Commutation classes of reduced words for elements in Coxeter groups of classical type

Diogo Soares

Joint work with Ricardo Mamede, José Luis Santos 92nd Séminaire Lotharingien de Combinatoire, Strobl September 2024

University of Coimbra (CMUC)

A Coxeter group is a group *W* generated by a finite set $S = \{s_1, s_2, ..., s_n\}$ such that for all $s, t \in S$,

$$(st)^{m(s,t)} = id \tag{1}$$

where $m : S \times S \rightarrow \mathbb{N} \cup \{\infty\}$ is a function satisfying m(s, s) = 1, and m(s, t) = m(t, s) and $m(s, t) \ge 2$.

A Coxeter group is a group *W* generated by a finite set $S = \{s_1, s_2, ..., s_n\}$ such that for all $s, t \in S$,

$$(st)^{m(s,t)} = id \tag{1}$$

where $m : S \times S \rightarrow \mathbb{N} \cup \{\infty\}$ is a function satisfying m(s, s) = 1, and m(s, t) = m(t, s) and $m(s, t) \ge 2$.

We can write (1) as

$$\underbrace{\mathsf{stst}\cdots}_{\mathsf{m}(\mathsf{s},t)}=\underbrace{\mathsf{tsts}\cdots}_{\mathsf{m}(\mathsf{s},t)}$$

A Coxeter group is a group *W* generated by a finite set $S = \{s_1, s_2, ..., s_n\}$ such that for all $s, t \in S$,

$$(st)^{m(s,t)} = id \tag{1}$$

where $m : S \times S \rightarrow \mathbb{N} \cup \{\infty\}$ is a function satisfying m(s, s) = 1, and m(s, t) = m(t, s) and $m(s, t) \ge 2$.

We can write (1) as

$$\underbrace{stst\cdots}_{m(s,t)}=\underbrace{tsts\cdots}_{m(s,t)}.$$

Relation (1) is called

- commutation, if m(s, t) = 2
- braid relation, if m(s, t) > 2

The length of $w \in W$ is the smallest natural number *L* for which we can write *w* as the product $s_{i_1} s_{i_2} \cdots s_{i_l}$.

The length of $w \in W$ is the smallest natural number *L* for which we can write *w* as the product $s_{i_1}s_{i_2}\cdots s_{i_L}$.

The product $s_{i_1}s_{i_2}\cdots s_{i_L}$ is called a reduced decomposition and $a = i_1i_2\cdots i_L$ a reduced word.

The length of $w \in W$ is the smallest natural number *L* for which we can write *w* as the product $s_{i_1} s_{i_2} \cdots s_{i_L}$.

The product $s_{i_1}s_{i_2}\cdots s_{i_L}$ is called a reduced decomposition and $a = i_1i_2\cdots i_L$ a reduced word.

R(w) denotes the set of reduced words for w.

The length of $w \in W$ is the smallest natural number *L* for which we can write *w* as the product $s_{i_1} s_{i_2} \cdots s_{i_L}$.

The product $s_{i_1}s_{i_2}\cdots s_{i_L}$ is called a reduced decomposition and $a = i_1i_2\cdots i_L$ a reduced word.

R(w) denotes the set of reduced words for w.

Theorem (Matsumoto)

Two reduced words for the same element differ by a finite sequence of commutations and/or braid relations.

The length of $w \in W$ is the smallest natural number *L* for which we can write *w* as the product $s_{i_1} s_{i_2} \cdots s_{i_L}$.

The product $s_{i_1}s_{i_2}\cdots s_{i_L}$ is called a reduced decomposition and $a = i_1i_2\cdots i_L$ a reduced word.

R(w) denotes the set of reduced words for w.

Theorem (Matsumoto)

Two reduced words for the same element differ by a finite sequence of commutations and/or braid relations.

Problem: How "far" are two reduced words??

Graphs structures on reduced words

The distance between two reduced words a and b is the length of a shortest path joining a and b in G(w).

The distance between two reduced words a and b is the length of a shortest path joining a and b in G(w).

In general, there is no known formula for the distance between two reduced words.

The distance between two reduced words a and b is the length of a shortest path joining a and b in G(w).

In general, there is no known formula for the distance between two reduced words.

Most of the work was done for elements in Coxeter groups of classical type.

 $G_c(w)$ is the graph obtained from G(w) by contracting the edges that encodes commutations.

 $a \sim b$ if a and b differ by a sequence of commutations

 $a \sim b$ if a and b differ by a sequence of commutations

[a] denotes the commutation class of a

 $a \sim b$ if a and b differ by a sequence of commutations

[a] denotes the commutation class of a

C(w) is the set of commutation classes of w

 $a \sim b$ if a and b differ by a sequence of commutations

[a] denotes the commutation class of a

C(w) is the set of commutation classes of w

Then, $G_c(w)$ is the graph with vertex set C(w) and an edge between [a] and [b] if there are $a' \in [a]$ and $b' \in [b]$ such that a' and b' differ by a single braid relation

 $a \sim b$ if a and b differ by a sequence of commutations

[a] denotes the commutation class of a

C(w) is the set of commutation classes of w

Then, $G_c(w)$ is the graph with vertex set C(w) and an edge between [a] and [b] if there are $a' \in [a]$ and $b' \in [b]$ such that a' and b' differ by a single braid relation

 $d_w([a], [b])$ is the distance between [a] and [b] in $G_c(w)$

Coxeter groups of classical type

Type A_n

•
$$\Phi(A_n) = \{e_j - e_i : 1 \le i \ne j \le n + 1\}$$

•
$$\Phi^+(A_n) = \{e_j - e_i : 1 \le i < j \le n+1\}$$

•
$$\Delta(A_n) = \{\alpha_i : 1 \le i \le n\}$$
, where $\alpha_i = e_{i+1} - e_i$.

• $W(\Phi(A_n)) \cong \mathfrak{S}_{n+1}$

<u>Generators</u>: $\{s_1, \ldots, s_n\}$ with $s_i = (i \ i + 1)$ <u>Relations</u>:

- $s_i s_j = s_j s_i$, if |i j| > 1
- $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$

Type B_n

- $\Phi(B_n) = \{\pm e_j \pm e_i : 1 \le i \ne j \le n+1\} \cup \{\pm e_i : 1 \le i \le n+1\}$
- $\Phi^+(B_n) = \{e_j \pm e_i : 1 \le i < j \le n+1\} \cup \{e_i : 1 \le i \le n+1\}$
- $\Delta(B_n) = \{\alpha_i : 0 \le i \le n\}$, where $\alpha_0 = e_1$ and $\alpha_i = e_{i+1} e_i$, for $i \ge 1$.
- $W(\Phi(B_n)) \cong \mathfrak{S}_{n+1}^B$, the group of signed permutations.

<u>Generators</u>: $\{s_0^B, s_1^B, \dots, s_n^B\}$, with $s_0^B = (\overline{1} \ 1)$ and $s_i^B = (i \ i + 1)(\overline{i + 1} \ \overline{i})$ <u>Relations</u>

•
$$s_i^B s_j^B = s_j^B s_i^B$$
, if $|i - j| > 1$
• $s_i^B s_{i+1}^B s_i^B = s_{i+1}^B s_i^B s_{i+1}^B$, if $i \neq 0$
• $s_0^B s_1^B s_0^B s_1^B = s_1^B s_0^B s_1^B s_0^B$

Type D_n

$$\Phi(D_n) = \{\pm e_j \pm e_i : 1 \le i \ne j \le n+1\}$$

$$\Phi^+(D_n) = \{e_j \pm e_i : 1 \le i < j \le n+1\}$$

$$\Delta(D_n) = \{\alpha_i : 0 \le i \le n\}, \text{ where } \alpha_0 = e_2 + e_1 \text{ and } \alpha_i = e_{i+1} - e_i, \text{ for } i \ge 1.$$

$$W(\Phi(D_n)) \cong \mathfrak{S}_{n+1}^D \subseteq \mathfrak{S}_{n+1}^B \text{ denotes group of even signed permutations}$$

<u>Generators</u>: $\{s_0^D, s_1^D, \dots, s_n^D\}$, with $s_0^D = s_0^B s_1^B s_0^B$ and $s_i^D = s_i^B$ if $i \neq 0$ <u>Relations</u>:

2}

•
$$s_i^D s_j^D = s_j^D s_i^D$$
, if $|i - j| > 1$ and $\{i, j\} \neq \{0,$
• $s_0^D s_1^D = s_1^D s_0^D$
• $s_i^D s_{i+1}^D s_i^D = s_{i+1}^D s_i^D s_{i+1}^D$, if $i \neq 0$
• $s_0^D s_2^D s_0^D = s_2^D s_0^D s_2^D$

Lemma (Humphreys,1990) L(w) = |I(w)|

Lemma (Humphreys,1990) L(w) = |I(w)|

Reduced words are orderings of the set l(w).

Lemma (Humphreys,1990) L(w) = |I(w)|

Reduced words are orderings of the set I(w).

 $<_a$ is the ordering of I(w) induced by a reduced word a

Lemma (Humphreys,1990) L(w) = |I(w)|

Reduced words are orderings of the set I(w).

 $<_a$ is the ordering of I(w) induced by a reduced word a

<u>Question</u>: How commutations and braid relations affect the orderings of I(w)?

Lemma (Humphreys, 1990)

Let $w \in W$ and $a, b \in R(w)$

- If b differ by a single commutation aplied to a, then the effect on the total order <_a is to replace two consecutive positive roots α,β by β, α, where α + β ∉ I(w).
- If b differ by a single 3-braid move aplied to a, then the effect on the total order <_a is to replace three consecutive roots of the form α, α + β, β by β, α + β, α.
- If b differ by a single 4-braid move aplied to a, then the effect on the total order <_a is to replace four consecutive roots of the form α, α + β, α + 2β, β by β, α + 2β, α + β, α, or vice-versa

Distances in $G_c(w)$

Lower bound

 $r_{w}(a,b) = |\{(\alpha,\beta) \in I(w)^{2} : \alpha <_{a} \beta, \beta <_{b} \alpha, \ \alpha + \beta \in I(w), \ 2\alpha + \beta, \alpha + 2\beta \notin I(w)\}|$ is the rank of *b* with respect to *a*

Lower bound

 $r_w(a, b) = |\{(\alpha, \beta) \in I(w)^2 : \alpha <_a \beta, \beta <_b \alpha, \ \alpha + \beta \in I(w), \ 2\alpha + \beta, \alpha + 2\beta \notin I(w)\}|$ is the rank of *b* with respect to *a* Properties of r_w :

- If $a' \in [a]$ and $b' \in [b]$, then $r_w(a', b') = r_w(a, b)$.
- If *b* and *c* differ by a single braid relation, then

 $|r_w(a,b)-r_w(a,c)|=1$

Lower bound

 $r_w(a, b) = |\{(\alpha, \beta) \in I(w)^2 : \alpha <_a \beta, \beta <_b \alpha, \ \alpha + \beta \in I(w), \ 2\alpha + \beta, \alpha + 2\beta \notin I(w)\}|$ is the rank of *b* with respect to *a* Properties of r_w :

- If $a' \in [a]$ and $b' \in [b]$, then $r_w(a', b') = r_w(a, b)$.
- If *b* and *c* differ by a single braid relation, then

 $|r_w(a,b)-r_w(a,c)|=1$

Proposition (Scott,1996) $d_w([a], [b]) \ge r_w([a], [b]).$

Lower bound

 $r_w(a, b) = |\{(\alpha, \beta) \in I(w)^2 : \alpha <_a \beta, \beta <_b \alpha, \ \alpha + \beta \in I(w), \ 2\alpha + \beta, \alpha + 2\beta \notin I(w)\}|$ is the rank of *b* with respect to *a* Properties of r_w :

- If $a' \in [a]$ and $b' \in [b]$, then $r_w(a', b') = r_w(a, b)$.
- If *b* and *c* differ by a single braid relation, then $|r_w(a, b) r_w(a, c)| = 1$

Proposition (Scott,1996) $d_w([a], [b]) \ge r_w([a], [b]).$

Question: Is the other inequality true??

Lower bound

 $r_w(a, b) = |\{(\alpha, \beta) \in I(w)^2 : \alpha <_a \beta, \beta <_b \alpha, \ \alpha + \beta \in I(w), \ 2\alpha + \beta, \alpha + 2\beta \notin I(w)\}|$ is the rank of *b* with respect to *a* Properties of r_w :

- If $a' \in [a]$ and $b' \in [b]$, then $r_w(a', b') = r_w(a, b)$.
- If *b* and *c* differ by a single braid relation, then $|r_w(a, b) r_w(a, c)| = 1$

Proposition (Scott,1996) $d_w([a], [b]) \ge r_w([a], [b]).$

<u>Question</u>: Is the other inequality true?? No... Smallest examples:

- Type A: $w = (6, 5, 4, 3, 2, 1) \in \mathfrak{S}_6$
- Type B: $w = (\overline{1}, \overline{2}, \overline{3}, \overline{4}) \in \mathfrak{S}_4^B$
- Type D: $w = (\overline{1}, \overline{2}, \overline{3}, \overline{4}) \in \mathfrak{S}_4^D$

Necessary conditions

Proposition (Mamede, Santos and Soares) Suppose that $d_w([a], [b]) = r_w([a], [b])$ for all $[a], [b] \in C(w)$.

- 1. If $w \in \mathfrak{S}_n$, then w is 654321–avoiding.
- 2. If $w \in \mathfrak{S}_n^B$ or $w \in \mathfrak{S}_n^D$, then w is $\overline{1} \ \overline{2} \ \overline{3} \ \overline{4}$ and 654321-avoiding.

Proposition (Mamede, Santos and Soares) Suppose that $d_w([a], [b]) = r_w([a], [b])$ for all $[a], [b] \in C(w)$.

- 1. If $w \in \mathfrak{S}_n$, then w is 654321–avoiding.
- 2. If $w \in \mathfrak{S}_n^B$ or $w \in \mathfrak{S}_n^D$, then w is $\overline{1} \ \overline{2} \ \overline{3} \ \overline{4}$ and 654321-avoiding.

The proof of the previous proposition relys on the following lemma.

Lemma (Mamede, Santos and Soares)

Let $u, v \in W$ such that $u \leq_{WB} v$. Then $G_c(u)$ can be isometrically embedded in $G_c(v)$.

Proposition (Mamede, Santos and Soares) Suppose that $d_w([a], [b]) = r_w([a], [b])$ for all $[a], [b] \in C(w)$.

- 1. If $w \in \mathfrak{S}_n$, then w is 654321–avoiding.
- 2. If $w \in \mathfrak{S}_n^B$ or $w \in \mathfrak{S}_n^D$, then w is $\overline{1} \ \overline{2} \ \overline{3} \ \overline{4}$ and 654321–avoiding.

The proof of the previous proposition relys on the following lemma.

Lemma (Mamede, Santos and Soares) Let $u, v \in W$ such that $u \leq_{WB} v$. Then $G_c(u)$ can be isometrically embedded in $G_c(v)$.

The converse of the previous proposition is still unknown...

Something very interesting occurs when *w* is the longest elements in the previous groups.

Something very interesting occurs when *w* is the longest elements in the previous groups.

$$\begin{split} & w_{0,n} := (n, n-1, \dots, 1) \text{ is the longest elements of } \mathfrak{S}_n \\ & w_{0,n}^B := (\overline{1}, \overline{2}, \dots, \overline{n}) \text{ is the longest elements of } \mathfrak{S}_n^B \\ & w_{0,n}^D := \begin{cases} (\overline{1}, \overline{2}, \dots, \overline{n}) & \text{if n is even} \\ (1, \overline{2}, \dots, \overline{n}) & \text{if n is odd} \end{cases} \text{ is the longest elements of } \mathfrak{S}_n^D \end{split}$$

Something very interesting occurs when *w* is the longest elements in the previous groups.

$$\begin{split} & w_{0,n} := (n, n-1, \dots, 1) \text{ is the longest elements of } \mathfrak{S}_n \\ & w_{0,n}^B := (\overline{1}, \overline{2}, \dots, \overline{n}) \text{ is the longest elements of } \mathfrak{S}_n^B \\ & w_{0,n}^D := \begin{cases} (\overline{1}, \overline{2}, \dots, \overline{n}) & \text{if n is even} \\ (1, \overline{2}, \dots, \overline{n}) & \text{if n is odd} \end{cases} \text{ is the longest elements of } \mathfrak{S}_n^D \end{split}$$

Proposition (Mamede, Santos and Soares)

1.
$$d_{w_{0,n}} = r_{w_{0,n}}$$
 if and only if $n < 6$

- 2. $d_{w_{0,n}^B} = r_{w_{0,n}^B}$ if and only if n < 4.
- 3. $d_{w_{0,n}^D} = r_{w_{0,n}^D}$ if and only if n < 4.

Theorem (Gutierres, Mamede and Santos; Mamede, Santos and Soares)

- 1. The graph $G_c(w_{0,n})$ is plannar if and only if n < 6.
- 2. The graph $G_c(w_{0,n}^B)$ is plannar if and only if n < 4.

Theorem (Gutierres, Mamede and Santos; Mamede, Santos and Soares)

- 1. The graph $G_c(w_{0,n})$ is plannar if and only if n < 6.
- 2. The graph $G_c(w_{0,n}^B)$ is plannar if and only if n < 4.

Corollary (Mamede, Santos and Soares) Let w_0 denote the longest elements of type A and B. Then, $d_{w_0} = r_{w_0}$ if and only if $G_c(w_0)$ is plannar.

Theorem (Gutierres, Mamede and Santos; Mamede, Santos and Soares)

- 1. The graph $G_c(w_{0,n})$ is plannar if and only if n < 6.
- 2. The graph $G_c(w_{0,n}^B)$ is plannar if and only if n < 4.

Corollary (Mamede, Santos and Soares) Let w_0 denote the longest elements of type A and B. Then, $d_{w_0} = r_{w_0}$ if and only if $G_c(w_0)$ is plannar.

We conjecture that previous result is also true for type D (It remains to check the plannarity of $G_c(w_{0,4}^D)$).

Longest elements

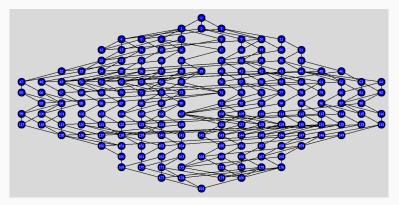


Figure 1: The graph $G_c(w_{0,4}^D)$

Longest elements

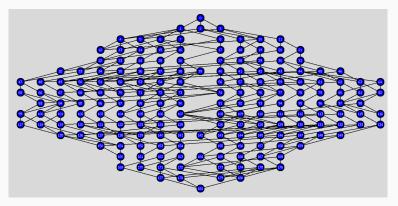


Figure 1: The graph $G_c(w_{0,4}^D)$

The previous result is not true in general! For instance, if $w = [\overline{3}, \overline{1}, \overline{2}, \overline{4}] \in \mathfrak{S}_4^B$ we have that $d_w = r_w$ but $G_c(w)$ is not plannar.

Type B and new graph structures

Recall that \mathfrak{S}_{n+1}^{B} has the following presentation:

<u>Generators</u>: $\{s_0^B, s_1^B, \dots, s_n^B\}$, with $s_0^B = (\overline{1} \ 1)$ and $s_i^B = (i \ i + 1)(\overline{i + 1} \ \overline{i})$ <u>Relations</u>

•
$$s_i^B s_j^B = s_j^B s_i^B$$
, if $|i - j| > 1$
• $s_i^B s_{i+1}^B s_i^B = s_{i+1}^B s_i^B s_{i+1}^B$, if $i \neq 0$

• $s_0^B s_1^B s_0^B s_1^B = s_1^B s_0^B s_1^B s_0^B$

Recall that \mathfrak{S}_{n+1}^{B} has the following presentation:

<u>Generators</u>: $\{s_0^B, s_1^B, \dots, s_n^B\}$, with $s_0^B = (\overline{1} \ 1)$ and $s_i^B = (i \ i + 1)(\overline{i + 1} \ \overline{i})$ <u>Relations</u>

•
$$s_i^B s_j^B = s_j^B s_i^B$$
, if $|i - j| > 1$

- $s_i^B s_{i+1}^B s_i^B = s_{i+1}^B s_i^B s_{i+1}^B$, if $i \neq 0$
- $s_0^B s_1^B s_0^B s_1^B = s_1^B s_0^B s_1^B s_0^B$

Recall that \mathfrak{S}_{n+1}^{B} has the following presentation:

<u>Generators</u>: $\{s_0^B, s_1^B, \dots, s_n^B\}$, with $s_0^B = (\overline{1} \ 1)$ and $s_i^B = (i \ i + 1)(\overline{i + 1} \ \overline{i})$ <u>Relations</u>

0

•
$$s_i^B s_j^B = s_j^B s_i^B$$
, if $|i - j| > 1$
• $s_i^B s_{i+1}^B s_i^B = s_{i+1}^B s_i^B s_{i+1}^B$, if $i \neq j$

•
$$s_0^B s_1^B s_0^B s_1^B = s_1^B s_0^B s_1^B s_0^B$$

3-braid relation

Recall that \mathfrak{S}_{n+1}^{B} has the following presentation:

<u>Generators</u>: $\{s_0^B, s_1^B, \dots, s_n^B\}$, with $s_0^B = (\overline{1} \ 1)$ and $s_i^B = (i \ i + 1)(\overline{i + 1} \ \overline{i})$ <u>Relations</u>

•
$$s_i^B s_j^B = s_j^B s_i^B$$
, if $|i - j| > 1$
• $s_i^B s_{i+1}^B s_i^B = s_{i+1}^B s_i^B s_{i+1}^B$, if $i \neq 0$

• $s_0^B s_1^B s_0^B s_1^B = s_1^B s_0^B s_1^B s_0^B$

Recall that \mathfrak{S}_{n+1}^{B} has the following presentation:

<u>Generators</u>: $\{s_0^B, s_1^B, \dots, s_n^B\}$, with $s_0^B = (\overline{1} \ 1)$ and $s_i^B = (i \ i + 1)(\overline{i + 1} \ \overline{i})$ <u>Relations</u>

•
$$s_i^B s_j^B = s_j^B s_i^B$$
, if $|i - j| > 1$
• $s_i^B s_{i+1}^B s_i^B = s_{i+1}^B s_i^B s_{i+1}^B$, if $i \neq 0$

• $s_0^B s_1^B s_0^B s_1^B = s_1^B s_0^B s_1^B s_0^B$

4-braid relation

 $C_3(w)$ is the set of equivalence classes for the relation \sim_3

 $C_3(w)$ is the set of equivalence classes for the relation \sim_3

 $G_3(w)$ is the graph with vertex set $C_3(w)$ and an edge between $[a]_3$ and $[b]_3$ if there are $a' \in [a]_3$ and $b' \in [b]_3$ that differ by a single 4-braid relation.

 $C_3(w)$ is the set of equivalence classes for the relation \sim_3

 $G_3(w)$ is the graph with vertex set $C_3(w)$ and an edge between $[a]_3$ and $[b]_3$ if there are $a' \in [a]_3$ and $b' \in [b]_3$ that differ by a single 4-braid relation.

 $G_3(w)$ can be obtained from $G_c(w)$ by contracting the edges that encodes 3-braid relations.

Example: If $w = (\overline{2}, \overline{4}, 5, 3, \overline{1})$, then neg(w) = (2, 4, 1).

Example: If $w = (\overline{2}, \overline{4}, 5, 3, \overline{1})$, then neg(w) = (2, 4, 1).

Theorem (Mamede, Santos and S.)

For $w \in \mathfrak{S}_n^B$, we have that $G_3(w)$ is the Hasse diagram of an interval $[id, \sigma]$ in the weak bruhat order of \mathfrak{S}_n , where $\sigma = neg(w) \cdot w_{0,k}$ and $k = |\{i \in \{1, 2, ..., n\} : w(i) < 0\}.$

Example: If $w = (\overline{2}, \overline{4}, 5, 3, \overline{1})$, then neg(w) = (2, 4, 1).

Theorem (Mamede, Santos and S.)

For $w \in \mathfrak{S}_n^{\mathsf{B}}$, we have that $G_3(w)$ is the Hasse diagram of an interval $[id, \sigma]$ in the weak bruhat order of \mathfrak{S}_n , where $\sigma = \operatorname{neg}(w) \cdot w_{0,k}$ and $k = |\{i \in \{1, 2, ..., n\} : w(i) < 0\}.$

We have that $neg(w_{0,n}^B) = (1, 2, ..., n)$.

Example: If $w = (\overline{2}, \overline{4}, 5, 3, \overline{1})$, then neg(w) = (2, 4, 1).

Theorem (Mamede, Santos and S.) For $w \in \mathfrak{S}_n^B$, we have that $G_3(w)$ is the Hasse diagram of an interval [id, σ] in the weak bruhat order of \mathfrak{S}_n , where $\sigma = \operatorname{neg}(w) \cdot w_{0,k}$ and $k = |\{i \in \{1, 2, \dots, n\} : w(i) < 0\}.$

We have that $neg(w_{0,n}^B) = (1, 2, ..., n)$.

Corollary

 $G_3(w_{0,n}^B)$ is the Hasse diagram of \mathfrak{S}_n with respect to weak Bruhat order. Moreover, $|C_3(w_{0,n}^B)| = n!$.

The graph $G_3(w)$

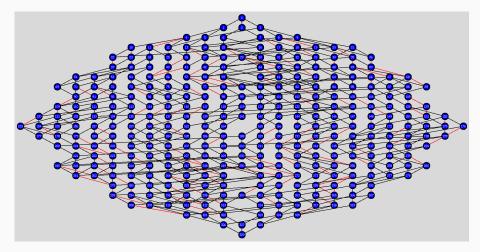


Figure 2: The graph $G_c(w_{0,4}^B)$

The graph $G_3(w)$

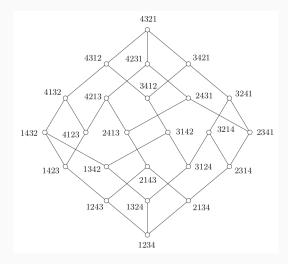


Figure 3: The graph $G_3(w_{0,4}^D)$

 $C_4(w)$ is the set of equivalence classes for the relation \sim_4

 $C_4(w)$ is the set of equivalence classes for the relation \sim_4

 $G_4(w)$ is the graph with vertex set $C_4(w)$ and an edge between $[a]_4$ and $[b]_4$ if there are $a' \in [a]_4$ and $b' \in [b]_4$ that differ by a single 3-braid relation.

 $C_4(w)$ is the set of equivalence classes for the relation \sim_4

 $G_4(w)$ is the graph with vertex set $C_4(w)$ and an edge between $[a]_4$ and $[b]_4$ if there are $a' \in [a]_4$ and $b' \in [b]_4$ that differ by a single 3-braid relation.

 $G_4(w)$ can be obtained from $G_c(w)$ by contracting the edges that encodes 4-braid relations.

 $C_4(w)$ is the set of equivalence classes for the relation \sim_4

 $G_4(w)$ is the graph with vertex set $C_4(w)$ and an edge between $[a]_4$ and $[b]_4$ if there are $a' \in [a]_4$ and $b' \in [b]_4$ that differ by a single 3-braid relation.

$G_4(w)$ can be obtained from $G_c(w)$ by contracting the edges that encodes 4-braid relations.

The commutation relation $s_0^D s_1^D = s_1^D s_0^D$ in \mathfrak{S}_n^D is equivalent to the 4-braid relation $s_0^B s_1^B s_0^B s_1^B = s_1^B s_0^B s_1^B s_0^B$ in \mathfrak{S}_n^B .

Given $w \in \mathfrak{S}_n^D$, let w_B be w but seen as an element in \mathfrak{S}_n^B .

Given $w \in \mathfrak{S}_n^D$, let w_B be w but seen as an element in \mathfrak{S}_n^B .

Theorem (Mamede, Santos and S.) If $w \in \mathfrak{S}_n^D$, then $G_4(w_B)$ is a subgraph of $G_c(w)$. Given $w \in \mathfrak{S}_n^D$, let w_B be w but seen as an element in \mathfrak{S}_n^B .

```
Theorem (Mamede, Santos and S.)
If w \in \mathfrak{S}_n^D, then G_4(w_B) is a subgraph of G_c(w).
```

In the proof of the previous theorem, we rely on the following well know result.

Theorem (Björner)

An ordering < of I(w) coincides with an ordering of a reduced word $a \in R(w)$ if and only if for all the triples $\alpha, \beta, \alpha + \beta \in \Phi^+$ such that $\alpha, \alpha + \beta \in I(w)$,

1. $\alpha < \alpha + \beta$, if $\beta \notin I(w)$,

2. $\alpha < \alpha + \beta < \beta$, or $\beta < \alpha + \beta < \alpha$ if $\beta \in I(w)$.

Connections with type D

Recal that $\Phi(D_n) = \Phi(B_n) \setminus \{\pm e_i, 1 \le i \le n\}.$

$$f: R(w_B) \to R(w_D)$$
$$a = \alpha_1 \alpha_2 \cdots \alpha_l \mapsto f(a) = a \setminus \{e_i : e_i \in I(w_B)\}$$

$$f: R(w_B) \to R(w_D)$$
$$a = \alpha_1 \alpha_2 \cdots \alpha_l \mapsto f(a) = a \setminus \{e_i : e_i \in I(w_B)\}$$

Note: f is well defined, but in general is not injective nor surjective

$$f: R(w_B) \to R(w_D)$$
$$a = \alpha_1 \alpha_2 \cdots \alpha_l \mapsto f(a) = a \setminus \{e_i : e_i \in I(w_B)\}$$

Note: f is well defined, but in general is not injective nor surjective

$$\psi: C_4(w_B) \to C(w_D)$$
$$[a]_4 \mapsto \psi([a]_4) = [f(a)]$$

<u>Note</u>: ψ is well-defined, injective and embedds $G_4(w_B)$ in $G_c(w_D)$.

$$f: R(w_B) \to R(w_D)$$
$$a = \alpha_1 \alpha_2 \cdots \alpha_l \mapsto f(a) = a \setminus \{e_i : e_i \in I(w_B)\}$$

Note: f is well defined, but in general is not injective nor surjective

$$\psi: C_4(w_B) \to C(w_D)$$
$$[a]_4 \mapsto \psi([a]_4) = [f(a)]$$

<u>Note</u>: ψ is well-defined, injective and embedds $G_4(w_B)$ in $G_c(w_D)$.

Question: In what cases do we have a bijection??

Conclusion

 $w\in \mathfrak{S}_n^B$

- $G_3(w)$ is a closed interval in the weak Bruhat order of \mathfrak{S}_n .
- if $w \in \mathfrak{S}_n^D$, then $G_4(w_B)$ is a subgraph of $G_c(w)$.

Thank you for your attention!

Bibliography

- A. Björner and F. Brenti.
 Combinatorics of Coxeter Groups.
 Springer, 2005.
- Gonçalo Gutierres, Ricardo Mamede, and José Santos.
 Commutation classes of the reduced words for the longest element of S_n.

The Electronic Journal of Combinatorics, 27, 05 2020.

Humphreys, James E.

Reflection Groups and Coxeter Groups

Cambridge University Press, 1990.

Anthony Scott

Classes of maximal-length reduced words in Coxeter groups *PhD thesis, University of Warwick*, 1996