Quilts of alternating sign matrices

Matjaž Konvalinka, University of Ljubljana joint work with Sara Billey, University of Washington September 16, 2024

Posets

All posets are *finite*, *ranked*, and have the *greatest element* $\hat{1}$ and the *least element* $\hat{0}$.

Important examples of posets:

- C_n for $n \ge 0$ is the *chain* of rank n;
- $A_2(j)$ for $j \ge 1$ is the *antichain* of *j* elements, with $\hat{0}$ and $\hat{1}$ added;
- B_n for $n \ge 1$ is the *Boolean lattice* of rank *n*.

A *k*-Dedekind map on *P* is map $f: P \to [0, k]$ satisfying $f(\hat{0}) = 0$, $f(\hat{1}) = k, x < x' \Rightarrow f(x') - f(x) \in \{0, 1\}$ (Boolean growth rule).

Alternating sign matrices

An *alternating sign matrix (ASM)* is a square matrix with entries in $\{0, 1, -1\}$ such that in each row and each column the non-zero entries alternate and sum up to 1.

Every permutation matrix is an ASM, and there are many other examples.

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Alternating sign matrices

The counting sequence is 1, 1, 2, 7, 42, 429, 7436, 218348, ... (*Robbins numbers*).

Theorem (ASM enumeration)

The number of $n \times n$ alternating sign matrices is

$$|\text{ASM}_n| = \prod_{j=0}^{n-1} \frac{(3j+1)!}{(n+j)!}.$$

ASMs were introduced by Robbins and Rumsey in the 1980s when studying their λ -determinant, and they formed the conjecture with Mills.

The conjecture was proved by Zeilberger in the early 1990's. Other significant proofs are due to Kuperberg and Fischer.

Robbins number also count...

$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
1 2 3 2 3 3	1 2 3 2 3 2	1 2 3 1 3 3	1 2 3 1 3 2	1 2 3 1 3 1	1 2 3 1 2 2	1 2 3 1 2 1
#	##	##	##	##	##	#
нон он он н й й но нон он н и и и н он он он	바이가에 앉아 앉아 바이가 않아 않아 바이가 아이가 아이가 바이가 아이가 아이가	H-Q H-Q-H Q-H H-Q H Q-H H-Q H-Q H-Q-H H-Q H-Q H-Q-H	H-Q H-Q-H Q-H H H H H-Q-H Q H-Q-H H H H H H-Q H-Q-H Q-H	바이가 이가 이가 이가 다 가 이가 이가 다 가 이가 이가 다 이가 이가 이가	H-Q H-Q H-O-H H-O-H Q-H O-H H-O-H Q-H O-H	바이가 이가 이가 이가
	Ť#		ł			
ø	2	3	3 1	32	33	3 3 2
	H		H	:1		H
					٨	٨
3 3 3 3	3 3 2	3 3	3 2 2	3 2 1	2 2 2	2 2 1
10000	00010	0 0 0 0 1 1 0 0 1	0 0 1 0 0 1 -1 1 1	10000	0 1 0 0 0 0 0 1 1	00001

Corner sum matrix

Take a real matrix *A* of size $k \times n$ with rank min $\{k, n\}$. For $0 \le i \le k$, $0 \le j \le n$, let f(i, j) denote the *rank of the submatrix* of *A* consisting of the *i* bottommost rows and *j* leftmost columns.

The resulting matrix is a map $f: C_k \times C_n \to \mathbb{N}$ satisfying:

- f(i,0) = 0 for i = 0, ..., k, f(0,j) = 0 for j = 0, ..., n,
- $f(k, n) = \min\{k, n\}$, and
- if $(i,j) \leq (i',j')$ in $C_k \times C_n$, then $f(i',j') f(i,j) \in \{0,1\}$.

We take the above to be the definition of a *corner sum matrix*.

Bijection with rectangular ASMs

For CSM *f*, take $a_{i,j} = f(i,j) - f(i,j-1) - f(i-1,j) + f(i-1,j-1)$.

- all the entries are 0, 1, or -1,
- in each row and each column the non-zero entries alternate,
- the leftmost non-zero entry in every row and the bottommost non-zero entry in every column is 1,
- if $k \le n$, the rightmost non-zero entry in every row is 1, and
- if $k \ge n$, the topmost non-zero entry in every column is 1.

This is a rectangular/truncated ASM.

Monotone triangles (MT)

For an ASM of size $k \times n$ and $1 \le i \le k$, take the sum of the *i* bottom rows and write down the positions of 1s.

For

0	1	0	-1	1	0
1	-1	0	1	-1	1
0	1	0	-1	1	0
0	0	0	1	0	0
LO	0	1	0	0	0

and its transpose, we get

Or: record the ascents in CSM.

Interlacing sets

We say that the sets $\{s_1 < s_2 < \cdots < s_p\}$ and $\{t_1 < t_2 < \cdots < t_q\}$ *interlace* when either p = q - 1 and

$$t_1 \leq s_1 \leq t_2 \leq s_2 \leq \cdots \leq s_{q-1} \leq t_q$$

or p = q and

$$t_1 \leq s_1 \leq t_2 \leq s_2 \leq \cdots \leq t_q \leq s_q$$

Consecutive rows of MTs interlace:

Quilts of alternating sign matrices

Take a real matrix *A* of size $k \times n$ with rank min $\{k, n\}$. For $I \subseteq [k]$, $J \subseteq [n]$, let f(I, J) denote the *rank of the submatrix* of *A* consisting of rows in *I* and columns in *J*.

We get a map $f: B_k \times B_n \to \mathbb{N}$ satisfying:

- $f(I, \emptyset) = 0$ for all $I \in B_k$, $f(\emptyset, J) = 0$ for all $J \in B_n$,
- $f([k], [n]) = \min\{k, n\}$, and
- if $(I, J) \leq (I', J')$ in $B_k \times B_n$, then $f(I', J') f(I, J) \in \{0, 1\}$.

Quilts of alternating sign matrices

Let *P* and *Q* be finite ranked posets with least and greatest elements.

A quilt of alternating sign matrices of type (P, Q) (or ASM quilt or just quilt) is a map $f: P \times Q \rightarrow \mathbb{N}$ satisfying:

- $f(x, \hat{0}_Q) = 0$ for all $x \in P$, $f(\hat{0}_P, y) = 0$ for all $y \in Q$,
- $f(\hat{1}_P, \hat{1}_Q) = \min\{\operatorname{rank} P, \operatorname{rank} Q\}, \text{ and }$
- if $(x, y) \leq (x', y')$ in $P \times Q$, then $f(x', y') f(x, y) \in \{0, 1\}$.

The set of all quilts of type (P, Q) will be denoted by Quilts(P, Q).

Example of a quilt

The following is an example of a quilt of type $(A_2(4), A_2(3))$:

Quilts of alternating sign matrices

For a quilt f of type (P, Q) and any pair of maximal chains

$$\hat{\mathbf{0}}_P = x_0 \lessdot x_1 \lessdot \cdots \lessdot x_{k-1} \lessdot x_k = \hat{\mathbf{1}}_P, \quad \hat{\mathbf{0}}_Q = y_0 \lessdot y_1 \lessdot \cdots \lessdot y_{n-1} \lessdot y_n = \hat{\mathbf{1}}_Q$$

in *P* and *Q*, the map

$$(i,j) \mapsto f(x_i, y_j)$$

is a CSM of size $k \times n$.

We can think of quilts as encoding *collections of alternating sign matrices*, one for each pair of maximal chains in the two posets, appropriately "pieced" together.

The motivation for the definition came from Billey–Stark work on *Fubini words*, which was in turn motivated by Pawlowski–Rhoades.

Quilt lattice

Theorem

Let P, Q be finite ranked posets with least and greatest elements. The poset Quilts(P, Q) is a distributive lattice ranked by

quiltrank
$$f = \sum_{x \in P, y \in Q} f(x, y) - \sum_{x \in P, y \in Q} f_{\hat{0}}(x, y),$$

where $f_{\hat{0}}(x, y) = \max\{0, \operatorname{rank} x + \operatorname{rank} y - \max\{n, k\}\}$ is the least element of Quilts(P, Q). The greatest element of Quilts(P, Q) is $f_{\hat{1}}(x, y) = \min\{\operatorname{rank} x, \operatorname{rank} y\}$.

Quilt lattice

Theorem

 If φ is an (involutive) antiautomorphism of P and rank P ≥ rank Q, then

 Φ : Quilts $(P, Q) \rightarrow$ Quilts(P, Q), where $\Phi f(x, y) = \operatorname{rank} y - f(\varphi(x), y)$

is an (involutive) antiautomorphism of the lattice Quilts(P, Q).

 Given an involutive antiautomorphism φ: P → P, rank P ≥ 2, there is a faithful action of the dihedral group D₄ acting on Quilts(P, P).

Enumeration of quilts

Enumerating quilts of type (P, C_1) is equivalent to enumerating antichains in *P*.

For example, the number of antichains in B_n is known only up to n = 9.

Theorem

Computing |Quilts(P, Q)| for general P and Q is a #P-complete problem.

Antichain quilts

A set $S \subseteq P$ is *convex* if $x, y \in S$ implies $[x, y] \subseteq S$.

We say that S is a *cut set* if it intersects every maximal chain in P.

Denote the *number of antichains* in *S* by $\alpha_P(S)$.

Theorem

We have

$$|\operatorname{Quilts}(P, A_2(j))| = \sum_{C} \alpha_P(C)^j,$$

where the sum is over all subsets C of $P \setminus \{\hat{0}_P, \hat{1}_P\}$ that are convex cut sets of P. In particular, as j goes to infinity, we have

$$|\operatorname{Quilts}(P, A_2(j))| \sim \alpha (P \setminus \{\hat{\mathbf{0}}_P, \hat{\mathbf{1}}_P\})^j.$$

Antichain quilts

Corollary

For arbitrary integers $j \ge 1$ and $k \ge 2$, we have

$$|\operatorname{Quilts}(C_k, A_2(j))| = \sum_{i=2}^k (k+1-i)i^j$$
$$= \frac{k^{j+2} + \sum_{l=1}^j {j+2 \choose l} (l \operatorname{Ber}_{l-1} - (l-1) \operatorname{Ber}_l) k^{j+2-l}}{(j+1)(j+2)} + (\operatorname{Ber}_j - \operatorname{Ber}_{j+1} - 1)k.$$

Here Ber_n is the *n*-the *Bernoulli number*.

Chain quilts

The following are two quilts of type (B_3, C_2) and (B_3, C_5) .

For a quilt f of type (P, C_n) and $x \in P$, define jumps of f at x by

$$J_f(x) = \{i \in [n]: f(x,i) - f(x,i-1) = 1\} \subseteq [n].$$

Monotone triangle form of a chain quilt

This gives us a representaion of a quilt as a map $P \rightarrow B_n$, $x \mapsto J_f(x)$:

We will call this the *monotone triangle (MT) form* of the quilt f.

For all $x, y \in P$ with x < y, the sets $S = J_f(x)$ and $T = J_f(y)$ are interlacing. When $n \le \operatorname{rank} P$, $J_f(\hat{1}_P) = [n]$. When $n \ge \operatorname{rank} P$, we have $|J_f(x)| = \operatorname{rank} x$ for all $x \in P$.

Essential and standard quilts

A chain quilt is *m*-fundamental if its MT form contains precisely the elements 1, ..., m. It is *standard* if its MT form contains exactly one of each of 1, ..., b(P), where $b(P) = \sum_{x \in P} \operatorname{rank} x$.

For example, for $P = B_2$, we have b(P) = 4, and there are four 2-fundamental, five 3-fundamental, and two 4-fundamental (standard) quilts:

We denote the set of *m*-fundamental quilts by $F_m(P)$, and the set of standard quilts by S(P).

Enumeration of chain quilts

Theorem

For a fixed poset P, the number of chain quilts of type (P, C_n) , $n \ge \operatorname{rank} P$, is given by a polynomial in n, namely

$$|\operatorname{Quilts}(P, C_n)| = \sum_{m=k}^{b(P)} |F_m(P)| {n \choose m}.$$

In particular,

$$|\operatorname{Quilts}(P, C_n)| \sim \frac{|S(P)|}{b(P)!} \cdot n^{b(P)}.$$

Corollary

The number of rectangular ASMs of size $k \times n$, $k \le n$, is a polynomial in n of degree $\binom{k+1}{2}$ with leading coefficient $\frac{\prod_{i=0}^{k-1}(2i)!}{\prod_{i=0}^{k-1}(k+i)!}$.

Number of chain quilts with given top set

Define $MT_P(a_1, ..., a_k)$ as the set of quilts $f \in Quilts(P, C_n)$ for which $J_f(\hat{1}_P) = \{a_1, ..., a_k\}$.

Theorem

For a finite poset P of rank k with least and greatest elements, we have

$$|\mathsf{MT}_{P}(a_{1},\ldots,a_{k})| = \sum_{f\in F(P)}\prod_{i=2}^{k} \binom{a_{i}-a_{i-1}-1}{J_{f}(\hat{1}_{P})_{i}-J_{f}(\hat{1}_{P})_{i-1}-1},$$

where T_i denotes the *j*-th largest element of the set *T*.

Boolean quilts

Theorem

There exist positive numbers A_P and B_P so that if $n \ge \operatorname{rank} P$, we have

$$A_P^{\binom{n}{\lfloor n/2 \rfloor}} \leq |\operatorname{Quilts}(P, B_n)| \leq B_P^{\binom{n}{\lfloor n/2 \rfloor}}$$

For example,

$$2^{\binom{k}{\lfloor k/2 \rfloor}\binom{n}{\lfloor n/2 \rfloor}} \le |\operatorname{Quilts}(B_k, B_n)| \le 2^{k2^{k-1}(1+c\ln n/\sqrt{n})\binom{n}{\lfloor n/2 \rfloor}}$$

for $n \ge 2k$ and some constant c > 0.

Future work

- are there other explicit formulas for |Quilts(P_n, P_n)| for families of posets P_n?
- statistics on quilts
- study the quilt polytope
- does the polynomial |MT_P(a₁,..., a_k)| have some of the properties of |MT_{C_k}(a₁,..., a_k)|?
- Boolean quilts: improve bounds; study *representable* quilts of type (B_k, B_n); find lim_{n→∞} log | Quilts(P, B_n)|/ (ⁿ_{1n/21})