b—d.

Let us define the Sylvester polynomial
Sb’d(t) S Z e
SESp.d

Forexample, S3 5(t) = t 4+ 2 + t* + t'.



5. The Frobenius Coin Problem

Brown and Shiue (1993) attribute the following result to Ozluk.

Theorem (0zluk)
If gcd(b, d) = 1thenwe have [b]/[b]: = 1 + (t — 1)Sp.a(t), i.€.,

T 1

Sbalt) = Q—)1-0) 1-¢t




5. The Frobenius Coin Problem

Brown and Shiue (1993) attribute the following result to Ozluk.

Theorem (0zluk)
If gcd(b, d) = 1then we have [b]/[b]e = 1 + (t — 1)Sp (1), i.€.,

T N 1
Q-t)1—td) "1t

Sp,a(t) =

Corollary
If w is a primitive dth root of unity with d|(n + 1), it follows that

(b)
k|n _ ((n+1)/d—1y(b) +1)/d—1y(P) +1)/d—11(P)
@ [k] = ((" k)//d ) + Esesb,d (EZ—l)—/s)/d) - Zsesb,d ((n(k—)s/)/d ) ;

w

®)is positive or negative.

w

It is not clear from this formula when w* H



5. The Frobenius Coin Problem

Here is a cute formula, which allows us to be much more precise.

Theorem
Let gcd(b,d) = 1. Foranyr € N,let0 < 3, < band 0 < ¢, < d satisfy

B =rd '*modb andd, =rb ' modd.

Then
[bls _ [dle

B " @ = [Bilwlor]e — t[b — Bi]w[d — 01]w-



5. The Frobenius Coin Problem

Here is a cute formula, which allows us to be much more precise.

Theorem
Let gcd(b,d) = 1. Foranyr € N,let0 < 3, < band 0 < ¢, < d satisfy

B =rd '*modb andd, =rb ' modd.

Then

%—[d]—tb: d b — — P10 — O1]pp
de e _ (50t — b — lolo - sl

Corollary
Let gcd(b, d) = 1. If wis a primitive dth root of unity and d|(n + 1) then

k| n (b), >0 whend < 1,
w is
k » <0 whendy > 6.
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I really like this theorem because it has a geometric interpretation.



5. The Frobenius Coin Problem

I really like this theorem because it has a geometric interpretation.
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487098 14Y(L19%\ 24

2 0| o 212141157
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Example: Let (b, d) = (7,5). Draw an infinite array starting at 0, adding 5 for each
right step and subtracting 7 for each down step.



5. The Frobenius Coin Problem

I really like this theorem because it has a geometric interpretation.

14 19 24

7§12 917 4 ; 5
047" 25k S10NSISE/207 25 < 302435
3/ ESM\13> W8 {23488,

1L CoMe I T1R164 )21 0~ :

467098 14Y(L19%\ 24

2 0| T 212141157

0035~ |10

Example: Let (b, d) = (7,5). Draw an infinite array starting at 0, adding 5 for each
right step and subtracting 7 for each down step.

The Sylvester set forms a triangle:

S1s=1{1,2,3,4,6,8,9,11,13,16,18,23}.



5. The Frobenius Coin Problem

I really like this theorem because it has a geometric interpretation.

14 19 24

7§12 917 4 ; 5
0~/ 35p “10\S15%207 425 < 302835
3/ eE8\13> U8 (234978,

1 CoMe I T1R-164 )21 0~ :

487098 14Y (L19%\ 24

2 0| o 712141157

0035~ |10

In this case we have (81, 81) = (3, 3), which tells us that the label 1 occurs in
position (f1, 01 — d) = (3, —2).



5. The Frobenius Coin Problem

I really like this theorem because it has a geometric interpretation.

14 19 24

7§12 917 4 ; 5
04/ 35k “10\M15%/207 425 ¢ 302435
3/ AESN\13> U8 (234878,

1 CoMe I TIR164 )21 0~ :

487098 14 (1L19%\ 24

2 0| o 212141157

0035~ |10

The cute formula describes two rectangles with bottom corners at 0 and 1.

[blia/[ble = [Bi]alOr]ee — t[b = Prlia[d — di]ew
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I really like this theorem because it has a geometric interpretation.
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5. The Frobenius Coin Problem

I really like this theorem because it has a geometric interpretation.

14 19 24

7§12 917 4 ; 5
04/ 35k “10\M15%/207 425 ¢ 302435
3/ AESN\13> U8 (234878,

1 CoMe I TIR164 )21 0~ :

487098 14 (1L19%\ 24

2 0| o 212141157

0035~ |10

The cute formula describes two rectangles with bottom corners at 0 and 1:
[T /[7)e = B3] — t[4]is[2]
:1+t5+t7+t10+t12+t14+t17+t19+t24
- (t+ t6 ™ t8 I tll - tl3 -t t16 | tlB = t23)'

And this leads to a precise description of w*[]] g) whenw® = 1.



Obrigado!

Thanks to DeepSeek for suggesting the azulejos background image.




